
ADV MATH
SCI JOURNAL

Advances in Mathematics: Scientific Journal 10 (2021), no.1, 543–555
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.10.1.54 Spec. Iss. on ICIRPS-2020

PREDICTING SOFTWARE BUGS OF NEWLY AND LARGE DATASETS
THROUGH A UNIFIED NEURO-FUZZY APPROACH: RELIABILITY

PERSPECTIVE

Kavita Sahu1 and R.K. Srivastava

ABSTRACT. Reliability of software is an essential concern for users for a long
time. Software reliability is mainly obtained through modeling and estimating.
There are numerous methods for reducing the failure rate. However, the exist-
ing methods are nonlinear. Hence the parameter estimation of these methods
is difficult. This paper concerns on estimation and prediction of software reli-
ability through different soft computing methods for improving the reliability
of software. For estimation and prediction, the authors of this paper take two
soft computing methodologies, including fuzzy logic and neural network. The
outcomes seem to give satisfactory results on large datasets. For experiments,
this paper is using two different large datasets of Apache server and MyLyn
application software for showing the effectiveness of the results. The proposed
methods of prediction would be useful for practitioners to simplify the proce-
dures during software development in large datasets for reducing failures of
software.

1. INTRODUCTION

Software reliability is the area of research in software engineering for more
than forty years, but still, some questions are unanswered [1]. Such as "Are we

1corresponding author
2020 Mathematics Subject Classification. 68M15, 68T07.
Key words and phrases. Software Reliability, Reliability Prediction, Soft Computing, Fuzzy

Logic, Neural Network.
Submitted: 18.11.2020; Accepted: 25.12.2020; Published: 22.01.2021.

543

544 K. Sahu and R.K. Srivastava

getting a fully reliable software?", "Are we managing software reliability more
efficiently or have been working on the same methods for years" ? The disas-
trous failure occurred on January 25, 2017, of GPS satellite led to a software
error that only occurred for a mere 13 microseconds. However, the result had a
significant impact on global positioning systems (GPS), the U.S. Air Force, and
communications networks, although the fault was momentary [2]. Such type
of failures makes reliability factor an essential and significant area of research
which further assures more of software issues such as security, efficiency, and
usability as well. Software reliability is defined as the probability of failure-free
operation of the software over a specified period in a specified environment [3].

Software reliability cannot be directly measured because failure-free oper-
ations occurred during a specific period in a specified environment. Failures
and faults of the software are found in its different software development and
reliability factors. This is why measuring software reliability is hard because
the measurement of its specific attributes is necessary to measure [2]. Failure
counts, mean time to failure, mean time to recover, etc. are the attributes on
which reliability of software is measured. Until now, there is no right way to
conquer the complexity problem of software. In the last few years, many re-
search studies have been carried out in this area of software reliability modeling
and forecasting. The issues of software reliability are focused on soft computing
techniques for developing and maintaining software systems to enhance it with
proper measurement. In this paper, we have used a neural network as an esti-
mation model and compared its results with the hybrid method of Neuro-fuzzy.
These results are obtained using MATLAB. Rizvi et al. [4]and Yazdani et al. [5]
used soft computing methods and statistical methods to quantify and estimate
software reliability. However, the frameworks approached were not practically
applicable. Also, soft computing methods provide more crisp results than any
other approach. Hence this paper is proposing a hybrid approach of Neuro-fuzzy
with application to two real-time databases and compared the results with sim-
ple neural network methods.

In this paper,the authors tried to propose a model of the hybrid methodology
of neuro-fuzzy to predict the software reliability for the two different datasets.
Application software and server dataset, which have different failure patterns
than older datasets. This assessment would also be of great help to designers
and developers in recognizing the goals of the attributes and making correct

PREDICTING SOFTWARE BUGS OF NEWLY AND LARGE DATASETS 545

decisions while assessing software reliability. Practical assessment of reliability
is not only beneficial for reliability assessment but also improves the overall
software quality. The critical aspects of this study are:

(i) Analyze software reliability from an industrial perspective with the in-
tent to include guidance for the production of reliable applications.

(ii) The validity of the approach is tested using the Neuro-fuzzy and neu-
ral network methodology. All methods in the soft computing problem-
solving domain are well known and accessible. The technique proposed
in the study delivers accurate and efficient results.

(iii) Two different datasets were taken as alternatives for this case study to
test software reliability.

(iv) The analytical initiative of this study seeks to provide insights into how
structured and well-proven reliability design techniques are practiced
during the life cycle of software development.

