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A NUMERICAL SCHEME FOR THE SOLUTION OF g-FRACTIONAL
DIFFERENTIAL EQUATION USING g-LAGUERRE OPERATIONAL MATRIX

B. MADHAVI, G. SURESH KUMAR!, AND T. S. RAO

ABSTRACT. In this paper, we develop a numerical scheme for the solution of
g-fractional order differential equation using ¢-Laguerre operational matrix(g-
LOM). Here, we consider the g-fractional derivative in the Caputo sense. An
operational matrix of ¢-Laguerre polynomials for ¢-fractional order derivatives
are determined and utilized along with the spectral tau method for converting
the g-fractional differential equations(¢-FDEs) into a system of algebraic equa-
tions. This method is applied to solve linear g-fractional differential equations.

1. INTRODUCTION

The investigation of g-calculus began during the 1740s. The ¢-calculus is the
most part settled on inferring ¢-analogous to the traditional analytical results
without utilizing limits. The subject arrangement with the properties of the ¢-
special functions, which are the development of the ordinary special functions
dependent on a parameter, or the base ¢. The significant and principal instru-
ment of ¢-calculus is ¢-derivative. The pioneer who deals with quantum calculus
is Jackson. For basic definitions and properties of ¢-calculus we refer [8-10].

Fractional order derivatives generalizes integer-order differentiation and inte-
gration. In 1695 Leibniz’s noted the Fractional derivative in his list to L’Hospital
and now we have many definitions of fractional derivatives. we can refer the
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fundamental definitions on fractional differential equations (FDEs) [1,2]. Frac-
tional calculus have many applications and used in many fields and few are LTE
networks [19], two loop controlled micro gird [18], evaluation of closed-loop-
PID [20], optimization based multilevel thresholding for medical images [21],
closed-loop MLI based DP-FC for fourteen-bus system [15]. The ¢-fractional
calculus is g-expansion of the classical fractional calculus. Al-Salam [6], and
Agarwal [7] introduced and developed different types of ¢-fractional integral
operators and ¢-fractional derivatives. Since most of the FDEs does not have
exact analytic solutions, then it is required to develop approximate and nu-
merical techniques. Many authors and researches have been discussed vari-
ous numerical and approximate methods to solve the FDEs, for example, vari-
ational iteration method, homotopy perturbation method, Adomain’s decompo-
sition method, homotopy analysis method, operational matrix method by collo-
cation [5] and finite difference method. Where as in g-calculus, there are not
many known methods.

In recent years various operational matrices for the polynomials have been
developed to obtain the the numerical solution. The polynomials have been fre-
quently used in the solution of integral, differential and approximation theory.
We can refer some hyper geometric polynomials in [12-14,16,17]. In the op-
erational matrix method, we can reduce an FDE to algebraic equations with the
help of operational matrices and orthogonal polynomials, and get the approx-
imate solution. We get the operational matrices by approximating the integral
of orthogonal polynomials. For example, Saadatmandi and Dehghan [22] gen-
eralized the Legendre operational matrix, Abdelkawy and Taha [3] developed
the Laguerre operational matrix and Bhrawy and Alofi [4] introduced a new
shifted Chebyshev operational matrix of fractional integration in the R—Liouville
sense, to the FDEs for linear and non-linear cases and also discussed spectral
techniques based on operational matrices of fractional derivatives and integrals
for solving FDEs.

This paper deals with numerical solutions of ¢-fractional differential equa-
tions (¢-FDEs) using the g-Laguerre polynomials(¢-LOM. Our main aim is to
generalize the ¢-LOM to g¢-fractional calculus. The advantage of this method
is that the ¢ operational matrix of orthogonal functions for solving ¢-FDEs is a
computer-oriented. The rest of this paper is presented as follows. In section 2,
the basic definitions of g-fractional integrals and derivatives are given. In section
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3, we present ¢-Laguerre polynomials and obtain an operational matrix for the
g-fractional derivative. In section 4, the main result of this paper is represented
and numerical examples are given. Finally, conclusions have been drawn in the
last.

2. PRELIMINARIES

Definition 2.1. [6] Let i« > 0, The R-Liouville definition of ¢-fractional integral of
h(z) is defined as
1

Fq(p)
Joh(z) =h(2).

