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REGIONAL CONTROLLABILITY OF FRACTIONAL EVOLUTION SEMILINEAR
SYSTEMS

SID AHMED OULD BEINANE

ABSTRACT. The objective of this article is to address the regional controllabil-
ity problem for semi-linear systems involving Riemann-Liouville fractional deriva-
tives. Firstly, we characterize a supposition to ensure the existence and uniqueness
of mild solutions. Then, the necessary and sufficient conditions of the approx-
imate regional controllability of the fractional evolution semi-linear systems are
obtained and proved.

1. INTRODUCTION

Models closest to the problems in the real world can be expressed accurately
through fractional differential equations, which involve generalization of integer
order differential equations systems, Many applications have been found in the
modeling and processes of systems in the fields if aerodynamics, physics, electrical
science, viscoelastic [1, 6], control theory, electrochemistry [22], heat conduction
[4], electricity mechanics and so forth. More details are provided in [2,12,19,20,
25].

The interest of authors in this field lies in the application of this kind of con-
struction in various fields and is also derived from the development of the theory
of fractional calculus itself.
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Controllability, first introduced by Kalman, [13], is useful for analyzing systems.
Several authors have studied the concept of controllability in systems with infinite
dimensions, using different types of methods to develop good system control. The
control of semi-linear systems consisting of a linear part and nonlinear part is one
of the most important results obtained in this area. For more details on these
topics, see the works presented in [3,5,11,15].

Recently, the probability density function and semigroup theory have been used
to give a suitable definition of a mild solution for an evolution equation involving
a Riemann–Liouville fractional derivative, which has created sufficient conditions
to determine approximate controllability [17,27,29,30].

The term "regional controllability" was studied for the first time by El Jai [7]; it
is used to refer to control problems targeting a specific region ω from the whole
domain Ω. This concept of the controllability of the distributed parameter system
is logical, because it approaches real-world problems. Moreover, it can be applied
to systems that cannot be controllable in the whole domain. This concept has been
studied extensively and has yielded interesting results (see [7,14,23,24,28]).

The rest of this paper is presented as follows. Some preliminary results regard-
ing the regional controllability problem and basic definitions, which will be used
throughout the following sections, are introduced in the next section. In section 3,
we present sufficient conditions for the existence and uniqueness of mild solutions
for semi-linear fractional-order β ∈ (0, 1) systems, with the Riemann–Liouville
fractional derivatives. In section 4, the regional controllability of time fractional
semi-linear systems are presented, and necessary and sufficient conditions for re-
gional approximate controllability results are given for fractional abstract Cauchy
problems.

2. PRELIMINARIES

Let Ω be an open bounded subset of IRn (n = 1, 2, 3), and we consider the
following fractional semi-linear time system:

(2.1)


Dβ
t y(x, t) = Ay(x, t) +Bu(t) +Ny(x, t), Ω×]0, T ]

lim
t→0+

Iβ−1
t y(x, 0) = y0(x), Ω

,
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where Iβ is the R.L fractional order integral defined in ( [16]) by

(2.2) I1−β
t g(t) =

1

Γ(β)

∫ t

0

(t− s)β−1g(s)ds, β > 0

and the R.L fractional order derivative Dβ
t to time t is given in ( [16]) by

Dβ
t g(t) =

d

dt
I1−β
t g(t), 0 < β ≤ 1.

Next, A : D(A) ⊂ L2(Ω) → L2(Ω) is generated by the S(t)t≤0 strongly contin-
uous semigroup on L2(Ω) (see [26], [8], [10]); N : [0, T ] × L2(Ω) → L2(Ω)

is a nonlinear operator; and B : IRn → L2(Ω), is a control operator, where
u(.) ∈ Ũ = {u ∈ L2(0, T ; IRp) | yu(T ) ∈ L2(Ω)}, where Ũ is a Hilbert space.

In the following, we address definitions as follows.

