

Advances in Mathematics: Scientific Journal 10 (2021), no.1, 385-389

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.10.1.38 Spec. Iss. on AMCSE

### TOPOLOGICAL GROUPS: VIRTUE OF PRE-OPEN SETS

P. Gnanachandra<sup>1</sup> and A. Muneesh Kumar

ABSTRACT. In this paper, we introduce notions of p-topological group and p-irresolute topological group which are generalizations of the notion topological group. We discuss the properties of p-topological group with illustrated examples. Also, we prove that translation and inversion in p-topological group are p-homeomorphism.

### 1. INTRODUCTION

Topological group is a mathematical structure on a set which is defined by underlying two distinguished structures on that set namely group and a topology. A topological group in modern notion is defined as, a group binded with a topology such that the binary operations are continuous. Based on this, some generalizations of topological groups such as paratopological groups, semitopological groups and quasitopological groups are defined. In a finite group, all the above mentioned generalizations coincide [7]. The concepts of *S*-topological group and *s*-topological group were discussed in [1] and the theory of almost topological group was initiated in [5]. In this paper, we discuss some more

<sup>&</sup>lt;sup>1</sup>corresponding author

<sup>2020</sup> Mathematics Subject Classification. 40B05, 33E99.

*Key words and phrases.* Topological group, p-topological group, p-irresolute topological group, pre -connectedness.

Submitted: 27.12.2020; Accepted: 06.01.2021; Published: 20.01.2021.

generalizations which defined based on pre-open sets and present a new generalization of topological group called p-topological group.

## 2. Preliminaries

Throughout this paper, the pair  $(A, \Upsilon)$  denotes a group A together with a topology  $\Upsilon$ . For any  $g \in A$ ,  $g^{-1}$  denotes the inverse of g in A. Let  $S, T \subseteq A$ , then  $ST = \{s.t : s \in S, t \in T\}$ . The notions pre-open, pre-closed and pre-continuous map follows [6]. For a set C on a topological space X, the notions pre-interior and pre-closure are denoted by pint(C) and pcl(C) follows [6]. For a set R, the power set of R is denoted by  $\mathcal{P}(R)$  and for a topology  $\Upsilon$  on A, the collection of open sets, closed sets, pre-open sets are denoted by O(A), C(A) and  $\Upsilon_p$ .

# 3. p-topological group

We introduce the concept of p-topological group and investigate its basic properties with illustrated examples in this section.

**Definition 3.1.** A pair  $(A, \Upsilon)$  is said to be p-topological group, for  $m, n \in A$ :

- for each open neighbourhood K of mn,  $\exists$  pre-open neighbourhoods M of m and N of  $n \ni MN \subseteq K$
- for each open neighbourhood S of  $g^{-1} \exists pre$ -open neighbourhood T of  $g \ni T^{-1} \subseteq S$ .

*In other words, multiplication and inversion mappings are pre-continuous.* 

**Example 3.2.** Consider the group  $A = (\mathbb{Z}_3, \oplus)$  with topology  $\Upsilon = \{\emptyset, \{1, 2\}, A\}$ . For the topology  $\Upsilon$ ,  $\Upsilon_p = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{0, 1\}, \{0, 2\}, A\}$ . Then  $(A, \Upsilon)$  is a p-topological group. Finite group with indiscrete topology is the only connected topological group. But here, the above mentioned p-topological group is connected.

**Proposition 3.3.** Let A be a p-topological group and  $S \in O(A)$ . Then for any  $g \in A$ , gS and Sg are pre-open.

*Proof.* Let  $h \in gS$ , then h = gs for some  $s \in S$ . Now,  $s = g^{-1}h$  and by the pre-continuity of multiplication  $\exists$  pre-open sets M and N of  $g^{-1}$  and  $h \ni MN \subseteq S$  which implies  $h \in N \subseteq gS$ . Hence gS is pre-open. Similarly we can prove that Sg is pre-open.