Ii(e) =g [ = o

Definition 2.2. [6] Let i« > 0, The Caputo definition ¢-fractional integral of h(z)
is defined as

1 z m
DFh(z) = Jm=m D™ (2 :—/ Z—qt)"H T () d,t,
gh(2) (2) Fq(m—u)o< ) (t)dq

(m—1) < p < m,z > 0, where D" is the differential operator of order ;. and
satisfies the following
DHC' =0, (Cisa constant),

0, foraeny and o < [p]

Lg(a+1) a—[
Pg(a+1-p) ’

(2.1) Dhz* =
fora€ny anda > [pulora ¢ n anda > |u].
Here [p] denotes the ceiling function and |u| denotes the floor functions
respectively. Moreover n = {1,2,...} and o = {0,1,2,...}.
The Caputo ¢-fractional differentiation is a linear operator

(2.2) D¥(Ah(z) +0g(2)) = ADER(z) + 6 Dlg(z2),

where A\ and § are constants.
g-Laguerre Polynomials: [11] The k’th degree of ¢-Laguerre polynomials in
the interval A = (0, oo,) are defined as

k
S0
[—1]F k! gt ((k —0)g1)? v, ; J1,.0..

(2.3) Lig(z) =
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The orthogonality condition is

/0 By (—q2)Ln(2) Ln(2)dy= = q"Gr.

3. GENERALISED ¢-LOM OF ¢-FRACTIONAL CALCULUS

Let us consider p(z) € L?(A), then p(z) may be expressed in terms of ¢-
Laguerre polynomial as

[e.9]

(3.1 p(z) =) a;L;(z), a;= /OO p(2)L;(2)w(z)dz, j=0,1,2,....
0

J=0

First, consider the (n + 1) terms of ¢-Laguerre polynomials. At that point

n

pn(z) = Zaij(z) = CT¢(z).

=0
Here C' is the ¢g-Laguerre coefficient vector and ¢(z) is the g-Laguerre vector and
are given by

CT =[co,c1,... cn), 0(2) = [Lo, Ly, ..., L))"

Now, we express The ¢-fractional derivative of a vector ¢(z) as

d,$(2)
3.2 427 — pt
(3.2 7~ Dio(s),
where D, is the(n 4 1) x (n + 1) is given by
0 0 0 0 0
—1 0 0 0 0
1
-1, —— 0 0 0
D; = q
T
1, = o . ——— 0
q q qr
From (3.2), it is clear that
dyo(2) n
S = (D)),

q
where (D, ) stands for matrix powers and » € N. Hence

n) __ 1)\n _
(3.3) DM = (D", n=1,2,3,....
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Lemma 3.1. Let Ly (z) be a g-Laguerre polynomial, then

DiLy(2) =0, k=0,1,...,a<[p]—=1, u>0.
Proof. By using (2.1) and (2.2) in (2.3), the lemma can be easily proved.
Theorem 3.1. Suppose ¢(z) be g-Laguerre vector defined and also p > 0, then
(3.4) Dié(z) = DY (2),

where D! is the (n + 1) dimension operational matrix of q-fractional derivatives of
order y and is defined, as follows

0 0 0
0 0 0
Cua([11,0) Cug(Tpe], 1) o Gug(l]sm)

Cug (K 0) Cug(k: 1)) oo Cuglkin)

Cug(, 0) Cua(n, 1) oo Cug(n,n)
where
C/J«,q(k;7 ])

P U (k) ()2 Tk —v—p4l+1
ZZ(U[-] (Kq))* (Gg))* Tyl pl+1)

1
¢’ [ 15 kgl jg! —Dg)? (k—v)g! vyl Ty(k —v—p+1) 1,V

v=[up] I=0

and the starting [p] rows of D! are all zeros.

Proof. From (2.1), (2.2) and (3.1), we have

k
1 S1° (kD2
DHLi(z) = g DrZFY
‘ [—1*kg! = (B —v)g!)? vg!
k v
_ 1 1" (kY
[—1]%k,! - (k—v)y! Ty(k—v—p+1)! v, ’
v=[p
k=0,1,.... Now, applying z*~v# by n + 1 terms of ¢-Laguerre series, we have

FT= ) biLi(2),
j=0
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where b; is given from (3.1) with p(z) = z*="=#) and

k—v—p+1+1) (4,)?
b-— i
’ q'Z ((F = Dgh)* &g
(3.5) DFLy(z Zguq k,j)L k=u],.. .n,
1]t (k') (32 Ty(k—v—p+1+1)
k,j 1 4 .
Gualks 1) = k+]j Ik, Z Z j—l (k=v)g! v! Tylbk—v—p+1) 1!

