

Advances in Mathematics: Scientific Journal 10 (2021), no.1, 613-620

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.10.1.61

TOTAL GRAPH OF \mathbb{Z}_N AND ITS COMPLEMENT WITH RESPECT TO NIL IDEAL

Arijit Mishra¹ and Kuntala Patra

ABSTRACT. Let \mathbb{Z}_n be a non-reduced commutative ring and let $N(\mathbb{Z}_n)$ denote the set of the nil elements of \mathbb{Z}_n . In this paper, we introduce the total graph of \mathbb{Z}_n with respect to $N(\mathbb{Z}_n)$, denoted by $T(\Gamma_N(\mathbb{Z}_n))$, as a simple undirected graph with all the elements of \mathbb{Z}_n as vertices and any two distinct vertices x and y are adjacent if and only if $x+y\in N(\mathbb{Z}_n)$. Some properties of $T(\Gamma_N(\mathbb{Z}_n))$ and its subgraphs $T_{N(\mathbb{Z}_n)}$ and $T_{\overline{N(\mathbb{Z}_n)}}$ are studied. Also, we study some properties associated to the graph $T(\Gamma_N(\mathbb{Z}_n))$, the complement of $T(\Gamma_N(R))$.

1. Introduction

The idea of the total graph of a commutative ring R, denoted by $T(\Gamma(R))$, was first put forward by Anderson and Badawi [3] as a simple undirected graph having vertex set R and two distinct vertices x and y of $T(\Gamma(R))$ are adjacent if and only if $x + y \in Z(R)$, where Z(R) denotes the set of all the zero-divisors of R. One can find detailed literature on total graphs in [3–5,7,8].

P. W. Chen [6], in the year 2003, introduced a special kind of graph structure of a commutative ring R whose vertex set contains all the elements of R and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$, where N(R) denotes the set of all the nil elements of the ring R. This concept was

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C25, 05C69.

Key words and phrases. Total Graph, Nil Ideal, Eulerian, Homomorphism.

Submitted: 31.12.2020; Accepted: 15.01.2021; Published: 27.01.2021.

later modified by Ai-Hua Li and Qi-Sheng Li [2] who defined it as an undirected simple graph $\Gamma_N(R)$ with vertex set $Z_N(R)^* = \{x \in R^* \mid xy \in N(R) \text{ for some } y \in R^* = R - \{0\}\}$ and two distinct vertices x and y are adjacent if and only if $xy \in N(R)$ or $yx \in N(R)$.

In this paper, we take $R=\mathbb{Z}_n$. Throughout this paper, we shall use the notation $N(\mathbb{Z}_n)$ to denote the set of all the nil elements of the ring \mathbb{Z}_n . That is, $N(\mathbb{Z}_n)=\{x\in\mathbb{Z}_n:x^2=0\}$. For any commutative ring R, N(R) is an ideal of R. We call this ideal a *nil ideal* of the ring R. We define the total graph of \mathbb{Z}_n with respect to $N(\mathbb{Z}_n)$, denoted by $T(\Gamma_N(\mathbb{Z}_n))$, as a simple, undirected graph whose vertex set contains all the elements of \mathbb{Z}_n and any two distinct vertices x and y of $T(\Gamma_N(\mathbb{Z}_n))$ are adjacent if and only if $x+y\in N(\mathbb{Z}_n)$. Let $T_{N(\mathbb{Z}_n)}$ and $\overline{T_{N(\mathbb{Z}_n)}}$ denote the induced subgraphs of $T(\Gamma_N(\mathbb{Z}_n))$ whose vertex sets are $N(\mathbb{Z}_n)$ and $\overline{N(\mathbb{Z}_n)}$ respectively, where $\overline{N(\mathbb{Z}_n)}=\overline{\mathbb{Z}_n-N(\mathbb{Z}_n)}$. Also, the complement of the total graph $T(\Gamma_N(\mathbb{Z}_n))$, denoted by $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, is the simple undirected graph whose vertex set is \mathbb{Z}_n and two distinct vertices x and y are adjacent if and only if $x+y\in\mathbb{Z}_n-N(\mathbb{Z}_n)$.

