

Advances in Mathematics: Scientific Journal 10 (2021), no.1, 245-249

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.10.1.25

EDGE TO EDGE D-DISTANCE AND RADIUS AND DIAMETER OF GRAPHS

D. Reddy Babu¹, L. N. P. Varma, N. Vedavathi, and M. V. Ramanjaneyulu

ABSTRACT. In a graph the distance between nodes can be extended to distance between a node and an edge, an edge to an edge. In this paper, we extend the D-distance ([2]) concept between edges and study the D-radius and D-diameter of few families of graphs using this distance.

1. Introduction

In study of graphs, distance concept plays a vital role. This is used for verifying isomorphism, operations on graphs, problems involving hamiltonicity, connectivity etc. Symmetry in graphs depends on distance concept.

In a previous article [2], the authors have proposed the D-distance concept between nodes of a graph. Using this concept, we defined edge-to-edge D-diatance, in an obvious way.

All through in this paper, all graphs we consider are connected.

In a graph G, let $p = \alpha \beta$ and $q = \gamma \delta$ be two edges or lines. Then the *edge-to-edge D-distance* is defined as $d^D(p,q) = \min \{ d^D(\alpha,\gamma), d^D(\alpha,\delta), d^D(\beta,\gamma), d^D(\beta,\delta) \}$.

For any edge f in a graph G, the edge-to-edge D-eccentricity $e_3^D(f)$ is define as $e_3^D(f) = \max \left\{ d^D(f,e) : e \in E(G) \right\}$.

The *D-radius* a graph G, using this distance, is defined as the minimum edge-to-edge *D*-eccentricity among all edges of G. This is denoted by $r_3^D(G)$.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C12.

 $[\]it Key\ words\ and\ phrases.$ Edge-to-edge D-distance, Edge-to-edge $\it D$ -Radius, Edge-to-edge $\it D$ -Diameter.

The *D*-diameter of a graph G, using this distance, is defined as the maximum edge-to-edge *D*-eccentricity among all edges of G and is denoted by $d_3^D(G)$.

Other valuable references are [1, 3–6].

2. The Results

In this section, using the above distance, we obtain the radius and diameter of some classes of graphs. First complete graphs will be dealt.

Theorem 2.1. The radius and diameter of K_m , w.r.t. edge to edge D-distance, are $r_3^D(K_m) = d_3^D(K_m) = 2m - 1$.

Proof. In the complete graph K_m , if two lines are adjacent then the D-distance between them is 0 and it is 2m-1 if they are not adjacent. Thus D-eccentricity of each line is 2m-1. Therefore $r_3^D(K_m) = d_3^D(K_m) = 2m-1$.

Next we consider the complete bipartite graph.

Theorem 2.2. We have $r_3^D(K_{m,n}) = d_3^D(K_{m,n}) = m + n + 1$ for the complete bipartite graph $K_{m,n}$.

Proof. In $K_{m,n}$ there are m+n nodes and mn lines. The D-distance between two lines is 0, if they are adjacent and is m+n+1, if they are not adjacent. Thus the D-eccentricity of every line is m+n+1. Hence the D-radius and D-diameter of $K_{m,n}$ are m+n+1.

Next we deal with star graph on n + 1 nodes.

Theorem 2.3. In star graph, $St_{n,1}$, we have $r_3^D(st_{n,1}) = d_3^D(st_{n,1}) = 0$.

Proof. In $St_{n,1}$, one node is adjacent to all others. Hence every line has one common node. Hence the D-distance between lines is 0. So the $e_3^D(e)$ is 0 for all lines. Therefore $r_3^D(St_{n,1})$ and $d_3^D(St_{n,1})$ is 0.

Next we consider the cyclic graph.

Theorem 2.4. For cycle graph, C_n , we have

$$r_3^D(C_n) = d_3^D(C_n) = \begin{cases} \frac{3n-5}{2} & \text{if } n = 2m+1 \text{ is odd} \\ \frac{3n-2}{2} & \text{if } n = 2m \text{ is even.} \end{cases}$$

Proof. In C_n , degree of nodes is 2. Thus the distances between various lines are as follows.

Case (1): Suppose n is odd.

In this case the D-distances are as follows:

 $e_{\frac{n+3}{2}}$ $e_{\frac{n+5}{2}}$ e_n 3n-113n-53n-50 0 0 . . . e_1 3n-115 0 0 e_2 3n-170 8 5 e_3 : $\frac{3n-5}{2}$ $\tfrac{3n-17}{2}$. . . 0 0 5 8 . . . $e_{\frac{n-1}{2}}$ 0 $e_{\frac{n+1}{2}}$ $\frac{3n-5}{2}$ $\frac{3n-11}{2}$ 0 5 0 0 $e_{\frac{n+3}{2}}$ 3n-58 5 0 0 $e_{\frac{n+5}{2}}$ $\frac{3n-11}{2}$ $\underline{3n-5}$ 3n-173n-235 0 0 e_{n-1} 5 0 0 e_n

Table 1. Cyclic Graph, n odd

From the table 1, we can see that the *D*-eccentricity of every line is $\frac{3n-5}{2}$. Hence $r_3^D(C_n)$ and $d_3^D(C_n)$ are $\frac{3n-5}{2}$ when n is odd.

Case (2): Suppose n is even.