Lemma 2.1. (see [9], [10]) Let f ∈ L2(0, T ;L2(Ω)), 0 < β < 1, and g ∈ L2(0, T ;

L2(Ω)). Then

(2.3)


Dβ
t g(t) = Ag(t) + f(t) t ∈ [0, T ]

lim
t→0+

Dβ−1
t g(x, 0) = g0(x) ∈ L2(Ω)

.

The mild solution of system (2.3) satisfies

g(t) = tβ−1Sβ(t)g0 +

∫ t

0

(t− s)β−1Sβ(t− s)f(s)ds,

where

Sβ(t) = β

∫ ∞
0

αϕβ(α)S(tβα)dα.

Here, ϕβ = 1
β
α−1− 1

β ξβ(α
−1
β ) where ψβ is defined by

ξβ(α) =
1

π

∞∑
n=1

(−1)(n−1) Γ(n+ 1)

n!
α−βn−1)sin(nπβ), α > 0,

which is called the probability density function. From the arguments in [21], we
see that ξβ (α > 0) satisfies the following property:∫ ∞

0

ξβ(α) = 1

and

(2.4) ξ̃β(λ) =

∫ ∞
0

e−λβξβ(α)dα = e−λ
β

, β ∈ (0, 1).



11150 SID AHMED OULD BEINANE

Proof. (see [10], [29]) Using Laplace transforms, we obtain the following:

g̃(λ) =

∫ ∞
0

e−λvg(v)dv and f̃(λ) =

∫ ∞
0

e−λvf(v)dv;

and the system (2.3) is equivalent to (see [18])

λ
β

g̃(λ)− g0 − Ag̃(λ) = f̃(λ).

Then,

g̃(λ) = (λβI − A)−1(g0 − f̃(λ)) =

∫ ∞
0

e−λ
βvS(v)[g0 − f̃(λ)]dv.

Let v = τβ. We obtain

g̃(λ) = β

∫ ∞
0

e−(λτ)βS(τβ)τβ−1[g0 + f̃(λ)]dτ.

From (2.4), we obtain

e−(λτ)β =

∫ ∞
0

e−λταξβ(α)dα.

Then,

g̃(λ) = β

∫ ∞
0

∫ ∞
0

e−λταξβ(α)S(τβ)τ (β−1)[g0 + f̃(λ)]dαdτ

= I1(g0) + I2(f),

where

I1(g0) = β

∫ ∞
0

∫ ∞
0

e−λταξβ(α)φ(τβ)τ (β−1)dαdτg0

and

I2(f) = β

∫ ∞
0

∫ ∞
0

e−λταξβ(α)φ(τβ)τ (β−1)dαdτ f̃(λ).

Suppose that t = τα. Then, we obtain

I1(g0) = β

∫ ∞
0

∫ ∞
0

e−λtξβ(α)S(
tβ

αβ
)
tβ−1

αβ
dαdtg0

=

∫ ∞
0

e−λtβ

∫ ∞
0

ξβ(α)S(tβα−β)tβ−1α−βdαdtg0

and

I2(f) = β

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−λταξβ(α)S(τβ)τ (β−1)e−λvf(v)dvdαdτ

= β

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−λ(t+v)ξβ(α)S(
tβ

αβ
)
tβ−1

αβ
f(v)dvdαdt

=

∫ ∞
0

e−λ(t)β

∫ t

0

∫ ∞
0

ξβ(α)S
((t− v)β

αβ
)(t− v)β−1f(v)

αβ
dαdvdt.
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Finally, we obtain

g̃(λ) =

∫ ∞
0

e−λtβ

[∫ ∞
0

ξβ(α)S(
tβ

αβ
)
tβ−1

αβ
dαg0dt

+

∫ t

0

∫ ∞
0

ξβ(α)S
((t− v)β

αβ
)(t− v)β−1f(v)

αβ
dαdv

]
dt.

Now, using the invert Laplace transform, we find that

g(t) =

∫ ∞
0

e−λttβ−1β

∫ ∞
0

1

β
α−1− 1

β ξβ(α−
1
β )αS(tβα)dαdtg0

+

∫ ∞
0

e−λ(t)β

∫ t

0

∫ ∞
0

α
1

β
α−1− 1

β ξβ(α−
1
β )
S((t− v)βα)f(v)

(t− v)1−β dαdvdt.

