

Advances in Mathematics: Scientific Journal 10 (2021), no.1, 279-285

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.10.1.28

ON GENERALIZATIONS OF 2-ABSORBING PRIMARY IDEALS IN SEMIGROUPS

Pairote Yiarayong

ABSTRACT. Let $\phi:\mathcal{I}(S)\to\mathcal{I}(S)\cup\{\emptyset\}$ be a function where $\mathcal{I}(S)$ is a set of all ideals of a semigroup. We extend the concept of primary and 2-absorbing ideals in semigroups to the context of ϕ -2-absorbing primary ideals. We say that a proper ideal A of a semigroup S is a ϕ -2-absorbing primary ideal if $a,b,c\in S$ with $abc\in A-\phi(A)$ implies that $ab\in A$ or $bc\in \sqrt{A}$ or $ac\in \sqrt{A}$. The aim of this paper is to investigate the concept of ϕ -2-absorbing primary ideals in semigroups. Finally, we obtain sufficient conditions of a 2-absorbing primary ideal in order to be rephrased a ϕ -2-absorbing primary ideal in a semigroup.

1. ϕ -2-absorbing primary ideals

In this section, we introduce the concept of ϕ -2-absorbing primary ideals in semigroups and give its characterizations corresponding to ϕ -2-absorbing primary ideals in semigroups.

Let *A* be a subset of a semigroup *S*. Then, the **radical** (see [1]) of *A* is defined as $\sqrt{A} = \{a \in S : a^n \in A \text{ for some positive integer } n\}$.

Definition 1.1. Let S be a semigroup and let $\phi: \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function where $\mathcal{I}(S)$ be the set of all ideals of S. A proper ideal A of S is called a ϕ -2-absorbing primary ideal if for each $a,b,c\in S$ with $abc\in A-\phi(A)$, then $ab\in A$ or $bc\in \sqrt{A}$ or $ac\in \sqrt{A}$.

²⁰²⁰ Mathematics Subject Classification. 13A15, 13F05.

Key words and phrases. semigroup, ideal, 2-absorbing primary ideal, ϕ -2-absorbing primary ideal.

280 P. Yiarayong

We now present the following example satisfying above definition.

Example 1. Let $S = \{a, b, c, d, e\}$ be a semigroup with following multiplication given by

It is easy to see that $\{a, b, d\}$ is a ϕ -2-absorbing primary ideal of a semigroup S.

Remark 1.1. It is easy to see that every 2-absorbing primary ideal of a semigroup S is a ϕ -2-absorbing primary ideal of S.

The following example shows that the converse of Remark 1.1 is not true.

Example 2. Let $S = \mathbf{Z}^+$. Consider the proper ideal $P = 30\mathbf{Z}^+$ of the semigroup S. Define $\phi: \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ by $\phi(A) = A$ for every $A \in \mathcal{I}(S)$. It is easy to see that P is a ϕ -2-absorbing primary ideal of S. Notice that $2 \cdot 3 \cdot 5 \in P$, but $2 \cdot 3 \notin P, 3 \cdot 5 \notin \sqrt{P}$ and $2 \cdot 5 \notin \sqrt{P}$. Therefore P is not a 2-absorbing primary ideal of S.

Let S be a semigroup and let $\phi: \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function. Since $A - \phi(A) = A - (A \cap \phi(A))$ for all $A \in \mathcal{I}(S)$, without loss of generality, we will assume that $\phi(A) \subseteq A$. Throughout this paper, as it is noted earlier, if ϕ is a function, then we always assume that $\phi(A) \subseteq A$.

Theorem 1.1. Let A be a non empty subset of a commutative semigroup S. Then the following properties hold.