v=[u] =0
From (3.5), it can be composed in a vector form

(3.6) Dng(Z) = [Cu,q(kv 0), Cug(k, 1), Cuvq(k» 2),... s Cug (K, n)|é(z).
According to the Lemma 3.1, we can write
(3.7) DiLi(z) =[0,0,...,0]¢(2), k=0,1,2,..., [u]—-1

From (3.6) and (3.7), we will get expected result. O

4. APPLICATIONS OF ¢-LOM FOR ¢-FDESs

On the basis of ¢-LOM, we are going to execute the technique to the linear
multi-order ¢- FDEs with constant coefficients with the tau method.

4.1. Linear Multi-term ¢- FDEs.
Let us consider the following linear Caputo ¢- FDEs

(41)  Dip( Zv D% p(2) +74(v + 1)p(2) + 9(2), A € (0,00,)

with the initial condltlons
4.2) P(0)=dy, k=0,1,...,m— 1.

To solve the linear Caputo ¢-FDE (4.1) with conditions (4.2), we imprecise p(z)
and ¢(z) by ¢-Laguerre polynomials as

(4.3) p(z) =) eli(z) = CTo(2),
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(4.4) 9(2) = > geLi(z) = GT¢(2).
k=0
Here G = (g0, 01,92, --, 9n|" 1S known vector, but C' = [¢g, ¢1,¢2,...,¢,|" is an

unknown vector.
From (3.4), (4.3) and Theorem 3.1, we get

(4.5) Dip(z) = CTDho(z),

(4.6) Dyip(z) = CTD;"fgb(z), j=12,... k.
Take on (4.3)- (4.6), the residual R, (x) for (4.1) can be composed as,
Ry(z) = (C"DI = C" "Dy — yw + 1)CT = G")g(2).
j=1

As mentioned in a regular tau method [5], we can produce n — m + 1 linear
equations by applying,

|
B

@7) < Ru(2), Ly(z) > :/ W()Ra(2)Ly(2) =0, j=0,1,2,....n
0

and furthermore substituting (3.3) and (4.3) in (4.2), we get

(4.8) p*(0)=C"Di¢(z) =di, k=0,1,2,...,m—1.

From (4.7) and (4.8) develop (n — m + 1) and m set of linear equations respec-
tively. These linear equations can be solved for unknown coefficient vector C'
and furthermore p(z) given in (4.2) can be calculated, which gives the required
solution.

4.2. Numerical results.

Example 1. Applications to the Bagely-Torvik equation.
Consider the Bagely-Torvik equation

D2p(2) + DEp(z) +p(2) = 1+ 2, p(0) = 1, p(0) = 1

The exact solution of the given problem is p(z) = 1 + z. By implementing the
method described in the previous section 4.1 with n=2, we imprecise the solution
as

p(2) = coLo(2) + c1L1(2) + caLly(2) = c¢(2),



152 B. MADHAVI, G. SURESH KUMAR, AND T. S. RAO

where
0O 0 0 0 0 0 9
1_|-1 0 0 2_ 10 00 _
D, = ) , D;= . , G=1]-11{,
-1 — 0 - 00 0
q q
0 0 0
De=|0 0 0
1 Fq(l) 1 2q!Fq(l) Fq(z)
L =5t 5D 7~ Fneh T anch
Therefore, using (4.7), we obtain
1
(49) Cco + (—2 + 1)02 —2=0.
q
Also by using (4.8), we have
1
(410) —C1 — (1 + 5)02 —1=0
and
(411) Co+C1+C2:1.
By solving above (4.9)-(4.11), we get
00:2, 01:—1, CQZO.
Thus, we can write
1
p(z):<2 -1 O) 1-2 =1+ 2z,
1
— (2% - 232 +q2,)

which is the exact solution.

5. CONCLUSION

This paper deals with solutions of ¢-fractional differential equations via oper-
ational matrix method with the help ¢-Laguerre polynomials. First, we obtain
the ¢-LOM of ¢-fractional derivatives. The benefit of the present operational
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matrix technique has less computational and multifaceted nature since each op-

erational matrix of differentiation incorporates generally zeros areas and in like

manner decrease the time and gives courses of action high accuracy.
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