Let Sβ(t) = β

∫ ∞
0

αϕβ(α)S(tβα)dα and ϕβ = 1
β
α−1− 1

β ξβ(α
−1
β ). Then, we obtain

g(t) = tβ−1Sβ(t)g0 +

∫ t

0

(t− v)β−1Sβ(t− v)f(v)dv,

and the proof is complete. �

According to the above lemma (2.1), we give the following definition.

Definition 2.1. For a state y(., u) ∈ L2(Ω), by lemma (2.1), y(., u) is called a mild
solution of (2.1) and can be written as follows:

y(t, u) = tβ−1Sβ(t)y0 +

∫ t

0

(t− v)β−1Sβ(t− v)Bu(v)dv

+

∫ t

0

(t− v)β−1Sβ(t− v)N(v, y(v))dv,

For ω ⊂ Ω, an open, nonempty and positive Lebesgue measure, we consider the
operator restriction:

χω : L2(Ω) −→ L2(ω)

y −→ y|ω

Definition 2.2. Let y0 ∈ L2(Ω) be the reachable set of systems (2.1) at terminal time
T , which can be denoted by {χωKT}(f) =

{
χωy(T, u) : u(.) ∈ Ũ

}
. The system (2.1)

is ω-approximately regionally controllable in the subregion ω if {χωKT}(f) = L2(ω).



11152 SID AHMED OULD BEINANE

Lemma 2.2. Due to Lemma 3.2 and Lemma 3.3 in ( [30]):
(1) For any fixed t > 0,The operator Sβ(t) is a linear and bounded operator for all
t > 0, i.e., for any y ∈ L2(Ω),

(2.5) ‖Sβ(t)y‖ ≤ M

Γ(β)
‖y‖.

(2) Sβ(t) t > 0 is strongly continuous.

3. ASSUMPTIONS TO GUARANTEE THE EXISTENCE AND UNIQUENESS OF MILD

SOLUTIONS

In the following, we discuss the conditions which guarantee the existence and
uniqueness of a fractional evolution semi-linear system involving Riemann–Liouville
fractional derivatives.

Below, we present some hypotheses and list them as follows:

(1) (H1) S(t) is a C0-semigroup and S(t) is continuous in the uniform operator
topology for t > 0.

(2) (H2) There is a function ψ(.) ∈ L2((0, T ], R+), and c > 0 satisfies

‖N(t, z)‖ ≤ ψ(t) + ct1−β‖z‖
L2(Ω)

, ∀ (t ∈ (0, T ] and z ∈ L2(Ω)).

(3) (H3) The function N satisfies

‖N(t, z1)−N(t, z2)‖ ≤ L‖z1 − z2‖L2(Ω)
,

where L > 0 is a constant.

For our main result, we introduce

Theorem 3.1. (see, [29]) If Bn is a contraction on Banach space Z, where n is a
positive integer and B is an operator from Z to itself, then B has a unique fixed point
on Z.

Theorem 3.2. Assume that hypotheses (H1), (H2) and (H3) are satisfied. Then, for
each control function u(.) ∈ Ũ = {u ∈ L2(0, T ; IRp) | yu(T ) ∈ L2(Ω)}, the control
system (2.1) has a unique mild solution on L2

1−β((0, T ];L2(Ω)).

Proof. Consider the operator Υ defined by

(Υy)(t) = tβ−1Sβ(t)y0 +

∫ t

0

(t− v)β−1Sβ(t− v)[Bu(v) +N(v, y(v))]dv.
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First, under the assumptions of our theorem, it is not difficult to check that Υ

maps L2
1−β((0, T ];L2(Ω)) into itself.