- (1) If A is an ideal of S, then \sqrt{A} is an ideal of S containing A.
- (2) $\sqrt{A} = \sqrt{\sqrt{A}}$.
- (3) For each ϕ -2-absorbing primary ideal A of S if $\sqrt{\phi(A)} \subseteq \phi\left(\sqrt{A}\right)$, then \sqrt{A} is a ϕ -2-absorbing primary ideal of S.
- (4) For each element s of $S-\sqrt{A}$ if A is a ϕ -2-absorbing primary ideal of S such that $\sqrt{\phi(A)}\subseteq\phi\left(\sqrt{A}\right)$, then $(\sqrt{A}:s)$ is a ϕ -2-absorbing primary ideal of S with $\left(\phi(\sqrt{A}):s\right)\subseteq\phi\left(\sqrt{A}:s\right)$.

Proof.

- 1. Assume that A is an ideal of S. It is easy to see that, $A \subseteq \sqrt{A}$. Let a and s be any elements of S such that $a \in \sqrt{A}$. Then we have, $a^n \in A$ for some positive integer n, which implies that $(sa)^n = s^n a^n \in s^n A \subseteq A$. Therefore, $sa \in \sqrt{A}$ and hence \sqrt{A} is an ideal of S containing A.
- 2. Assume that A is a subset of S. Obviously, $\sqrt{A} \subseteq \sqrt{\sqrt{A}}$. On the other hand, let $x \in \sqrt{A}$. Then we have, $x^n \in \sqrt{A}$ for some positive integer n, which means that $x^{nm} \in A$ for some positive integer m. Therefore, $x \in \sqrt{A}$ and hence $\sqrt{A} = \sqrt{A}$.
- 3. Assume that A is an ideal of S. Then by part 1, \sqrt{A} is an ideal of S. Let a,b and c be any elements of S such that $abc \in \sqrt{A} \phi(\sqrt{A})$. Thus we have, $abc \notin \phi(\sqrt{A})$ and $(abc)^n \in A$ for some positive integer n. Since $\sqrt{\phi(A)} \subseteq \phi\left(\sqrt{A}\right)$, we have $(abc)^n \notin \phi(A)$, which implies that $(abc)^n \in A \phi(A)$. In fact, since A is a ϕ -2-absorbing primary ideal of S, we have $(ab)^n \in A$ or $(bc)^n \in \sqrt{A}$ or $(ac)^n \in \sqrt{A}$. Therefore $ab \in \sqrt{A}$ or $bc \in \sqrt{\sqrt{A}}$ or $ac \in \sqrt{\sqrt{A}}$ and hence \sqrt{A} is a ϕ -2-absorbing primary ideal of S.
- 4. Let a,b,c and s be any elements of S such that $abc \in (\sqrt{A}:s) \phi(\sqrt{A}:s)$. Since $(\phi(\sqrt{A}):s) \subseteq \phi(\sqrt{A}:s)$, we have $ab(cs) \in \sqrt{A} \phi(\sqrt{A})$. Then by parts 2 and 3, $ab \in \sqrt{A}$ or $bcs \in \sqrt{A}$ or $acs \in \sqrt{A}$, which implies that $ab \in (\sqrt{A}:s)$ or $bc \in \sqrt{(\sqrt{A}:s)}$ or $ac \in \sqrt{(\sqrt{A}:s)}$. Consequently, $(\sqrt{A}:s)$ is a ϕ -2-absorbing primary ideal of S.

In the light of the definition of ϕ -2-absorbing primary ideal in commutative semigroups, we can obtain the following properties.

Theorem 1.2. Let S be a commutative semigroup and let $\phi: \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function. If A is a ϕ -2-absorbing primary ideal of S such that \sqrt{A} is a primary ideal of S, then (A:s) is a ϕ -2-absorbing primary ideal of S for every $s \in S - \sqrt{A}$ with $(\phi(A):s) \subset \phi(A:s)$.

Proof. Let a,b,c and s be any elements of S such that $abc \in (A:s) - \phi(A:s)$. Since $(\phi(A):s) \subseteq \phi(A:s)$, we have $a(bc)s \in A - \phi(A)$. In fact, since A is a ϕ -2-absorbing primary ideal of S, we have $abc \in A$ or $bcs \in \sqrt{A}$ or $as \in \sqrt{A}$.