2. Preliminaries

For any graph G, the diameter of G, denoted by diam(G) is given by $diam(G) = sup\{d(x,y):$ where x and y are distinct vertices of G $\}$ and d(x,y) is the length of the shortest path joining x and y. The girth of a graph G, denoted by gr(G), is the length of the shortest cycle in G. If G contains no cycles, then $gr(G) = \infty$. A graph G is said to be Eulerian if and only if the degree of each of its vertices is even. A non-empty subset S of the set of all the vertices V of a graph is called a dominating set if every vertex in V-S is adjacent to at least one vertex in S. The $domination number \gamma$ of a graph G is defined to be the minimum cardinality of a dominating set in G and the corresponding dominating set is called a γ -set of G.

A ring R is said to be *non-reduced* if it contains at least one non-zero nil element. Otherwise it is said to be *reduced*.

3. The basic structure of $T(\Gamma_N(\mathbb{Z}_n))$

For any non-reduced \mathbb{Z}_n , the total graph $T(\Gamma_N(\mathbb{Z}_n))$ of \mathbb{Z}_n with respect to its nil ideal $N(\mathbb{Z}_n) = \{x \in \mathbb{Z}_n : x^2 \equiv 0 \pmod{n}\}$ is a simple, undirected graph

having vertex set \mathbb{Z}_n and any two distinct vertices x and y of $T(\Gamma_N(\mathbb{Z}_n))$ are adjacent if and only if $x + y \in N(\mathbb{Z}_n)$.

Proposition 3.1. Let \mathbb{Z}_n be non-reduced and let n be odd. Suppose that \exists some $m \in \mathbb{Z}_n - N(\mathbb{Z}_n)$ such that $2m \in N(\mathbb{Z}_n)$. Then $2m = n_1$, for some $n_1 \in N(\mathbb{Z}_n)$,

$$\Rightarrow m = \frac{n_1}{2} \begin{cases} \in N(\mathbb{Z}_n) & \text{if } n_1 \text{ is even} \\ \not\in \mathbb{Z}_n & \text{if } n_1 \text{ is odd} \end{cases}.$$

In both the cases, we get a contradiction. Thus for any non-reduced \mathbb{Z}_n and for any odd n, \exists no $m \in \mathbb{Z}_n - N(\mathbb{Z}_n)$ such that $2m \in N(\mathbb{Z}_n)$.

Again, let \mathbb{Z}_n be non-reduced and let n be even. Since \mathbb{Z}_n is non-reduced, so either $n=2^k$ for some k>1, or $n=2^r.p_1^{r_1}.p_2^{r_2}...p_s^{r_s}$, where at least one $r,r_i's>1$ (since \mathbb{Z}_n is non-reduced).

- (i) Let $n = 2^k$. Then \exists some $m = 2^k 2^{[\frac{k-1}{2}]} \in \mathbb{Z}_{2^k} N(\mathbb{Z}_{2^k})$ such that $m + m = 2m \in N(\mathbb{Z}_{2^k})$.
- (ii) Let $n = 2^r \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_s^{r_s}$. Then \exists some $m = 2^{\left[\frac{r_1+1}{2}\right]-1} \cdot p_1^{\left[\frac{r_2+1}{2}\right]} \cdot \dots \cdot p_s^{\left[\frac{r_s+1}{2}\right]}$ $\in \mathbb{Z}_n N(\mathbb{Z}_n)$ such that $m + m = 2m \in N(\mathbb{Z}_n)$.

Thus for any non-reduced \mathbb{Z}_n and for any even n, \exists some $m \in \mathbb{Z}_n - N(\mathbb{Z}_n)$ such that $2m \in N(\mathbb{Z}_n)$.

4. MAIN RESULTS

For $R = \mathbb{Z}_n$, the set N(R) is an ideal of R. Since N(R) is closed under addition, so for any distinct elements $x, y \in N(R)$, $x + y \in N(R)$.

Throughout this section, we use the notation $|N(\mathbb{Z}_n)| = \alpha$ and $|\mathbb{Z}_n - N(\mathbb{Z}_n)| = \beta$.