The rest of the paper is as follows: The Second section is describing the hybrid
methodology of Neuro-fuzzy, which is used in this research. The third section fo-
cuses on the experimental implementation of the methodology. Finally, results,
discussion, and conclusion are described in sections forth and five.

2. METHODOLOGY FOLLOWED

Our work is divided into two parts. The first part is prediction through the
neural network, and the second part focuses on prediction through the neuro-
fuzzy methodology. Further, the prediction is divided into three phases: Analysis
and design phase (Dataset preparation and network creation), Implementation
phase (Implementing neural and neuro-fuzzy on the dataset), and Validation
phase (Comparison of results with other methods). The description of each
method is given in the following section:

2.1. Data Collection. To evaluate the proposed model, two datasets are used.
One dataset is for server Apache Lucene which contains 600 failure numbers of
class data with eight attributes. Another dataset of MyLyn application software
with 18 attributes and 1856 classes of failure. In order to reach the software
reliability level, two essential attributes, which are several bugs and the number
of non-trivial bugs, are taken in this work.

546 K. Sahu and R.K. Srivastava

2.2. Prediction using Neural Network. Neural Networks are simplified mod-
els of the biological nervous system and, therefore, have drawn their motivation
from the example of computations performed by human brains [7–9]. A neural
network contains characteristics such as mapping capabilities, generalization,
robustness, fault tolerance, etc. That is why the neural network is highly used
in modeling a reliable system. Neural networks have broadly classified as a sin-
gle layer, multi-layer, and recurrent neural networks. A Neural Network without
the Activation function would simply be a linear regression model. A Multilayer
perceptron is a supervised learning algorithm that learns a function by training
on a dataset. MLP is perhaps the most popular and most widely used ANN,
which consists of two layers, input and output, and one or more hidden layers
between these two layers. The hidden layers are introduced to increase the net-
work’s ability to model complex functions. Every layer in a network contains
enough neurons, depending on the application. The input layer is passive and
receives only the data (e.g., data relating to different causative factors). Un-
like the input layer, the data are actively processed both by hidden and output
layers. The output layer yields the results for the neural network.

Thus, the number of neurons in the layers of input and output is usually fixed
by the application type. Typically, the number of hidden layers and their neu-
rons is determined by trial and error for a classification problem. There are
three stages involved in ANN data processing: the training stage, the weight de-
termination stage, and the classification stage. The training process is initiated
by assigning arbitrary initial weights of connection, which are updated contin-
uously until an acceptable training accuracy is achieved. The weights adjusted
obtained from trained neurons in its input layer may be expressed as Eq (2.1),

(2.1) Nj = Σn
i=1wtijdi,

where wt represents the weights belonging to input neuron i and hidden neuron
j, di is the data at the input neuron, and n is the number of neurons. Further,
the transfer function T is expressed as Eq (2.2),

(2.2) di = T (netj) =
1

1 + e−netj
n.

The function T is usually a nonlinear sigmoid function that is applied to the
weighted sum of the input data before the data are processed to the next layer.

PREDICTING SOFTWARE BUGS OF NEWLY AND LARGE DATASETS 547

To predict software reliability using a neural network following are the essential
steps to be taken.

Step 1. The first step is to import data in the proper format and specify the
activation function, which will be used to activate the neuron. In this work, we
are using the sigmoid function to activate the inputs. The sigmoid function is of
form, as shown in Eq (2.3),

(2.3) f(x) =
1

1 + e−x
.

Step 2. The next step is to create the neural network according to the datasets.
Split the variable according to the dataset and design the neural network ac-
cording to the inputs.

Step 3. Further step is to decide the number of hidden layers be used for learn-
ing and learning rate. The hidden layer can range from 1 to maximum accuracy
the user wants. Several hidden layers decide accuracy. In this work, we are us-
ing Multi-Layer Perceptron Network (MLP) neural network. It is a feed-forward
artificial neural network and supervised algorithm. The usage of MLP neural
networks is because of its capability to learn with non-linear models and models
with real-time data. It contains further steps

• Calculate the Error : How far is the model output from the actual output.
• Minimum Error : Check whether the error is minimized or not.
• Update the Parameters : If the error is enormous,then update the pa-

rameters (weights and biases). After that, again, check the error. Repeat
the process until the error becomes minimum.
• Model is ready to make a Prediction : Once the error becomes minimum,

one can feed some inputs to one′s model, and it will produce the output.