If $bcs \in \sqrt{A}$ or $as \in \sqrt{A}$, then $bc \in \sqrt{(A:s)}$ or $a \in \sqrt{(A:s)}$, since \sqrt{A} is a primary ideal of S and $s \in S - \sqrt{A}$. Next, if $abc \in A$, then $abc \in A - \phi(A)$. Therefore, $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$. In any case, we have $ab \in (A:s)$ or

 $bc \in \sqrt{(A:s)}$ or $ac \in \sqrt{(A:s)}$. Consequently, (A:s) is a ϕ -2-absorbing primary ideal of S.

In the following result, we give an equivalent definition of ϕ -2-absorbing primary ideals in a commutative semigroup.

Theorem 1.3. Let $\phi: \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function. The following conditions are equivalent:

- (1) A is a ϕ -2-absorbing primary ideal of S.
- (2) For each elements a and b of S if $ab \in S-A$, then $(A:ab) \subseteq (\phi(A):ab) \cup \sqrt{(\sqrt{A}:a^n)} \cup \sqrt{(\sqrt{A}:b^n)}$ for some positive integer n.

Proof. First assume that (1) holds. Let a,b and c be any elements of S such that $c \in (A:ab)$. Then we have, $abc \in A$. If $abc \not\in \phi(A)$, then $abc \in A - \phi(A)$. Since A is a ϕ -2-absorbing primary ideal of S, we have $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$. By assumption, $c \in \sqrt{(\sqrt{A}:a^n)}$ or $c \in \sqrt{(\sqrt{A}:b^n)}$ for some positive integer n that is, $c \in \sqrt{(\sqrt{A}:a^n)} \cup \sqrt{(\sqrt{A}:b^n)} \subseteq (\phi(A):ab) \cup \sqrt{(\sqrt{A}:a^n)} \cup \sqrt{(\sqrt{A}:b^n)}$. If $abc \in \phi(A)$, then $c \in (\phi(A):ab) \subseteq (\phi(A):ab) \cup \sqrt{(\sqrt{A}:a^n)} \cup \sqrt{(\sqrt{A}:b^n)}$. Consequently, $(A:ab) \subseteq (\phi(A):ab) \cup \sqrt{(\sqrt{A}:a^n)} \cup \sqrt{(\sqrt{A}:b^n)}$.

Conversely, assume that (2) holds. Let a,b and c be any elements of S such that $abc \in A - \phi(A)$. Then we have, $c \in (A:ab)$ and $c \notin (\phi(A):ab)$. If $ab \in A$, then there is nothing to prove. If $ab \notin A$, then $(A:ab) \subseteq (\phi(A):ab) \cup \sqrt{(\sqrt{A}:a^n)} \cup \sqrt{(\sqrt{A}:b^n)}$ for some positive integer n. Since $c \in (A:ab)$ and $c \notin (\phi(A):ab)$, we have $c \in \sqrt{(\sqrt{A}:a^n)} \cup \sqrt{(\sqrt{A}:b^n)}$. Therefore, $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$ and hence A is a ϕ -2-absorbing primary ideal of S.

The next theorem gives the relationships between 2-absorbing primary ideals and ϕ -2-absorbing primary ideals of a semigroup S.

Theorem 1.4. Let $\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function and let $\phi(A)$ be a 2-absorbing primary ideal of a semigroup S. Then A is a ϕ -2-absorbing primary ideal of S if and only if A is a 2-absorbing primary ideal of S.

Proof. First assume that A is a 2-absorbing primary ideal of S. Obviously, A is a ϕ -2-absorbing primary ideal of S.

Conversely, assume that A is a ϕ -2-absorbing primary ideal of S. Let a,b and c be any elements of S such that $abc \in A$. If $abc \notin \phi(A)$, then $abc \in A - \phi(A)$. By assumption, $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$. Now if $abc \in \phi(A)$, then $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$. In any case, we have A is a ϕ -2-absorbing primary ideal of S.

In the following we shall introduce the notion of ϕ -2-absorbing primary triple zero of a ϕ -2-absorbing primary ideal A in a semigroup S.