**Corollary 3.4.** Let  $T \in C(A)$  in a p-topological group A. Then for any  $a \in A$ , aT and Ta are pre-closed.

**Proposition 3.5.** Let A be a p-topological group. Then  $D \in \Upsilon_p$  if and only if  $D^{-1} \in \Upsilon_p$ .

*Proof.* Let D ∈  $\Upsilon_p$ , then  $\exists$  M ∈ O(A)  $\ni$  D ⊆ M ⊆ cl(D). Now, D<sup>-1</sup> ⊆ E<sup>-1</sup> ⊆  $(cl(D))^{-1}$ . Since inversion is pre-continuous, we have D<sup>-1</sup> is pre-open and  $(cl(D))^{-1}$  is pre-closure of D<sup>-1</sup>. By using that, for a set C,  $pcl(C) \subseteq cl(C)$  [4], we have D<sup>-1</sup> ⊆ M<sup>-1</sup> ⊆  $int(cl(M^{-1})) \subseteq (cl(M))^{-1} \subseteq cl(M^{-1})$ . Hence  $\exists$   $int(cl(M^{-1})) \in O(A) \ni D^{-1} \subseteq int(cl(M^{-1})) \subseteq cl(D^{-1})$  and so D<sup>-1</sup> is pre-open. Proof of the converse is similar.

**Theorem 3.6.** Let S and R be p-topological groups with R is submaximal and g be a pre-irresolute homomorphism at identity  $e_S$ . Then g is pre-irresolute.

*Proof.* Let  $n \in S$  and  $M \in \Upsilon_p$  in R containing g(n) = m. Since R is submaximal, each pre-open set is open [3] and so M is open. By Proposition 3.3,  $m^{-1}M$  is pre-open in T containing  $e_T$ . Since  $\eta$  is pre-irresolute at identity  $e_S$ ,  $\exists N \in \Upsilon_p$  in S containing  $e_S \ni g(N) \subset m^{-1}M$ . Given that g is homomorphism and so  $g(nN) = g(n)g(N) \subseteq M$ . Hence g is pre-irresolute. □

One may remind that, A bijective mapping  $\mu : S \mapsto T$  is p-homeomorphism [2] if  $\mu$  is pre-continuous and  $\mu(D)$  is pre-open for every  $D \in O(S)$ .

**Theorem 3.7.** Let S be a p-topological group and  $k \in S$ . Then for all  $s \in S$ ,

- (i) The mappings  $\lambda_k(s) = ks$  and  $\rho_k(s) = sk$  are p-homeomorphism.
- (ii) *Inversion mapping is p-homeomorphism.*

*Proof left to the reader.* 

**Theorem 3.8.** Let R, M be a p-topological group and its subgroup,

- (i) If  $\exists D \in O(R)$  and  $D \subseteq M$ , then  $M \in \Upsilon_p$ .
- (ii) If  $M \in O(R)$ , then it is pre-closed.
- (iii) If  $M \in O(R)$ , then M itself a p-topological group.

Proof left to the reader.

# 4. p-irresolute topological group and pre-connectedness

We discuss the independency of p-topological group from other generalization concepts of topological group. We also explore pre-connectedness properties of p-irresolute topological group through this section.

**Example 4.1.** Consider the group  $S = (\mathbb{Z}_n, \oplus)$  with topology  $\Upsilon = \{\emptyset, \mathbb{Z}_n, \{0\}\}$ . Then  $(S, \Upsilon)$  is S-topological and almost topological groups but not p-topological and s-topological group.

**Theorem 4.2.** Let  $(S, \Upsilon)$  be a pair satisfies  $\exists$  at least one singleton is open in S then  $\Upsilon$  is discrete if and only if  $(S, \Upsilon)$  is a s-topological group.

By considering  $(S, \Upsilon)$  in Example 4.1, the above result need not be true in S-topological and almost topological groups.

**Example 4.3.** Consider the group  $T = (\mathbb{Z}_n, \oplus)$  with the topology  $\Upsilon = \{\emptyset, \{0\}, \{0, 1\}, \{0, 2, 1\}, \dots, \mathbb{Z}_n\}$ . Then  $(T, \Upsilon)$  is S-topological and an almost topological groups. But  $(T, \Upsilon)$  is not p-topological and s-topological groups.

