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A COMPARISON BETWEEN MODIFIED EWMA CONTROL CHARTS USING
DIFFERENT ROBUST ESTIMATORS
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ABSTRACT. The assumption most often made to construct a control chart is that
the observations are from a normal distribution. However, there are many in-
stances in which this underlying assumption is violated. Hence, in this study
median absolute deviation (MAD), Sn, interquatile range (IQR) and Biweight A
estimators are proposed in constructing EWMA control chart. The average run
length (ARL) is used to evaluate the performance of the control charts by deter-
mining the number of samples needed before an out of control point is detected
when the system is said to be faulty. As a result, the EWMA-Biweight control chart
is the most effective as it can detect the out of control at the quicker time frame.

1. INTRODUCTION

Control charts are used in statistical process control (SPC) as a method to vi-
sualize and control the process performance by reducing product variability and
improve production efficiency. The commonly used memory-type control chart are
the cumulative sum (CUSUM) control chart that was introduced by Page [1] and
the exponentially weighted moving average (EWMA) control chart developed by
Roberts [2]. Normality assumption is needed in order to produce an efficient con-
trol chart. If the normality assumption cannot be reached or lack of information
in the data, therefore, the control charts will be less practical to be used and the
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efficiency of the control chart will reduce [3]. Hence, robust control charts are
preferred and of more practical use when designing a control chart.

The identified robust scale estimators that have been used in this study are
MAD, Sn, IQR and Biweight A estimators. MAD is a robust scale estimator that
uses median as the estimator and is resilient with outliers compared to mean.
Rousseeuw and Croux [4] proposed a few other estimators as alternative to MAD,
for instance Sn and Qn estimator. However, Rousseeuw and Croux [4] also state
that they prefer Sn than Qn although Qn is more effective because Sn is very robust
because of its low gross sensitivity. IQR is another robust measure of scale which
used to replace the standard deviation in computation of control limits. Biweight
A estimator was shown in a major study by Lax [5] to perform well compared to
other robust univariate scale estimator.

The main goal of this paper is to modified the classical EWMA control chart us-
ing different robust estimators and evaluate each control chart performance using
their ARL values.

2. METHODOLOGY

In this study, data with a rational subgroup of sample size, n > 1 is used. The
mean is defined as x̄i =

∑n
i=1 xi
n

The plotting statistic zi is defined as zi = λx̄i + (1−
λ)zi−1 for i = 1, 2, . . ., and z0 = u0. While σ is replaced by σ̄x = σ√

n
The center

limit (CL), upper control limit (UCL) and lower control limit(LCL) for the EWMA
control chart are:

(2.1) UCL = µ0 + Lσ

√
λ

(2− λ)
[1− (1− λ)2i],

(2.2) LCL = µ0 − Lσ

√
λ

(2− λ)
[1− (1− λ)2i],

where 0 ≤ λ ≤ 1 is the smoothing parameter that serves as weight given to the
data. In this study, the value of λ used is 0.1, recommended by Montgomery [6].

MAD for a sample is defined as P |X−X0.5| ≤ 0.5. MAD is a very robust estimator
than the sample standard deviation [7]. The formula is shown as

MADj = 1.4826[Median|xij −Median(xij)|],
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where i = 1, 2, 3, . . ., and j = 1, 2, 3, . . .. The xij is the ith observation from sub-
group j and the 1.4826 is the consistensy factor. The unbiased estimator of σ for
MAD is σ̂ = bnMAD. Where MAD = 1

m

∑m
j=1MADj and bn is the correction

factor of the sample size n. The value of bn is the smallest sample correction de-
pends on n proposed by Rousseeuw [4] as shown in Table 1. For n > 9, bn can be
calculated using bn = n

n−0.8 .