Theorem 4.1. [1] Let $R = \mathbb{Z}_n$ be non-reduced and $N(\mathbb{Z}_n)$ be the set of all the nil elements of \mathbb{Z}_n . Then $T_{N(\mathbb{Z}_n)}$ is a complete subgraph of $T(\Gamma_N(\mathbb{Z}_n))$ and $T_{N(\mathbb{Z}_n)}$ is disjoint from $T_{\overline{N(\mathbb{Z}_n)}}$.

Theorem 4.2. [1] Let $R = \mathbb{Z}_n$ and let $|N(R)| = \alpha$ and $|R - N(R)| = \beta$. Then

- (1) If |R| is odd, then $T_{\overline{N(R)}}$ is the disjoint union of $\frac{\beta}{2\alpha}$ complete bipartite graphs $K_{\alpha,\alpha}$.
- (2) If |R| is even, then $T_{\overline{N(R)}}$ is the disjoint union of the complete graph K_{α} and $\frac{\beta-\alpha}{2\alpha}$ complete bipartite graphs $K_{\alpha,\alpha}$.

Theorem 4.3. [1] Let $R = \mathbb{Z}_n$, $|N(R)| = \alpha$ and $|R - N(R)| = \beta$. Then

- (1) If |R| is odd, then $T(\Gamma_N(R))$ is the disjoint union of the complete graph K_{α} and $\frac{\beta}{2\alpha}$ complete bipartite graphs $K_{\alpha,\alpha}$.
- (2) If |R| is even, then $T(\Gamma_N(R))$ is the disjoint union of two complete graphs K_{α} and $\frac{\beta-\alpha}{2\alpha}$ complete bipartite graphs $K_{\alpha,\alpha}$.

FIGURE 1. $T(\Gamma(Z_{16}))$

Theorem 4.4. For $R = \mathbb{Z}_n$, let x be any vertex of $T(\Gamma_N(R))$. Then

$$deg(x) = \begin{cases} \alpha & \text{if } x \in R - N(R) \text{ such that } 2x \not\in N(R) \\ \alpha - 1 & \text{if } x \in N(R) \text{ or } x \in R - N(R) \text{ such that } 2x \in N(R) \end{cases}$$

Proof. From Theorem 4.3, we have

$$T(\Gamma_N(R)) = \begin{cases} K_\alpha \cup (\frac{\beta - \alpha}{2\alpha}) K_{\alpha,\alpha} \cup K_\alpha, & \text{if } |R| \text{ is even} \\ K_\alpha \cup (\frac{\beta}{2\alpha}) K_{\alpha,\alpha}, & \text{if } |R| \text{ is odd} \end{cases},$$

where the unions are disjoint.

Let $x \in T(\Gamma_N(R))$. Clearly, two cases arise:

Case 1: |R| is odd. If $x \in K_{\alpha}$, then $deg(x) = \alpha - 1$. If $x \in K_{\alpha,\alpha}$, then $deg(x) = \alpha$.

Case 2: |R| is even. If $x \in K_{\alpha}$, then $deg(x) = \alpha - 1$. If $x \in K_{\alpha,\alpha}$, then $deg(x) = \alpha$. Since $x \in K_{\alpha}$, $\forall x \in T_{N(R)}$ or $\forall x \in R - N(R)$ such that $2x \in N(R)$ and since $x \in K_{\alpha,\alpha} \ \forall \ x \in R - N(R)$ such that $2x \notin N(R)$, therefore

$$deg(x) = \begin{cases} \alpha & \text{if } x \in R - N(R) \text{ such that } 2x \not\in N(R) \\ \alpha - 1 & \text{if } x \in N(R) \text{ or } x \in R - N(R) \text{ such that } 2x \in N(R) \end{cases}$$

Theorem 4.5. The number of edges of $T(\Gamma_N(\mathbb{Z}_n))$ are

$$\begin{cases} \frac{\alpha(\alpha+\beta-1)}{2} & \text{if } n \text{ is odd} \\ \frac{\alpha(\alpha+\beta-2)}{2} & \text{if } n \text{ is even} \end{cases}.$$

Proof. Let n be odd. By Theorem 4.2, $T(\Gamma_N(\mathbb{Z}_n))$ is the disjoint union of 1 K_α and $\frac{\beta}{2\alpha}$ $K_{\alpha,\alpha}$'s. Therefore, by the Sum of Degrees of Vertices Theorem, $\alpha(\alpha-1)+\alpha\beta=2|E|$, where |E| denotes the number of edges, $\Rightarrow |E|=\frac{\alpha(\alpha+\beta-1)}{2}$.