**Example 4.4.** Consider  $(S, \Upsilon)$  in Example 3.2, which is a p-topological group. Here  $(S, \Upsilon)$  is an almost topological group but not s-topological group.

**Definition 4.5.** The pair  $(T, \Upsilon)$  is said to be p-irresolute topological group if binary operations are pre-irresolute.

A topological space Y is **pre-connected** [8] if  $Y \neq E \cup F$ , where E, F are two disjoint non-empty pre-open sets.

**Theorem 4.6.** If A is a pre-connected, p-irresolute topological group and H, a discrete invariant subgroup of A, then  $H \subseteq Z(A)$ , where Z(A) denotes center of A.

*Proof.* Suppose  $H = \{e\}$ , then the result is trivial. Suppose H is non-trivial. Let  $g \neq e \in H$ . Since, H is discrete, we can find  $D \in O(A)$  of g in  $A \ni D \cap H = \{g\}$ . Now, A is p-irresolute topological group,  $\exists \ E \in \Upsilon_p$  of e and  $E.g \in \Upsilon_p$  of g in  $A \ni (E.g).E^{-1} \subset D$ . Let  $b \in E$ . Since H is an normal subgroup of A, we have b.H = H.b which implies that  $b.g \in H.b$  and so  $b.g.b^{-1} \in H$ . It is also clear that  $b.g.b^{-1} \in EgE^{-1} \subset D$ . Therefore,  $b.g.b^{-1} \in D \cap H = \{g\}$  which implies  $b.g.b^{-1} = g$ . Thus, b.g = g.b for each  $b \in E$ . Since, A is pre-connected,  $E^n$  with  $n \in \mathbb{N}$  covers A. Thus, every element  $a \in A$  can be written in the form

 $a=b_1.b_2...b_n$  where  $b_1,b_2,...,b_n \in E$  and  $n \in \mathbb{N}$ . Since g commutes with every element of E, we have  $a.g=b_1.b_2....b_n.g=b_1.b_2....g.b_n=\cdots=b_1.g.b_2....b_n=g.b_1.b_2....b_n=g.a$ . Hence,  $g \in H \in Z(A)$  and so  $H \subseteq Z(A)$ .

### REFERENCES

- [1] M.S. BOSAN: Moiz Ud Din Khan and Ljubisa D.R. Kocinac, On s-topological groups, Mathematica Moravica, **18**(2) (2014), 35-44.
- [2] C. DEVAMANOHARAN, S. PIOUS MISSIER, S. JAFARI: On *p*-homeomorphisms in topological spaces, Italian Journal of Pure and Applied Mathematics, **30** (2013), 195-214.
- [3] J. DONTCHEV: Survey on Preopen sets, arXiv: math. GN / 9810177.
- [4] G. NAVALAGI: Pre-neighbourhoods, The Mathematics Education, 32(4) (1998), 201-206.
- [5] M. RAM: On almost topological groups, Mathematica Moravica, 23(1) (2019), 97-106.
- [6] A.S. MASHHOUR, M.E. ABD EL-MONSEF, S.N. EL-DEEB: *On precontinuous and precontinuous mappings*, Proceedings of Mathematical Physics Society, Egypt, **53** (1982), 47-53.
- [7] A. MUNEESH KUMAR, P. GNANACHANDRA: *Exploratory Results on finite Topological groups*, JP journal of geometry and topology, **24**(1-2) (2020), 1-15.
- [8] V. POPA: Properties of H-almost continuous functions, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie Nouvelle Serie, **31**(79)(2) (1987), 163-168.

CENTRE FOR RESEARCH AND POST GRADUATE STUDIES IN MATHEMATICS, AYYA NADAR JANAKI AMMAL COLLEGE, SIVAKASI, TAMIL NADU, INDIA. *Email address*: pgchandra07@gmail.com

CENTRE FOR RESEARCH AND POST GRADUATE STUDIES IN MATHEMATICS, AYYA NADAR JANAKI AMMAL COLLEGE, SIVAKASI, TAMIL NADU, INDIA. *Email address*: muneeshkumarar@gmail.com