Next, we show that Υn is a contraction operator on L2
1−β((0, T ];L2(Ω)). In fact,

∀t ∈ (0, T ] and all x, y ∈ L2
1−β((0, T ];L2(Ω)) we have

t1−β‖(Υy)(t)− (Υy)(t)‖

= t1−β‖
∫ t

0

(t− v)β−1Sβ(t− v)[N(v, y(v))−N(v, y(v))dv]‖

≤ t1−β
∫ t

0

(t− v)β−1‖Sβ(t− v)[N(v, x(v))−N(v, y(v))]‖dv.

Using (2.5), we obtain

t1−β‖(Υy)(t)− (Υy)(t)‖ ≤ t1−β M
Γ(β)

∫ t

0

(t− v)β−1‖N(v, x(v))−N(v, y(v))dv‖.

Then, by hypotheses (H3),
(3.1)

t1−β‖(Υy)(t)− (Υy)(t)‖ ≤ t1−β LM
Γ(β)

∫ t

0

(t− v)β−1‖x(v)− y(v)‖dv

≤ LM
Γ(β)

∫ t

0

t1−β(t− v)β−1vβ−1v1−β‖x(v)− y(v)‖dv

≤ Γ(β)LMtβ

Γ(2β)
‖x− y‖

L2
1−β((0,T ];L2(Ω))

.

By induction on n, using (3.1), we can easily find that

t1−β‖(Υny)(t)− (Υny)(t)‖ ≤ Γ(β)(LMtβ)n

Γ((n+1)β)
‖x− y‖

L2
1−β((0,T ];L2(Ω))

.

Then,

‖(Υny)− (Υny)‖
L2

1−β((0,T ];L2(Ω))
≤ Γ(β)(LMTβ)n

Γ((n+1)β)
‖x− y‖

L2
1−β((0,T ];L2(Ω))

.

Moreover, let Eβ,γ(t) := Σ∞k=0

tk

Γ(βk + γ)
—the Mittag–Leffler series, which is uni-

formly convergent for all t ∈ (0, T ]. If t = (LMT β), then Γ(β)(LMTβ)n

Γ((n+1)β)
is the general

term Eβ,1(t); then, for a sufficiently large n, we can obtain

Γ(β)(LMT β)n

Γ((n+ 1)β)
< 1.

Finally, according to Theorem 3.1 (see [29]), Υn is a contradiction; thus, Υ has
a unique fixed point and satisfies the solution of (2.1). �
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4. REGIONAL CONTROLLABILITY OF THE SEMI-LINEAR SYSTEM

In this section, we formulate and prove conditions for the approximate regional
controllability of the semi-linear control system results with fractional evolution.

We define the bounded and linear operator Θ : L2((0, T ];L2(Ω))→ L2(Ω) by

Θh =

∫ T

0

(t− v)β−1Sβ(t− v)h(v)dv, h(.) ∈ L2((0, T ];L2(Ω))

and Θω : L2(Ω)→ L2(ω), Θωh = χωΘh. In what follows, we assume that Sβ(t)y0 ∈
ImΘω. We denote the Nemytskil operator corresponding to the nonlinear function
N by

ΛN : L2
1−β((0, T ];L2(Ω)) → L2(Ω) ΛN(y)(t) = N(t, y(t)).

Then, the mild solution can be presented as

y(., u) = tβ−1Sβ(t)y0 + ΘBu(t) + ΛN(y(t)) ∀ t ∈ (0, T ].

From definition (2.2), we know that if for any y0 ∈ L2(Ω) and u(.) ∈ Ũ , the
system (2.1) is ω-approximately regionally controllable on (0, T ] if and only if
{χωKT}(f) = L2(ω). Equivalently, if for any ε > 0 and every desired state at time
T denoted yd ∈ L2(ω),

(4.1) ‖yd − χωy(T, u)‖ = ‖yd − T β−1χωSβ(T )y0 −ΘωBuε − χωΛN(yε)‖,

where χωyε = χωy(t; 0, y0, uε), then system (2.1) is approximately regional control-
lable on (0, T ]. Now, we can introduce the following suppositions:

(1) (H ′3) There exists a constant L′ such that

‖N(t, x)−N(t, y)‖ ≤ t1−βL′‖x− y‖
L2

1−β((0,T ];L2(Ω))
.