Let $\phi: \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function and let A be a ϕ -2-absorbing primary ideal of a semigroup S a triple $(a,b,c),a,b,c \in S$ is a ϕ -2-absorbing primary triple zero if

- (1) $abc \in \phi(A)$
- (2) $ab \notin A$ and $bc \notin \sqrt{A}$ and $ac \notin \sqrt{A}$.

Remark 1.2. Note that a proper ideal A of a semigroup S is a ϕ -2-absorbing primary ideal of S that is not a 2-absorbing primary ideal of S if and only if A has a ϕ -2-absorbing primary triple-zero (a,b,c) for some $a,b,c \in S$.

Now we investigate the ϕ -2-absorbing primary triple zero of a ϕ -2-absorbing primary ideal A in a semigroup S.

Theorem 1.5. Let $\phi : \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function and let A be a ϕ -2-absorbing primary ideal of a semigroup S. For each elements a, b and c of S if (a, b, c) is a ϕ -2-absorbing primary triple zero of A, then the following statements hold:

- (1) $abA \subseteq \phi(A)$;
- (2) $aAc \subseteq \phi(A)$;
- (3) $Abc \subseteq \phi(A)$;
- (4) $A^2c \subseteq \phi(A)$;
- (5) $aA^2 \subset \phi(A)$.

Proof.

1. Suppose that $abA \not\subseteq \phi(A)$. Then there exists an element d of A such that $abd \not\in \phi(A)$. Thus we have, $\{abc\} \cup \{abd\} \not\subseteq \phi(A)$, which implies that $\{ab\} \ (\{c\} \cup \{d\}) \subseteq A - \phi(A)$. Since A is a ϕ -2-absorbing primary ideal of S, we have $ab \in A$ or $b(\{c\} \cup \{d\}) \subseteq \sqrt{A}$ or $a(\{c\} \cup \{d\}) \subseteq \sqrt{A}$. Therefore, $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$, which is a contradiction. Consequently, $abA \subseteq \phi(A)$.

- 2. Suppose that $aAc \not\subseteq \phi(A)$. Then there exists an element r of A such that $arc \not\in \phi(A)$. Since $r \in A$, we have $a(\{b\} \cup \{r\})c \subseteq A$, which implies that $a(\{b\} \cup \{r\})c \subseteq A \phi(A)$. In fact, since A is a ϕ -2-absorbing primary ideal of S, we have $a(\{b\} \cup \{r\}) \subseteq A$ or $(\{b\} \cup \{r\})c \subseteq \sqrt{A}$ or $ac \in \sqrt{A}$. Thus, $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$, which is a contradiction. Consequently, $aAc \subseteq \phi(A)$.
 - 3. The proof is similar to part 2.
- 4. Assume that $A^2c \not\subseteq \phi(A)$. Then there exist elements r,s of A such that $rsc \not\in \phi(A)$. Then by parts 2 and 3, $\{abc\} \cup \{rbc\} \cup \{asc\} \cup \{rsc\} \not\subseteq \phi(A)$, which implies that $(\{a\} \cup \{r\})(\{b\} \cup \{s\})c \subseteq A \phi(A)$. In fact, since A is a ϕ -2-absorbing primary ideal of S, we have $(\{a\} \cup \{r\})(\{b\} \cup \{s\}) \subseteq A$ or $(\{b\} \cup \{s\})c \subseteq \sqrt{A}$ or $(\{a\} \cup \{r\})c \subseteq \sqrt{A}$. Therefore, $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$, which is a contradiction. Consequently, $A^2c \subseteq \phi(A)$.
- 5. Suppose that $aA^2 \not\subseteq \phi(A)$. Then there exist elements r, s of A such that $ars \not\in \phi(A)$. Therefore by parts 1 and 2 we conclude that $\{abc\} \cup \{abs\} \cup \{arc\} \cup \{ars\} \not\subseteq \phi(A)$, which implies that $a(\{b\} \cup \{r\})(\{c\} \cup \{s\}) \subseteq A \phi(A)$. In fact, since A is a ϕ -2-absorbing primary ideal of S, we have $a(\{b\} \cup \{r\}) \subseteq A$ or $(\{b\} \cup \{r\})(\{c\} \cup \{s\}) \subseteq \sqrt{A}$ or $a(\{c\} \cup \{s\}) \subseteq \sqrt{A}$. Thus, $ab \in A$ or $bc \in \sqrt{A}$ or $ac \in \sqrt{A}$, which is a contradiction. Consequently, $aA^2 \subseteq \phi(A)$.