2.3. Prediction using Neuro-Fuzzy. Fuzzy logic is capable of handling predic-
tions with incomplete or imprecise data. It can also model non-linear functions
of arbitrary functions. Fuzzy logic starts with the concept of a fuzzy set. A fuzzy
set is a set without a crisp, clearly defined boundary. It can contain elements
with only a partial degree of membership. A membership function (MF) is a
curve that defines how each point in the input space is mapped to a member-
ship value (or degree of membership) between 0 and 1. The input space is
sometimes referred to as the universe of discourse, a fancy name for a simple

548 K. Sahu and R.K. Srivastava

concept. The only condition a membership function must satisfy is that it must
vary between 0 and 1. The function itself can be an arbitrary curve whose shape
we can define as a function that suits us from simplicity, convenience, speed,
and efficiency. A classical set might be expressed as Eq (2.4),

(2.4) A = {x|x > 6}.

A fuzzy set is an extension of a standard set. If X is the universe of discourse
and its elements are denoted by x, then a fuzzy set A in X is defined as a set of
ordered pairs, which is shown in Eq (2.5),

(2.5) A = {x, µAx|xεX}.

Then, µAx is called the membership function (or MF) of x in A. The membership
function maps each element of X to a membership value between 0 and 1. The
most straightforward membership functions are formed using straight lines. Of
these, the simplest is the triangular membership function, and it has the function
name trimf. Triangular membership functions defined by a lower limit a, an
upper limit b, and a value m, where a < m < b. The formulas for trimf is given
below in Eq (2.6),

(2.6) µAx =


0, x ≤ a

x−a
m−a , a < x ≤ m

b−x
b−m , m < x < b

0, x ≥ b

TFN is nothing more than a collection of three points forming a triangle. The
trapezoidal membership function, trapmf, has a flat top and is just a truncated
triangle curve. These straight-line membership functions have the advantage
of simplicity. The methodology for the hybridization of Neural and Fuzzy tech-
niques is described in the next section.

In a wide variety of real-world problems, hybrid systems incorporating fuzzy
logic and neural networks prove their effectiveness. That smart technique has
unique computational properties (e.g., learning capacity, decision explanation)
that make them ideal for specific problems and not others. While neural net-
works, for example, are good at recognizing patterns, they are not good at
explaining how to reach their decisions. Fuzzy logic systems are good at ex-
plaining their decisions, which can reason with imprecise knowledge, but they

PREDICTING SOFTWARE BUGS OF NEWLY AND LARGE DATASETS 549

cannot immediately learn the rules they use to make those decisions. When
considering the varied nature of application domains, hybrid systems are also
essential. Many complex domains have many different problems with compo-
nents, each of which may require different processing types.

A neuro-fuzzy framework is a fuzzy framework that uses attacking in calcu-
lation got from or propelled by a neural system hypothesis to focus its limita-
tions (fuzzy sets and fuzzy rules) by preparing information tests. Neuro-fuzzy
was proposed by J. S. R. Jang [10]. Neuro-Fuzzy System synergizes these two
procedures by consolidating the human-like thinking style of fuzzy frameworks
with the learning and connection of the structure of neural systems. The types
of Neuro-fuzzy Systems are

• Mamdani based Neuro-Fuzzy inference system;
• Takagi Sugeno fuzzy inference system.

A neuro-fuzzy framework makes utilization of neural systems to give fuzzy
frameworks a sort of programmed tuning strategy by not influencing their func-
tionalities. There is a preparation process, where a neural system modifies its
weights to minimize the mean square error between the yield of the system
and the desired output. Mamdani fuzzy inference framework varies from the
other variation Takagi-Sugeno fuzzy inference framework and has the advan-
tage of having a likeness to the human subjective framework.The fuzzy neuro
technique is a backbone of soft computing. Soft computing techniques defined
as the combination of neuro-fuzzy computing and derivative-free optimization.
The characteristics of soft computing are human expertise, biologically inspired
computing models, new optimization techniques, and numerical computation.

3. DATA ANALYSIS AND RESULTS

The data are usually partitioned into at least two subsets when developing
an artificial neural network, such as training and testing data. The training
data should be selected before executing the artificial neural network program.
In the past few years,several software reliability models have been analyzed,
designed, and evaluated. Soft computing plays an essential role in the recent
advancements in software reliability growth models. In this paper, we are going
to implement hybrid neuro-fuzzy techniques on two different datasets obtained

550 K. Sahu and R.K. Srivastava

from the eclipse bug prediction dataset [11]. The bug prediction dataset is a col-
lection of software system models and metrics and their histories. One dataset
is for server Apache Lucene which contains 600 failure numbers of class data
with eight attributes. Another dataset of MyLyn application software with 18
attributes and 1856 classes of failure. We have taken our case study with two
attributes, which are several bugs and several non-trivial bugs. Furthermore,
several bugs mean less reliability of software, and less number of bugs means
higher reliability of software. Hence several bugs decide the reliability of soft-
ware. The structure of ANFIS for predicting reliability over this dataset is as
shown in Table 1.

