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KELLER-BOX SOLUTION OF THE STAGNATION POINT MICROPOLAR
FLUID FLOW BETWEEN POROUS PLATES WITH INJECTION

Ashwini Bhat! and Nagaraj N. Katagi

ABSTRACT. The present study deals with the steady axisymmetric flow of mi-
cropolar fluid between two parallel porous plates when the fluid is injected
through both walls at the same rate. The influence of velocity slip at the porous
surface is analyzed. A detailed finite-difference solution is developed for the
resulting non-linear coupled differential equations representing velocities and
microrotation. The numerical computations are obtained for radial, axial ve-
locities, and microrotation for varying injection Reynolds number, micropolar
parameter, and slip coefficient. Further, a comparison of the results is given
with those obtained in the literature with different methods as special cases.

1. INTRODUCTION

The classical Navier-Stokes theory can not describe most natural and biolog-
ical fluids with plenty of applications. Such liquids are named micropolar flu-
ids [1]] as a subclass of microfluids that comprises randomly arranged particles,
which are also capable of rotating about their own axis and play a vital role in
the dynamics of fluid flow. In 1966, Eringen mathematically formulated the gov-
erning equations for the motion of micropolar fluids in which, along with the ve-
locity field, an equation representing microrotation was developed. Arimann [2]
further confirmed the theory developed by Eringen. Using the fundamental
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governing equations derived by Eringen, Wilson studied the two-dimensional
micropolar boundary layer flow near the stagnation point. A finite-difference
solution was also developed for the stagnation point boundary layer flow over
a semi-infinite plate under steady conditions. Chapman and Bauer [3]] gave an
analytical solution for a steady stagnation point flow between two porous plates
with constant blowing. Later, Agarwal and Dhanpal [[4] obtained a numerical
solution to the stagnation point micropolar fluid flow between two porous discs.
Many other successful efforts can be found in the literature to understand the
various stagnation point flow situations of Newtonian and non-Newtonian fluids
using different approaches to find the solution.

However, it is noted that in most of the stagnation point micropolar fluid flow
studies with porous boundaries, no-slip as well as no-spin boundary conditions
are considered at the porous boundaries. The experimental studies conducted
by Beavers and Joseph [5]] concerning the flow at the interface of porous media
and clear fluid shows the presence of velocity slip at the porous boundary. The
historical background of these Beavers- Joseph conditions are also reported by
Nield [|6]]. Later, these slip boundary conditions are successfully incorporated in
the investigation of stokes and micropolar fluid flow situations between chan-
nels, tubes, and discs [7-9].

The fluid flow between porous parallel plates has received considerable at-
tention due to its numerous application. Attempts have been made to research
the various effects on the flow between plates under different boundary con-
ditions. We proposed the impact of slip velocity on the stagnation point mi-
cropolar fluid flow between porous plates in the current investigation. Highly
non-linear coupled governing equations are derived with suitable slip and spin
boundary conditions. The system of governing equations and suitable bound-
ary conditions are developed using a numerical technique based on the finite-
difference approach called the Keller-box method. Keller [[10] proposed this
procedure over other traditional numerical techniques due to its unconditional
stability. There are classical semi-analytical solution methods available to solve
non-linear boundary value problems, but the challenges faced in selecting the
initial solution and other parameters establishes that the proposed Keller-box
method is a good alternative.
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2. MATHEMATICAL FORMULATION

Consider two plates stationed at 2 = [ and 2 = —[ respectively as shown in
figure (I). When an incompressible micropolar fluid is injected with uniform
velocity through the plates, it flows radially towards center of the plane Zz = 0.
Considering planar symmetry of the problem we can effectively analyze upper
half of the flow regime. Let (u,v,w) and (u4, 15, v3) are components of velocity
and microrotation respectively in a cylindrical coordinate reference system. Due
to axial symmetry the components of velocity and microrotation along radial,
transverse and axial directions can be written as u = u(r, 2), v =0, w = w(r, 2),
vy = vy =0, and v, = v(r, 2) respectively.