(2) (H4) For all ε > 0, ∃ u ∈ L2((0, T ];L2(Ω)) satisfies

(4.2) ‖Θω(ζ)−ΘωBu‖L2(ω)
< ε

and

(4.3) ‖Bu(.)‖
L2((0,T ];L2(Ω))

≤ q‖ζ(.)‖
L2((0,T ];L2(Ω))

,
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where ζ(.) ∈ L2((0, T ];L2(Ω)) and q is constant which is independent of
ζ(.) satisfies

(4.4)
L′Mq

Γ(β)

(√
T

2β − 1

)
E

(β,1)
(L′MT ) < 1.

Given that (H ′3) is stronger than (H3), if (H1), (H2) and (H ′3) hold, according to the-
orem 3.2, the control system (2.1) has a unique mild solution on L2

1−β((0, T ];L2(Ω)).

Lemma 4.1. (see, [29]) We suppose that N satisfies the conditions (H2) and (H ′3).
Then, the following inequalities are satisfied by the mild solution of system (2.1):

‖χωy(t; 0, y0, u)‖L2
1−β

((0,T ];L2(ω)) ≤ νE
(β,1)

(cMT ), ∀u(.) ∈ L2((0, T ];L2(Ω)).

For any u1(.), u2(.) ∈ L2((0, T ];L2(Ω)),

‖χωy1(.)− χωy2(.)‖L2
1−β

((0,T ];L2(ω)) ≤ µE
(β,1)

(L′MT )‖Bu1(.)−Bu2(.)‖L2(Ω),

where

ν =
M

Γ(β)

[
‖y0‖+

(√
1

2β − 1

)
(‖Bu‖L2(Ω) + ‖ψ(t)‖L2(Ω))

√
T

]
,

and µ = M
Γ(β)

(√
1

2β−1

)√
T .

Proof. The proof is similar to lemma 4.1 in [29]. �

Lemma 4.2. (see [30], [29]) Let S(t) be a differentiable semigroup generated by A.
Then, for y ∈ L2(Ω), we have

Sβ(t)y ∈ D(A) ∀t > 0,

Sβ(t)Sβ(z) = Sβ(z)Sβ(t) ∀t, z > 0,

and
d S2

β(t)y

dt
= 2Sβ(t)

d Sβ(t)y

dt
∀t > 0.

Theorem 4.1. Assume that hypotheses (H2), (H ′3) and (H4) are satisfied. Then,
system (2.1) is approximately regional controllable on (0, T ] if A generates a differ-
entiable semigroup S(t) ∈ L2(Ω).
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Proof. Let yd ∈ D(A). Since D(A) ∈ L2(Ω), we can prove by D(A) ⊂ {χωKT (N)}
the set of reachable states equivalently, if for any ε > 0 and every desired state at
time T denoted yd ∈ L2(ω) there is a control function uε(.) ∈ Ũ , satisfies

(4.5) ‖yd − χωy(T, uε)‖L2(ω) = ‖yd − T β−1χωSβ(T )y0 −ΘωBuε −ΘωΛN(yε)‖L2(ω).

Firstly, we know that for any y0 ∈ L2(Ω), T β−1χωSβ(T )y0 ∈ D(A); therefore,
for all yd ∈ D(A), there exists a function ζ(, ) ∈ L2(ω) such that Θωζ = yd −
T β−1χωSβ(T )y0.

Then, (4.5) can be written

‖yd − χωy(T, uε)‖L2(ω) = ‖Θωζ −ΘωBuε −ΘωΛN(yε)‖L2(ω)

For any ε > 0 and u1(.) ∈ Ũ by (4.2) in (H4), there exists u2(.) ∈ Ũ , such that

‖yd − T β−1χωSβ(T )y0 −ΘωΛN(y1)−ΘωBu2‖L2(ω) ≤
ε

22
.