TABLE 1. Structure of ANFIS

No.
Of
Nodes

No. Of Linear Param-
eters

No. Of Non-Linear
Parameters

No. Of Training Data
Pairs

16 3 9 600

The number of hidden layers is two, and the number of neurons is 16. Further,
with the help of Eqs (2.1) to 4.2, we calculate the MSE and VAF using the
approaches neural with MLP algorithm, Neuro-fuzzy in MATLAB, and statistical
measurement using a model of Song, Chang, and Pham [12]. Fig 1 shows the
training error graph and comparison of predicted and previous data. Fig 1 shows
the variances between the Number of bugs and predicted bugs for reliability
prediction of two datasets MyLyn and Apache Lucene. Fig 2 shows the training
error with the MyLyn dataset in ANFIS structure. The results of the proposed
methods are compared with the method proposed by Song, Chang, and Pham
statistical model. The combined results with different models are shown in
Table2. The graphical representation of the results is shown in Fig3.

Variance Accounted For (VAF): VAF is used to determine the correctness of the
model. To check the validity of the approach and performance of model VAF is
calculated as follows in Table3.

There have been numerous works done in the field of software reliability pre-
diction using hybrid soft computing techniques. In this work, authors have used
the neuro-fuzzy technique for software reliability prediction in the MATLAB en-
vironment. The results of the mean squared error of different modelsmentioned

PREDICTING SOFTWARE BUGS OF NEWLY AND LARGE DATASETS 551

FIGURE 1. Graphs Between Mean No of Bugs and Predicted No of
Bugs Using Different Models

FIGURE 2. Training Error in ANFIS Structure

in Table 1, which shows the comparison between proposed models with the
neural network technique and neuro-fuzzy technique with the results of Song,
Chang, and Pham model is proved to be better than the later one. It is clear from

552 K. Sahu and R.K. Srivastava

this comparison that our proposed model gives better results than Song, Chang,
and Pham model while implementing on two real-time datasets. It is also clear
from the results of our proposed model that hybrid technique (neuro-fuzzy) pro-
vides us very less error rate in comparison to another neural network model.

TABLE 2. Mean Squared Error of Different Models

Case Num-
ber

Neural Network Neuro-fuzzy Song, Chang and Pham Model

MyLyn 0.8583 0.0929 2.58
Apache 2.596 0.1895 1.25

FIGURE 3. Graphical Representation of MSE by different methods

Table 3 shows the different evaluation criteria for bothmodels (Neuro-Fuzzy and
Neural Network)in both cases(MyLyn and Apache Lucene). The table shows that
the obtained VAF for the Neuro-Fuzzy model is pointing at the correctness on
the Apache Lucene dataset. Other evaluation criteria such as NRMSE, RMSE,
and MSE also show that the error rate is lower for the Apache Lucene dataset.
This proves that our proposed neuro-fuzzy model is more appropriate for big
and variant datasets such as Apache Lucene.

4. DISCUSSION

Predicting software reliability using soft computing techniques is a challeng-
ing task and also a growing research area. Hybrid methods of software reliability

PREDICTING SOFTWARE BUGS OF NEWLY AND LARGE DATASETS 553

TABLE 3. Different evaluation criteria for the different model on cases

Case Number Testing VAF RMSE NRMSE MSE

MyLyn(Neuro-
fuzzy)

67.12 0.046925 0.004469 0.0929

Apache Lucene
(Neuro-Fuzzy)

85.1 0.103001 0.001272 0.1895

Apache
Lucene(Neural)

15.19 3.1801 2.9057 2.596

MyLyn(Neural) 45.74 0.274109 0.013949 0.8583

prediction have been given by several authors such as bio-inspired hybrid soft
computing technique was proposed by Chander Diwaker et al. in 2018 [6]. The
study conducted in this paper shows that the previously proposed approaches
have some shortcomings, such as old database based predictions, which is not
applicable in the current scenario of sophisticated software.

The main challenges that are faced by various researchers in estimating and
predicting software reliability are associated with the new datasets and identi-
fying relevant attributes from it. In this research, a dataset of server and ap-
plication software has been taken, and two attributes of this data have been
identified. Based on these attributes, the reliability of these datasets has been
predicted for the future. Our proposed study has emphasized hybrid technique
approaches of soft computing. In this paper, we have proved the betterment of
our study by proposed work and Table 1, which is a mean squared error rate
between the different models. After analyzing the results,the hybrid method of
neuro-fuzzy seems to be a better method than the neural method by the MLP
algorithm.In the future, this work can be extended as follows:

• Further predicting failure for software to improve the software reliability
can extend this work to the other soft computing techniques to give
a better estimation of the software reliability at different stages of the
Software Development process.
• Prediction and sharpness of the Fuzzy Rule Generation for the Fuzzy In-

ference System can further be improved with decision-making systems.
• Decision-making methods, such as the Analytic hierarchy process with a

hybrid method of soft computing approaches, may give better results.