As a simple consequence of Theorem 1.5, we give the following result.

Corollary 1.1. Let $\phi: \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function and let A be a ϕ -2-absorbing primary ideal of a commutative semigroup S. For every $a,b,c \in S$ if (a,b,c) is a ϕ -2-absorbing primary triple zero of A, then the following statements hold:

- (1) $abA \subseteq \phi(A)$ and $acA \subseteq \phi(A)$ and $bcA \subseteq \phi(A)$;
- (2) $aA^2 \subseteq \phi(A)$ and $bA^2 \subseteq \phi(A)$ and $cA^2 \subseteq \phi(A)$.

Now we arrive at one of our main theorem.

Theorem 1.6. Let $\phi: \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$ be a function and let A be a ϕ -2-absorbing primary ideal of a commutative semigroup S. Suppose that B is an ideal of S and $a,b \in S$ such that $abB \subseteq A$. If (a,b,c) is not a ϕ -2-absorbing primary triple zero of A, \sqrt{A} for every $c \in B$, then $ab \in \sqrt{A}$ or $bB \subseteq \sqrt{A}$ or $aB \subseteq \sqrt{A}$.

Proof. Suppose that $ab \notin \sqrt{A}$ and $bB \nsubseteq \sqrt{A}$ and $aB \nsubseteq \sqrt{A}$. Then there are exist elements $d_1, d_2 \in B$ such that $bd_1 \notin \sqrt{A}$ and $ad_2 \notin \sqrt{A}$. If $abd_1 \notin \phi(A)$, then $abd_1 \in A - \phi(A)$. By assumption, $ad_1 \in \sqrt{A}$ or $bd_1 \in \sqrt{A}$. Next, let

 $abd_1 \in \phi(A)$. By hypothesis, $ad_1 \in \sqrt{A}$ or $bd_1 \in \sqrt{A}$. Now if $abd_2 \notin \phi(A)$, then $abd_2 \in A - \phi(A)$. By the given hypothesis, $ad_2 \in \sqrt{A}$ or $bd_2 \in \sqrt{A}$. So let $abd_2 \in \phi(A)$. By given hypothesis, $ad_2 \in \sqrt{A}$ or $bd_2 \in \sqrt{A}$. In any case, we have $bd_1, bd_2 \in \sqrt{A}$. Since $abB \subseteq A$, we have $ab(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$. If $ab(\{d_1\} \cup \{d_2\}) \not\subseteq \phi(\sqrt{A})$, then $ab(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A} - \phi(\sqrt{A})$. Now by our hypothesis, $a(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$ or $b(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$, which implies that $bd_1, ad_2 \in \sqrt{A}$, which is a contradiction. Assume that $ab(\{d_1\} \cup \{d_2\}) \subseteq \phi(\sqrt{A})$. From our hypothesis, $a(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$ or $b(\{d_1\} \cup \{d_2\}) \subseteq \sqrt{A}$. Clearly, $bd_1 \in \sqrt{A}$ or $ad_2 \in \sqrt{A}$, which again is a contradiction. Hence $ab \in \sqrt{A}$ or $ab \subseteq \sqrt{A}$ or $ab \subseteq \sqrt{A}$.

REFERENCES

[1] J. LI: On the radicals of linear algebraic monoids, Semigroup Forum, 96 (2018), 1-20.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND TECHNOLOGY
PIBULSONGKRAM RAJABHAT UNIVERSITY
PHITSANULOK 65000, THAILAND
Email address: pairote0027@hotmail.com