Porous Boundary

|4

Porous Boundary

FIGURE 1. Geometry of micropolar fluid flow between porous
plates

The governing equations are,
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where y = # a non-dimensional variable, p is the pressure, p is the density, j

is the constant microinertia, ; the viscosity, £ and « are the micropolar material
constants. The boundary conditions for the velocity and microrotation in the
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flow can be written as,

—v/ K Ou i ou

Atx =1, w(r,x) = —V,u(r,x) = — (T, x) = —a—,
X (7, x) (", x) lﬁé’x(X) Iy

where 1, represents the microrotation at center of the plane z = 0, the slip coef-

ficient is given by & = *Z‘B/E where [ is a dimensionless parameter that depends
on porous material,  is the permeability. « is a microrotation boundary param-
eter that measures the extent to which the microelements near the boundary are
able to rotate. The value o = 0 refers to the no-spin situation.

Defining stream function as,

_ V2
§(hx) = TF(X)
(2.4 Sothatu = ‘;—;F(X)
(2.5) w = —VF(x)
Further we take,
Vr
(2.6) v=_--G(x)
21
Substituting (2.4)-(2.6) into (2.1}2.3) and upon eliminating p, we get
2.7) 2040 piv _gppm _ g g
' Re Re
1 L, AN 2r R 0/
(2.8) AG" + BRe(EFG FG) = 2G-F)

Where, r = ﬁ is the micropolar parameter, A = e and B = f—Q are the microp-
olar constants and Re = WT” is the suction/injection Reynolds number.
The transformed set of boundary conditions are,

F(0) = F"(0) = 0, G(0) =Gy

(2.9)
F(1)= -1, F'(1) = —®F"(1), G(1) =aF"(1)
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The expressions for shear stress and couple stress at the porous plate boundary
can be derived as,

ou V. _,
r=—(u+k)(5z), = 1+ )
v A
r==(5).0 = ¢

3. RESULTS AND DISCUSSION

The system of non-linear coupled ordinary equations represented by
and for different values of micropolar parameter » and Reynolds number
Re subjected to boundary conditions (2.9) are solved using numerical method
based on Newtons linearisation technique. The solution procedure uses finite
difference approximations and solves over a box scheme, is also called Keller-
box technique. The method is used as described by Keller [[10]. For better
understanding, the numerical results for velocity and microrotation of the cur-
rent flow situation are obtained corrected to 6 decimals for various values of r
and Re and are plotted in figures(2)-(5). It is also observed that the variations
in micropolar parameters A and B doesn’t significantly effect the velocity and
microrotation profiles and thus throughout the analysis these values are fixed at
1.0 and 0.001 respectively.
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FIGURE 2. Plots of (a)axial and (b)radial velocity for different
Reynolds number Re withr =1, =0.1,a =0.2,Gy =0
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Figures (2(a)) and depicts the variations in velocity components for
change in Reynolds number for fixed values of other parameters in the flow. The
axial velocity component increases throughout the flow regime for an increase
in Reynolds number. But the magnitude of radial velocity component increases
near the center of the distance between plates for increase in Reynolds number
and a gradual decrease is observed near the porous plate.

0.0 0.2 0.4 0.6 0.8 1 0.0 02 04 0.6 038 10
X X

@ (b)

FIGURE 3. Plots of (a)-axial and (b)-radial velocity for different
values of Gy withr =1, Re = 10,® = 0.1, = 0.2

Figures (3(a)) and reveals the effect of arbitrary values of microro-
tation at the central plane on velocity vectors. G, has positive effect on the
axial velocity in flow regime, while the radial velocity increases near the central
plane, a transition is observed close to the stagnation point and the magnitude
of radial velocity is seen decreasing in the vicinity of permeable plate. Further,
the variations in microrotation of the flow elements are depicted in figure{4(a)|
for different GG. Larger the value of Gy, it is clear from the figure that magnitude
of microrotation decreases significantly from the central plane to the boundary.
Combined effects of micropolar parameter and Reynolds number on the micro-
rotation profile is visualized in figure (4(b)).

The presence of slip coefficient at the boundary influences flow characteris-
tics, the plots of velocity and microrotation profiles for different values of ® are
shown in figure (5). As expected, the axial velocity decreases with increase in
slip parameter, varying from O to 1 across the distance between plates. Though
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FIGURE 4. (a)Microrotation profile for different values of microp-
olar parameter Gy with r = 1, Re = 10,® = 0.1, = 0.2 (b)
Microrotation profile for different values of micropolar parameter
r and Reynolds number Re with ® = 0.1, =0.2,Gy =0

TABLE 1. Comparison of the literature and present results for no-

slip case with r = 0,9 =0

2031

0.94

0.6

(b)

Re=0.1

Re=10

Xx | Chapman & Bauer [3] |

Present

Chapman & Bauer [3] |

Present

—Fx)