Next, let n be even. Then $T(\Gamma_N(\mathbb{Z}_n))$ is the disjoint union of 2 K_{α} 's and $\frac{\beta-\alpha}{2\alpha}$ $K_{\alpha,\alpha}$'s. Therefore, $\alpha(\alpha-1)+\alpha(\alpha-1)+\alpha(\beta-\alpha)=2|E|\Rightarrow |E|=\frac{\alpha(\alpha+\beta-2)}{2}$. \square

Theorem 4.6. The graph $T(\Gamma_N(\mathbb{Z}_n))$ is non-Eulerian $\forall n \in \mathbb{N}$.

Proof. From Theorem 4.4, for any $x \in T(\Gamma_N(\mathbb{Z}_n))$,

$$deg(x) = \begin{cases} \alpha & \text{if } x \in R - N(R) \text{ such that } 2x \not\in N(R) \\ \alpha - 1 & \text{if } x \in N(R) \text{ or } x \in R - N(R) \text{ such that } 2x \in N(R) \end{cases}.$$

So the graph $T(\Gamma_N(\mathbb{Z}_n))$ contains vertices of degree α as well as $\alpha-1$, which clearly have different parities. So the degree of each vertex of $T(\Gamma_N(\mathbb{Z}_n))$ is not even and therefore $T(\Gamma_N(\mathbb{Z}_n))$ is not an Eulerian graph.

Theorem 4.7. For any $m_1, m_2 \in \mathbb{Z}_n - N(\mathbb{Z}_n)$, m_1 is adjacent to m_2 if and only if every element of the coset $m_1 + N(\mathbb{Z}_n)$ is adjacent to every element of the coset $m_2 + N(\mathbb{Z}_n)$.

Proof. that m_1 is adjacent to m_2 . Then $m_1+m_2\in N(\mathbb{Z}_n)$ and thus $m_2=z_i-m_1$, $z_i\in N(\mathbb{Z}_n)$. The elements of the coset $m_1+N(\mathbb{Z}_n)$ are adjacent to the elements of the coset $(z_i-m_1)+N(\mathbb{Z}_n)$ since for some $n_1,n_2\in N(\mathbb{Z}_n)$, $(m_1+n_1)+(z_i-m_1+n_2)=z_i+(n_1+n_2)\in N(\mathbb{Z}_n)$. Conversely, let each element of the coset $m_1+N(\mathbb{Z}_n)$ be adjacent to each element of $m_2+N(\mathbb{Z}_n)$. Then for some $n_1,n_2\in N(\mathbb{Z}_n)$, $(m_1+n_1)+(m_2+n_2)\in N(\mathbb{Z}_n)\Rightarrow (m_1+m_2)+(n_1+n_2)\in N(\mathbb{Z}_n)$ and thus $m_2=z_i-m_1$,

Theorem 4.8. Let R be a non-reduced commutative ring with unity. Then the following conditions hold:

(1) Let G be an induced subgraph of $T_{\overline{N(R)}}$ and let $m_1, m_2 \in G$ such that $m_1 \neq m_2$ and let m_1 and m_2 be connected by a path in G. Then $diam(T_{\overline{N(R)}}) \leq 2$.

(2) Let $R - N(R) \neq \phi$. If $T_{\overline{N(R)}}$ is connected and contains a cycle, then $gr(T_{\overline{N(R)}}) = 3$ or 4.

Proof.

- (1) If m_1 is adjacent to m_2 , then $d(m_1, m_2) = 1$. Let $d(m_1, m_2) > 1$ and let $m_1 a_1 a_2 m_2$ be a path in G between m_1 and m_2 . Then $m_1 + a_1, a_1 + a_2, a_2 + m_2 \in N(R)$. Now, $m_1 + m_2 = (m_1 + a_1) (a_1 + a_2) (a_2 + m_2) \in N(R)$, since N(R) is an ideal of R. Hence, m_1 is connected to m_2 by a path of length 2. Thus, $diam(T_{\overline{N(R)}}) \leq 2$.
- (2) The result easily follows from Theorem 4.2 since $gr(K_{\alpha})=3$ for $\alpha\geq 3$ and $gr(K_{\alpha,\alpha})=4$.

