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MATHEMATICAL MODEL FOR POROUS INFLUENCE THROUGH MILD
STENOSIS THROMBOSISIS OVER DELIVERY OF OXYGEN AND

NUTRIENTS ARTERIES

Anil Kumar1

ABSTRACT. In order to understand the irregular flow conditions of blood in
a locally constricted blood vessel, analytical results are obtained for a porous
effect on oscillatory blood flow that acts as a Newtonian flow. Compared to
the radius of the unconstricted tube, the surface roughness is presumed to be
cosine-shaped and the maximum height of the roughness is very small. The
main focus of investigation of the porous effect on oscillatory arterial blood
flow with mild stenosis, a mathematical model has been developed.

1. INTRODUCTION

Due to its physiological and importance and significance, blood flow issues
through a stenosized artery are of growing interest. A number of blood vessel
disorders are covered by a general term called "stenosis," which is one of the
current health threats. Stenosis refers partially or completely to the occlusion
of the arterial lumen due to the deposition of a fatty substance. It is the most
wide spread arterial diseases of blood vessel. Many researchers have presented
theoretical and experimental models of arterial stenosis. Stenosis refers to the
occlusion of the arterial lumen partly or fully due to the deposition of fatty
substance. The flow of blood through an artery depends on the heart’s pump-
ing action, giving rise to a gradient of pressure that creates an oscillatory flow
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in the blood vessel. Under a simple harmonic pressure gradient, Womersely
(1955) studied the oscillatory motion of a viscous fluid in a rigid tube and ex-
amined the influence of frequency on the instantaneous flow rate. Barnes et
al (1971) studied the non-Newtonian fluid flow behaviour through a straight,
rigid circular cross-section tube. In their analysis, the theoretical study findings
were shown to be in strong agreement with the predictions of the experiment.
A numerical study of pulsatile flow through canine femoral arteries with lumen
constriction was considered by Daly (1976) to be numerical. By numerically
overcoming the fluid dynamics equations for flow fields, Back et al (1977) dis-
cussed the issue of pulsatile blood flow through coronary arteries with multiple
non-obstructive’ plagues. In a rigid tube with stenosis, Newman et al (1979)
analyzed the oscillatory flow numerically. Doffin and Chagneau (1981) inves-
tigated the oscillating flow between a stenosis and a clot model. Kumar et al
(2005) explored computational techniques for flow with porous effects in blood
vessels. Oscillatory arterial blood flow with moderate stenosis have become
studied extensively by Bhardwaj and Kanodia (2007). Pulsatile flow of couple
stress fluid through a porous medium with periodic body acceleration and mag-
netic field has been discussed by Rathod and Tanveer (2009). In the presence
of a magnetic field, Sanyal and Biswas (2010) analysed pulsatile blood flow
through an axi-symmetric artery. We discuss the implications of Bhardwaj and
Kanodia (2007) with porous medium influence in the present paper.

2. MATHEMATICAL MODEL

Let us presume, through an artery with mild constriction, that the blood is
Newtonian, viscous and incompressible in character. It is assumed that the flow
is unsteady and axially symmetric. It is assumed that the density and viscosity
are constant. The artery, preceding and following the stenosis, does have a
constant radius. Due to any abnormal growth in the lumen of the artery, it is
often assumed that the constriction occurs symmetrically. The idealistic stenosis
geometry (Fig.1) is given by
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where R0 is the radius of the normal artery, R(x) is the radius of the artery in
the stenotic region, 2d is the length of stenosis and ∈ is the maximum height of
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the stenosis such that ∈/R«1 . The equation of motion governing the flow field

FIGURE 1. Geometrical Structure of Stenosis arteries

in the tube is
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where p is the fluid pressure, ρ is the density and w is the velocity in the axial
direction, µ is the viscosity, k is the permeability of the medium. The boundary
conditions are

(2.2) w = 0 on r = R,

(2.3)
∂w

∂r
= 0 on r = 0.

3. NUMERICAL SOLUTION

In the section under the pressure gradient, which varies with time, the simple
solution of the motion of a viscous fluid is obtained. Transformation is described
by y = r/R0 is implemented before continuing with the solution. The basic
equation (2.1) becomes on using the boundary conditions (2.2) and (2.3):
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where J0 is the Bessel function of order zero. Then the resulting expression for
the axial velocity in the tube is given by

W (r, t) =
PR2

0
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] · eiwt.

The volumetric flow rate Q as given below

(3.2) Q = 2π

∫ R
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which gives on integration, at once
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The shear stress at the wall r = R is given by

τR = µ(
∂w

∂r
)r=R.

Substituting expression (3.1) for w into above equation and using the relation
(3.2) for Q, one obtains as
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If τN is normalized with steady flow solution given by
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The resistance impedance to the flow is defined by in which the right hand side
is known and can be obtained from equation (3.2)

Z = −(
∂p
∂x

Q
).

4. RESULTS AND DISCUSSION

Axial velocity profiles in the tube have been seen in fig 2 and 3 with three
graphs for Ro = 1, P = 1, µ = 0.2,ρ = 0.4, ω = 4, σ = 1, tω = 0 and different
values for w/R0 (height of stenosis) and k (Porous medium Parameter). From
figures 2 and 3, it is observed that all axial velocity graphs decrease to r = 1,
then each graph begins to decrease after velocity and tends to zero with the
increase in y. It is also observed from Fig.2 and 3 that with the increase in k and
∈ /Ro, velocity increases, i.e. blood flow increases in the artery stenosis region.

FIGURE 2. Different value k of Axial Velocity profile
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FIGURE 3. Different value k of Axial Velocity profile
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