—F(x)

—F'(x)

—F(x)

—F(x)

—F(x)

—F’(x)

—F"(x)

0 0.000000
0.1 | 0.149832
0.2 | 0.296624
0.3 | 0.437338
0.4 | 0.568948
0.5 | 0.688440
0.6 | 0.792817
0.7 | 0.879101
0.8 | 0.944340
0.9 | 0.985606

1 1.000000

0.000000
0.149833
0.296627
0.437338
0.568947
0.688442
0.792820
0.879109
0.944335
0.985604
1.000000

1.503417
1.488210
1.442609
1.366684
1.260546
1.124345
0.958271
0.762543
0.537408
0.283134
0.000000

1.503411
1.488215
1.442604
1.366683
1.260545
1.124348
0.958276
0.762540
0.537409
0.283135
0.000000

0.000000
0.169533
0.332492
0.483284
0.617837
0.733592
0.829136
0.903778
0.957208
0.989298
1.000000

0.000000
0.169533
0.332499
0.483286
0.617841
0.733600
0.829136
0.903779
0.957210
0.989302
1.000000

1.706711
1.672930
1.576930
1.432194
1.254715
1.058123
0.851680
0.640673
0.427727
0.214010
0.000000

1.706727
1.672929
1.576938
1.432196
1.254716
1.058135
0.851685
0.640673
0.427767
0.214040
0.000000
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the magnitude of radial velocity initially decreases near the central plane, a com-

plete opposite behavior is observed as the boundary is reached with the flow

transition happening exactly at the critical point for different values of ®. The

boundary layer thickness is thinner than no-slip case(® = 0) and the velocity

profiles are benign.

Since the experimental data and the analytical solution for the considered
flow situation is unavailable, the exact comparison is not possible. However,

we compared the results with that for viscous case in the absence of micropolar
parameters and no-slip conditions [3] in table (1)).
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FIGURE 5. (a)Axial, (b)radial, and (c)microrotation profiles for
various values of velocity slip parameter & with r = 5 Re =
10,Gp = 0,0 = 0.2

TABLE 2. Numerical solution for skin friction coefficient 7 (1)

- P®=0,s=0,Gp=0

Re =0 Re=1 Re =3 Re =5 Re =10 Re =25
0 | 2970074 2.755865 2.468101 2.305831 2.140709 2.048535
1 2.890199 2.779379  2.598333 2.462487 2.257776  2.083459
5 2.542645 2.508429 2.445302 2.388808 2.273199 2.081541
10 | 2.321804 2.304147 2.270589 2.239285 2.170193 2.027477
, P =0.1,5s=02,Gp=1

Re =0 Re =1 Re =3 Re =5 Re =10 Re =25
0 | 2.284659 2.163303 1.989478 1.884479 1.770437 1.703005
1 2.246740 2.183251 2.075612 1.991160 1.856298 1.731018
5 2.078001 2.055940 2.014581 1.976788 1.896786 1.752984
10 | 1.967054 1.954370 1.930003 1.906945 1.854807 1.739870
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TABLE 3. Numerical solution obtained for couple stress coefficient
—-G'(1)

P®=0,s=0,Gp =0
Re =0 Re =1 Re =3 Re =5 Re =10 Re =25
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1.715231 1.713269 1.709386 1.705694 1.697799 1.683664
6.085842 6.069745 6.038834 6.009637 5.943997  5.802082
9.301820 9.278456  9.233036 9.189349 9.087559  8.840932
$=0.1,s=02,Gp =1
Re =0 Re =1 Re =3 Re =5 Re =10 Re =25
1.461547 1.435006 1.397256 1.374399 1.348375 1.326303
2.770326 2.758710 2.738541 2.722092 2.693533 2.656776
6.415041 6.401711 6.375784 6.350892 6.293471 6.162025
9.454297  9.434801 9.396537 9.359271 9.270631 9.044562

[ el

—
(=)

U= ol 3

—_
(=}

Tables (2) and represents numerical computation results obtained for
shear stress coefficient and couple stress coefficient at the permeable wall for
different Reynolds number and micropolar parameter. It can be easily observed
from the values that, the presence of micropolar elements decreases the shear
stress but, it increases couple stress. Further, for fixed values of other param-
eters, the magnitude of skin friction decreases and the wall couple stress in-
creases. The similar effects are observed with increase in spin parameter.
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