Like above we can prove that $r_3^D(C_n)$ and $d_3^D(C_n)$ are $\frac{3n-2}{2}$ when n is even. Thus

$$r_3^D(C_n) = d_3^D(C_n) = \begin{cases} \frac{3n-5}{2} & \text{if } n = 2m+1 \text{ is odd} \\ \frac{3n-2}{2} & \text{if } n = 2m \text{ is even.} \end{cases}$$

Theorem 2.5. For path graph P_n , we have

$$r_3^D(P_n) = egin{cases} rac{3n-8}{2} & \textit{if } n = 2m \textit{ is even} \ rac{3n-5}{2} & \textit{if } n = 2m+1 \textit{ is odd} \end{cases},$$

and

$$d_3^D(P_n) = 3n - 7 \ \forall \ n > 3.$$

Further $r_3^D(P_3) = d_3^D(P_3) = 0$.

Proof. In the path graph on n nodes degree of each end node is 1 and remaining n-2 nodes is 2. The D-distances between lines are given below.

For n=2, $d^D(e_1,e_1)=0$ because we have only one line. Thus the D-eccentricity of each line is zero. Hence $r_3^D(P_2)$ and $d_3^D(P_2)$ are zero.

For n=3, $d^D(e_1,e_2)=0$ because we have one common node between the lines e_1 and e_2 . Thus the D-eccentricity of P_3 is zero. Hence $r_3^D(P_3)$ and $d_3^D(P_3)$ are zero.

Next consider P_n with $n \ge 4$. We consider n even and odd cases separately.

Case (1): Suppose n is even.

In this case the D-distances are

 e_1 e_2 $e_{\frac{n}{2}-1}$ $e_{\frac{n}{2}+1}$ e_{n-1} $e_{\frac{n}{2}}$ 3n-143n - 83n-20 0 3n - 7 e_1 3n-203n-143n-83n - 100 0 e_2 3n-263n-203n-145 0 3n - 13. . . e_3 3n-143n-203n+25 0 0 $e_{\frac{n}{2}-1}$ 3n-140 0 0 $e_{\frac{n}{2}}$ 3n - 83n-145 0 0 $e_{\frac{n}{2}+1}$ 3n - 83n-143n-203n - 100 3n - 13. . . e_{n-2} 3n - 73n - 100 e_{n-1}

TABLE 2. Path graph, n even

From the table 2, we can see that the D-eccentricities are $\{3n-7, 3n-10, 3n-13, \cdots, \frac{3n+2}{2}, \frac{3n-8}{2}, \frac{3n-2}{2}, \cdots, 3n-10, 3n-7\}$. Thus the minimum D-eccentricity of P_n is $\frac{3n-8}{2}$ and the maximum D-eccentricity of P_n is 3n-7, if n is even.

Case (2): suppose n is odd.

Like above, we can prove that $r_3^D(P_n)=\frac{3n-5}{2}$ and $d_3^D(P_n)=3n-7 \ \forall \ n\geq 4$. Thus

$$r_3^D(P_n) = \begin{cases} \frac{3n-8}{2} & \text{if } n \text{ is even} \\ \frac{3n-5}{2} & \text{if } n \text{ is odd} \end{cases},$$

and

$$d_3^D(P_n) = 3n - 7 \ \forall \ n > 3.$$

REFERENCES

- [1] F. BUCKLEY, F. HARARY: Distance in Graph, Addison-Wesley, Longman, 1990.
- [2] D. REDDY BABU, P. L. N. VARMA: *D-distance in graphs*, Golden Research Thoughts, **2** (2013), 53-58.
- [3] D. REDDY BABU, P. L. N. VARMA: *Vertex-To-edge centers W. R.T D-distance*, Italian journal of Pure and applied Mathematics, **35** (2015), 101-108.
- [4] D. REDDY BABU, P. L. N. VARMA: A Note on Radius and Diameter of a graph w. r. t *D-distance*, International journal of Chemical sciences, **14**(3) (2016), 1725-1729.
- [5] D. REDDY BABU, P. L. N. VARMA: Radius and Diameter of some families of graphs w. r. t. vertex-to-edge D-distance, VFSTR journal of STEM, 2 (2016), 1-9.
- [6] D. REDDY BABU, P. L. N. VARMA: *Edge-to-vertex and Edge-to-EdgeD-distances*, Italian journal of pure and applied mathematics, **44** (2020), 814-820.

DEPARTMENT OF AS AND H

TIRUMALA ENGINEERING COLLEGE

JONNALAGADDA 522601, GUNTUR, ANDHRAPRADESH, INDIA

Email address: reddybabu17@gmail.com

DIVISION OF MATHEMATICS, DEPARTMENT OF SCIENCE AND HUMANITIES V.F.S.T.R. (DEEMED TO BE UNIVERSITY), VADLAMUDI, GUNTUR 522237, INDIA *Email address*: plnvarma@gmail.com

DEPARTMENT OF MATHEMATICS, KONERU LAKSHMAIAH EDUCATION FOUNDATION VADDESWARAM 522502, GUNTUR, ANDHRAPRADESH, INDIA *Email address*: vedavathi@kluniversity.in

Department of S. and H., KKR and KSR Institute of Technology and Sciences Vinjanampadu, Guntur 522017, India

Email address: mutyam.09@gmail.com