554 K. Sahu and R.K. Srivastava

5. CONCLUSION

Software reliability is not a hundred percent achievable in the real world.
However, we could estimate it through the quality of the software. In this paper,
we have analyzed the various systematic existing approaches to prove software
reliability using soft computing models. We emphasize on some soft computing
model to prove the software reliability. The computing task would serve as a
reference to both old and new includes neural network, Fuzzy logic, and neural
fuzzy and genetic algorithm. From our result analysis, we observed that the
handling of software datasets in a variety of application models was proved that
the computation results using a hybrid method of neuro-fuzzy are much better
than the other computing models. Finally this model supports our understand-
ing of current trends and guides the research flows. This study provides the
best indication of the prediction strength of developed neuro-fuzzy model for
accessing the software reliability.

REFERENCES

[1] K. SAHU, R.K. SRIVASTAVA: Revisiting Software Reliability, Data Management, Analytics
and Innovation, Springer, 254 (2019), 221-235.

[2] A. VERMA: Worst of the Worst¯ The Biggest Software Fails in Recent Memory, (2018)
Available online at: https://www.functionize.com/blog/worst-of-the-worst-the-biggest-
software-fails-in-recent-memory/.

[3] K. SAHU, RAJSHREE: Stability: abstract roadmap of security, American International Jour-
nal of Research in Science, Engineering & Mathematics, (2015), 183-186.

[4] S.W.A. RIZVI, V.K. SINGH, R.A. KHAN: Fuzzy logic-based software reliability quantifica-
tion framework: early-stage perspective (FLSRQF) Procedia Computer Science, 89 (2016),
359-368.

[5] A. KUKKAR, R. MOHANA, A. NAYYAR, J. KIM, B.G. KANG, N. CHILAMKURTI: A
Novel Deep-Learning-Based Bug Severity Classification Technique Using Convolutional Neural
Networks and Random Forest with Boosting, Sensors, 19(13) (2019), 2964.

[6] K. KASWAN, S. CHOUDHARY, K. SHARMA: Software Reliability Modeling using Soft Com-
puting Techniques: Critical Review, International Journal of Information Technology and
Computer Science, 7 (2015), 90-101.

[7] A. NAYYAR: Instant Approach to Software Testing: Principles, Applications, Techniques, and
Practices, BPB Publications, 2019.

[8] K. SAHU, R.K. SRIVASTAVA: Needs and Importance of Reliability Prediction: An Industrial
Perspective, Information Sciences Letters, 9(1) (2020), 33-37.

PREDICTING SOFTWARE BUGS OF NEWLY AND LARGE DATASETS 555

[9] N. KARUNANITHI, D. WHITLEY, Y.K. MALAIYA:Using neural networks in reliability pre-
diction, IEEE Software, 9(4) (1992), 53-59.

[10] J.S.R. JANG, C.T. SUN, E. MIZUTANI: Neuro-fuzzy and soft computing a computational
approach to learning and machine intelligence [Book Review], IEEE Transactions on auto-
matic control, 42(10) (1997), 1482-1484.

[11] Bug Prediction Dataset- Evaluate Your Bug Prediction Approach on Our Benchmark, 2015,
Available online at http://bug.inf.usi.ch/index.php

[12] K.Y. SONG, I.H. CHANG, H. PHAM: A software reliability model with a Weibull fault
detection rate function subject to operating environments, Applied Sciences, 7(10) (2017),
art.id.983.

DEPARTMENT OF COMPUTER SCIENCE

DR. SHAKUNTALA MISRA NATIONAL REHABILITATION UNIVERSITY

LUCKNOW, U.P., INDIA-226017
Email address: ∗ kavi9839@gmail.com

DEPARTMENT OF COMPUTER SCIENCE

DR. SHAKUNTALA MISRA NATIONAL REHABILITATION UNIVERSITY

LUCKNOW, U.P., INDIA-226017

	1. Introduction
	2. Methodology Followed
	2.1. Data Collection
	2.2. Prediction using Neural Network
	2.3. Prediction using Neuro-Fuzzy

	3. Data Analysis and Results
	4. Discussion
	5. Conclusion
	References