TABLE 1. Derived constant for MAD(bn), IQR(dn), Sn(cn)

n 2 3 4 5 6 7 8 9

bn 1.196 1.495 1.363 1.206 1.200 1.140 1.129 1.107
dn 1.1284 1.6926 0.5940 0.9900 1.2835 1.5147 0.9456 1.1439
cn 0.743 1.851 0.954 1.351 0.993 1.198 1.005 1.131

The IQR was proposed by Roberts [2] as an estimator. The IQR is a measure
of variability, based on dividing data set into quartiles. These quartiles divide a
range-ordered data set into four equal parts. The values that divide each part are
called the first, second and third quartiles; and they are denoted by Q1, Q2, and
Q3 respectively.The population IQR for a continuous distribution is defined to be:

IQR =
Q3 −Q1

1.34898
,

where Q3 and Q1 are found by solving the following integral 0.75 =
∫ Q3

−∞ f(x)dx

and 0.25 =
∫ Q1

−∞ f(x)dx. The unbiased robust estimator for σ is σ̂ = IQR
dn

where
IQR = 1

m

∑m
j=1 IQRj, dn is a correction factor of the sample size n. The values of

n and its respective dn values are given as in Table 1.
Sn estimator is an alternative estimator of MAD introduced by Rousseeuw [4].

Sn is appropriate to be used in both cases of non-normality distributed data and
normality distributed data and is given as:

Sn = 1.1926 mediani{mediani|xi − xj|}.

The median of of {|xi − xj|, j = 1, 2, . . . , n} is calculated for each i. Sn is the
median of these values and the constant 1.1926 is determined, in order to make
Sn as a consistent estimator and approximately unbiased for finite samples. The
unbiased robust estimator for σ is σ̂ = cnSn where Sn = 1

m

∑m
j=1 Snj, cn is a correc-

tion factor of the sample size n. The values of n and its respective cn are displayed
in Table 1.
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For n > 9, cn can be calculated using cn = n
n−0.8 when n is odd and cn = 1 when

n is even. The value of σ̂ estimated using this estimator will then be used in the
control limits formulae in order to construct the resulting EWMA.

As given by Lax [5], the Biweight A estimator of the standard deviation for a
sample of size n is

Biweight =
n

(n− 1)
1
2

(
∑
|Ui|<1 (xi − T )2(1− U2

i )
4
)
1
2

|
∑
|Ui|<1(1− U2

i )(1− 5U2
i )|

,

where T is the sample median and Ui = (xi − T )/(cMAD). The unbiased robust
estimator for σ is σ̂ = Biweight.

Modified EWMA chart for robust scale estimators are EWMA-MAD, EWMA-IQR,
EWMA-Sn and EWMA-Biweight A. For each modified EWMA charts, the value of
σ in (2.1) and (2.2) will be replaced by σ̂.

3. CONTROL CHART PERFORMANCE

Two measures that are commonly used to compare the performance of control
charts are the ARL for in control process (ARL0) and for out of control process
(ARL1). In order to reduce the number of false out of control, signal ARL0 must
be large. A small (ARL1) is required in order to reduce the time that the process is
out of control. In this study, ARL is used it as a measuring tool for comparing the
performance of control charts. Monte Carlo simulation is conducted in R program-
ming. The simulations are conducted by manipulating three conditions which are
λ, width of control limit (L) and type of population distribution. Width of control
limit between 2.1 ≤ L ≤ 3.5 is used to determine the best combination (L, λ) to
obtain ARL0 ≈ 500 for data that follow normal distribution. Whereby width of
control limit 4.5 < L < 5.0 is used for skewed data.

The data used in this study is obtain from Wadsworth et al. [8]. Firstly, the data
undergoes a normality test by two different methods that are Shapiro Wilk test
and QQ plots. Then, the data is used to construct a classical control chart and
four robust EWMA control charts. The UCL and LCL of the five control charts are
computed. The statistics for each sample is computed and plotted in the EWMA
control charts. If the plotting statistics exceed the UCL and LCL, the process is
deemed to be out of control and vice versa. Lastly, the control chart which has the
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smallest ARL1 is selected as the best chart. Many studies such as Tapang et al. [9]
and Nazir et al. [10] used ARL to compare the performance of control charts.