Theorem 4.9. Let \mathbb{Z}_n be non-reduced and $N(\mathbb{Z}_n)$ be the set of all the nil elements of \mathbb{Z}_n . Then $diam(T(\Gamma_N(\mathbb{Z}_n))) = 2$.

Proof. Since the diameter of any disconnected graph is equal to the maximum diameter of its connected components, so using Theorem 4.3, since $T(\Gamma_N(\mathbb{Z}_n))$ is the disjoint union of complete and complete bipartite graphs, so $diam(T(\Gamma_N(\mathbb{Z}_n)))$ = $diam(K_{\alpha,\alpha})$. Also, \mathbb{Z}_n , being non-reduced, $|N(\mathbb{Z}_n)| = \alpha \geq 2$. Consequently, $diam(T(\Gamma_N(\mathbb{Z}_n))) = 2$.

Theorem 4.10. Let $f: R_1 \longrightarrow R_2$ be a homomorphism. For any $m_1, m'_1 \in R_1$, if the coset $m_1+N(R_1)$ is adjacent to each element of $m'_1+N(R_1)$, then $f(m_1)+N(R_2)$ is adjacent to each element of $f(m'_1)+N(R_2)$.

Proof. Let $m_1+N(R_1)$ be adjacent to $m_1'+N(R_1)$. Then for some $r_1,r_1'\in N(R_1)$, $(m_1+r_1)+(m_1'+r_1')\in N(R_1)\Rightarrow (m_1+m_1')+(r_1+r_1')\in N(R_1)\Rightarrow m_1+m_1'\in N(R_1)$. f, being a homomorphism, preserves adjacency and, thus, $f(m_1)$ is adjacent to $f(m_1')$ in R_2 . That is, $f(m_1)+f(m_1')\in N(R_2)$. So for some $n_1,n_1'\in N(R_2)$, $(f(m_1)+n_1)+(f(m_1')+n_1')\in N(R_2)\Rightarrow f(m_1)+N(R_2)$ is adjacent to each element of $f(m_1')+N(R_2)$.

5. Some properties associated to $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, the complement of $T(\Gamma_N(\mathbb{Z}_n))$.

Being a complement of $T(\Gamma_N(\mathbb{Z}_n))$, the graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ contains all the elements of \mathbb{Z}_n as vertices and any two distinct vertices x and y of $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ are adjacent if and only if $x + y \in \mathbb{Z}_n - N(\mathbb{Z}_n)$.

Theorem 5.1. Let $R = \mathbb{Z}_n$. For $x \in N(R)$ and $y \in R - N(R)$ such that $2y \in N(R)$, $\{x + N(R)\} \cup \{y + N(R)\}$ forms a complete bipartite graph in $\overline{T(\Gamma_N(R))}$.

Proof. In the graph $\overline{T(\Gamma_N(R))}$, each element of the coset x+N(R) is adjacent to each element of the coset y+N(R) since $(x+n_1)+(y+n_2)=(x+y)+(n_1+n_2)\in R-N(R)$, for some $n_1,n_2\in N(R)$, since $x+y\in R-N(R)$. Also the elements of the coset x+N(R) are not adjacent to each other because for some $n_1,n_2\in N(R)$, $(x+n_1)+(x+n_2)=2x+(n_1+n_2)\in N(R)$. Also since $2y+(n_1+n_2))\in N(R)$, for some $n_1,n_2\in N(R)$, so the elements of the coset y+N(R) are not adjacent to each other. Consequently, $\{x+N(R)\}\cup\{y+N(R)\}$ forms a complete bipartite graph in $\overline{T(\Gamma_N(R))}$.

Theorem 5.2. Let $R = \mathbb{Z}_n$ and x be any vertex of $\overline{T(\Gamma_N(R))}$. Then

$$deg(x) = \begin{cases} n - \alpha & \text{if } x \in N(R) \text{ or } x \in R - N(R) \text{ such that } 2x \in N(R) \\ n - \alpha - 1 & \text{if } x \in R - N(R) \text{ such that } 2x \in R - N(R) \end{cases}$$

The proof follows directly from Theorem 4.4.