Since χωy(T, u2) = T β−1χωSβ(T )y0 −ΘωBu2 −ΘωΛN(y2)

(4.6)

‖yd − T β−1χωSβ(T )y0 −ΘωΛN(y1)−ΘωBu2‖L2(ω)

= ‖yd − T β−1χωSβ(T )y0 −ΘωΛN(y1)− χωy(T, u2) + T β−1χωSβ(T )y0

+ΘωΛN(y2)‖L2(ω)

= ‖yd − χωy(T, u2) + Θω[ΛN(y2)− ΛN(y1)]‖L2(ω) ≤ ε
22 .

Taking (4.6) and using (4.2) in (H4) again, there exists u3(.) ∈ Ũ such that

‖Θω[ΛN(y2)− ΛN(y1)]−ΘωBu3‖L2(ω) ≤
ε

23
.

Using (4.3) in (H4), we obtain

‖Bu3(.)‖L2(Ω) ≤ q‖ΛN(y2)(.)− ΛN(y1)(.)‖L2((0,T ];L2(Ω)).

From Lemma (4.1), we obtain

‖Bu3(.)‖L2(Ω) ≤ qL′T β−1‖y2(.)− y1(.)‖L2((0,T ];L2(Ω))

= qL′‖y2(.)− y1(.)‖L2
β−1

((0,T ];L2(Ω))

≤ qL′µE
(β,1)

(L′MT )‖Bu1(.)−Bu2(.)‖L2(Ω),

where µ = M
Γ(β)

(√
1

2β−1

)√
T .
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Let w1 = u2 − u3, w1 ∈ Ũ . Then, we obtain

‖yd − T β−1χωSβ(T )y0 −ΘωΛN(y2)−ΘωBw1‖
= ‖yd − T β−1χωSβ(T )y0 −ΘωΛN(y2)−ΘωBu2 + ΘωBu3‖
= ‖yd − T β−1χωSβ(T )y0 −ΘωΛN(y1) + ΘωΛN(y1)

−ΘωΛN(y2)−ΘωBu2 + ΘωBu3‖
≤ ‖yd − T β−1χωSβ(T )y0 −ΘωΛN(y1)−ΘωBu2‖

+‖ΘωBu3 −Θω[ΛN(y2)−ΘωΛN(y1)]‖
≤
(

1
22 + 1

23

)
ε.

Thus, we can obtain a sequence {un} ⊂ Ũ by induction as follows:

‖yd−T β−1χωSβ(T )y0−ΘωΛN(yn)−ΘωBun+1‖ ≤
(

1

22
+ · · ·+ 1

2n

)
ε, ‖, ∀t ∈ (0, T ],

and

‖Bun+1(.)−Bun(.)‖L2(Ω) ≤ qL′µE
(β,1)

(L′MT )‖Bun+1(.)−Bun(.)‖L2(Ω).

Using (4.4) in (H4), it easy to determine that {Bun, n = 1, 2, · · · , } is a Cauchy
sequence on L2((0, T ];L2(Ω)). Then, {Bun, n = 1, 2, · · · } has a subsequence BuK ,
(where K is positive integer number) which converges, i.e., ∀ε > 0, and Bun(.) ∈
L2((0, T ];L2(Ω)) satisfies

‖ΘωBun+1(.)−ΘωBun(.)‖L2(ω) ≤
ε

2
.

Therefore, we obtain

‖yd − T β−1χωSβ(T )y0 −ΘωΛN(yK)−ΘωBuK‖L2(ω)

= ‖yd − T β−1χωSβ(T )y0 −ΘωΛN(yK)−ΘωBuK+1

+ΘωBuK+1 −ΘωBuK‖L2(ω)

≤ ‖yd − T β−1χωSβ(T )y0 −ΘωΛN(yK)−ΘωBuK+1‖L2(ω)

+‖ΘωBuK+1 −ΘωBuK‖L2(ω)

≤
(

1
22 + · · ·+ 1

2n

)
ε+ ε

2
< ε

Now, this proves yd ∈ D(A) and then, yd ∈ {χωKT (N)}; thus, system (2.1) is
approximately regionally controllable on (0, T ]. �
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