4. RESULTS AND DISCUSSION

The simulated data sets are being tested for all five types of robust EWMA con-
trol charts and the performance of each control chart are measured using their
ARL values.

Simulation Results for Normal Distribution Data
Figure 1(A) displays the five EWMA control charts under Normal distribution

with prefix ARL0 ≈ 500 and n = 5 by varying values of width of control limit
between L = 2.2 and L = 3.5 with fixed λ = 0.1. From the result, the ARL

value under Normal (0, 1) for both of control charts in steady mode demonstrated
expected results where the ARL results decrease as the shift in mean increases.
Additionally, the output shows that EWMA-IQR generally produce smaller value
of ARL1 which indicate that EWMA-IQR control chart is the best control chart in
detecting the out of control points if the case of normality assumption is fulfilled.

Simulation Results for Mild Skewness Data
Figure 1(B) displays the five EWMA control charts under mild skewed Normal

distribution with prefix ARL0 ≈ 500 and n = 5 by varying values of width of
control limit between L = 3.0 and L = 4.3 with fixed λ = 0.1. ARL values shows
a decreasing trend when the shift in mean increases. From the outputs of the
ARL1, robust estimator Biweight A is significantly the most effective in promptly
detecting the out of control (OOC) point in a quicker time frame when there is a
shift in mean.

Simulation Results for Heavy Skewness Data
The ARL1 output of heavy skewness data is plotted as shown in Figure 1(C).

The ARL values shows a decreasing trend when the shift in mean increases. From
the outputs of the ARL1, Biweight A control chart is significantly the most effective
in promptly detecting the OOC point in a quicker time frame when there is a shift
in mean. Contrastingly, classical control charts will take a longest period of time
to detect the OOC, hence is it deemed to be ineffective in the aim of detecting the
shift especially in the situation where the data do not follow normal distribution.
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(A) ARL1 classical EWMA (L =

3.5), EWMA-Sn (L = 2.17), EWMA-
MAD (L = 2.9), EWMA-IQR (L =

2.9), and EWMA-Biweight (L = 3.5)

(B) ARL1 classical EWMA (L = 3.0), EWMA-
Sn (L = 3.8), EWMA-MAD (L = 4.2), EWMA-
IQR (L = 4.0), and EWMA-Biweight (L = 4.3)

(C) ARL1 classical EWMA (L =

4.5), EWMA-Sn (L = 5), EWMA-
MAD (L = 5), EWMA-IQR (L = 5),
and EWMA-Biweight (L = 5)

FIGURE 1. ARL values

Application to real life data
The data has been tested for normality using QQ plot and also Shapiro-Wilk test,

and it can be concluded that the data does not come from a normal population.
Figure 2(A) and 2(D) show the performance of classical EWMA and EWMA-IQR
control chart respectivel. No point goes beyond the limit of UCL and LCL. There-
fore, the process is deemed to be in control. The resulting chart for EWMA-MAD,
EWMA-Sn and EWMA-Biweight are shown in Figure 2(B), 2(C) and 2(E). The first
point of the data goes beyond the LCL. It means the system will detect the OOC
on the first sample.
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(A) Classical EWMA (B) EWMA-MAD (C) EWMA-Sn

(D) EWMA-IQR (E) EWMA-Biweight

FIGURE 2. Control Charts Performance

5. CONCLUSION

The output of simulation under standard Normal distribution shows that EWMA-
IQR generally can detect the out of control points in a quicker time compared to
other control charts. In the case of violation of normality assumption, the EWMA-
Biweight A can detect the out of control points in a quicker time comparing to
other control charts. The second method is done by applying real data set in con-
structing the control charts. It is found that classical EWMA and EWMA-IQR failed
to detect the out of control. It is justifiable to conclude that the most effective
robust control chart is the EWMA-Biweight control chart.
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