Theorem 5.3. $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is never Eulerian.

The proof is straightforward since the degrees $n-\alpha$ and $n-\alpha-1$ are of opposite parities.

Theorem 5.4. Let $R = \mathbb{Z}_n$. Then the following statements hold:

- (a) If R is a field such that |R| > 2, then $T(\Gamma_N(R))$ contains an isolated vertex.
- (b) $T(\Gamma_N(R))$ contains no vertex of degree n-1.
- (c) $\overline{T(\Gamma_N(R))}$ contains no isolated vertex.
- (d) $\overline{T(\Gamma_N(R))}$ contains a vertex of degree n-1 if R is a field.

Proof.

- (a) Since R is a field, so $N(R) = \{0\}$. Thus for each $x \in R$, \exists a unique $y \in R$ such that $x + y = 0 \in N(R)$, i.e. x = -y. This gives us $(\frac{n-1}{2})$ pairs of complete graphs K_2 and an isolated vertex 0.
- (b) For any $R = \mathbb{Z}_n$, since $1, (n-1) \in R N(R)$, so $|N(R)| = \alpha \le n-2$. For any $x \in N(R)$ or $x \in R N(R)$ such that $2x \in N(R)$, by Theorem 4.4, $deg(x) = \alpha 1 \le n-3$. For any $x \in R N(R)$ such that $2x \in R N(R)$, $deg(x) = \alpha \le n-2$. So in either case, the vertices of $T(\Gamma_N(R))$ have degree less than n-1.

- (c) Let $\overline{T(\Gamma_N(R))}$ contain an isolated vertex x. Then in $T(\Gamma_N(R))$, deg(x) = n-1. But that contradicts (b). Hence $\overline{T(\Gamma_N(R))}$ contains no isolated vertex.
- (d) Let $R = \mathbb{Z}_n$ be a field. By result (a), since $T(\Gamma_N(R))$ contains an isolated vertex, say x, thus, in $\overline{T(\Gamma_N(R))}$, deg(x) = n 1. Hence the result follows. \square

Theorem 5.5. For any n > 1 and non-reduced \mathbb{Z}_n , $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is always connected.

Proof. $N(\mathbb{Z}_n)$, being an ideal of \mathbb{Z}_n , all the vertices of $N(\mathbb{Z}_n)$ are adjacent to each other in $T(\Gamma_N(\mathbb{Z}_n))$ and therefore in the corresponding graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$, each $x_i \in N(\mathbb{Z}_n)$ is adjacent to each $y_i \in \mathbb{Z}_n - N(\mathbb{Z}_n)$. So the graph $\overline{T(\Gamma_N(\mathbb{Z}_n))}$ is connected.

REFERENCES

- [1] A. MISHRA, K. PATRA: Intersection Graph of γ -sets in the total graph of \mathbb{Z}_n with respect to nil ideal, Communicated.
- [2] A.-H. LI, Q.-S. LI: A kind of Graph Structure on Von-Neumann Regular Rings, International Journal of Algebra, 4 (2010), 291–302.
- [3] D. F. Anderson, A. Badawi: *The total graph of a commutative ring*, J. Algebra, 7 (2008), 2706–2719.
- [4] D. F. Anderson, A. Badawi: The total graph of a commutative ring without the zero element, J. Algebra Appl., 11(4) (2012), art.id.1250074.
- [5] D. . ANDERSON, A. BADAWI: *The generalized total graph of a commutative ring*, J. Algebra App., **12** (2013), art.id.1250212.
- [6] P. W. CHEN: A kind of graph structure of rings, Algebra Colloq. 10(2) (2003), 229–238.
- [7] S. AKBARI, D. KIANI, F. MOHAMMADI, S. MORADI: The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra, 213 (2009), 2224–2228.
- [8] T. ASIR, T.T. CHELVAM: On the total graph and its complement of a commutative ring, Comm. Algebra, 41 (2013), 3820–3835.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF GAUHATI

Email address: mishraarijit1012@gmail.com

DEPARTMENT OF MATHEMATICS

University of Gauhati

Email address: kuntalapatra@gmail.com