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APPROXIMATE SOLUTION OF FOURTH ORDER DIFFERENTIAL EQUATION

Minakshi Mohanty, Saumya Ranjan Jena1, and Satya Kumar Mishra

ABSTRACT. The present papers adopts five point ILMM (Implicit Linear Multi-
step Method) by interpolation and collocation on the basic of power series and
its derivatives respectively for approximate solution of fourth order ordinary dif-
ferential equations. The objective of the method is to obtain the zero stability,
consistency, convergence and order of the method by Taylor’s series approxima-
tion. Comparison of the exact solutions with an approximate solutions along with
ODE-45 for three numerical tests are obtained .

1. INTRODUCTION

This study has a lot of applications in Sciences and engineering especially in
control theory, hence the study of the methods of solution is of great interest
to researchers. Solution of higher order ODEs with given initial conditions by
the method of reduction to a system of first order differential equations and its
integration needs a lot of human effort and computational time [1,3,4]. A general
fourth order ODE of initial value problems is given by

(1.1) yiv = f(x, y, y′, y′′, y′′′),

with, y(a) = γ0, y
′(a) = γ1, y

′′(a) = γ2, y
′′′(a) = γ3; a ≤ x ≤ b.
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The conventional method of solving equation (1.1) is first reduce it to a sys-
tem of first order differential equation. Direct method of solution of equation
(1.1) using implicit linear multistep method has found to be more efficient in
terms of speed and accuracy than the method of reduction to a system of first
order ordinary differential equation [5, 6]. Implicit linear multistep method is
selected because it has better stability properties than the explicit methods. Di-
rect method of solving higher order ordinary differential equations by continuous
collocation multistep methods have been extensively discussed in [7]. Several
continuous LMM [8, 9] have developed for the direct solution of equation (1.1).
The methods developed by some of these authors were implemented in predictor
-corrector mode while those of the others were combined with additional methods
obtained from continuous k-step LMMs to solve fourth orders ODES directly. Al-
though the predictor corrector methods yield good results, the major drawback of
the method is apart from the inherent computational burden, the predictors which
were developed have reducing order of accuracy .The other methods such as block
method, differential transformation method, numerical integration of real and an-
alytic function [2,12–28] are efficient to develop the present method. In this paper
we have proposed a five point fully Implicit Linear Multistep Method (ILLM) by
interpolation and collocation on the basis of power series for solution of fourth
order differential equations to avoid the above described difficulties. Our results
are compared with results of ODE-45 and contribute better results. This paper is
organized as follows: Section-1 is an Introduction, Section-2 contains derivation
of the method, The method is analyzed in Section-3. Stability and Convergence
condition are developed in Section-4. Numerical verifications and conclusions are
reported in Section-5 and Section-6 respectively.

2. DERIVATION OF THE METHOD

According to [10], k-step, Linear Multistep Method(LLM) is given by

(2.1)
k∑

j=0

αjyn+j = hn
k∑

j=0

βjfn+j,

where αj, βj are unique and α0 + β0 6= 0, αk = 1, n is the order of the differential
equation. Using interpolation and collocation equation (2.1) can be transformed
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to a continuous LMM of the form

Y (x) =
k∑

j=0

αjyn+j + hn
k∑

j=0

βjfn+j,

where αj, βj are continuous differentiable functions of x . The error estimation in
continuous collation method is better than the discrete methods used in reducing
higher order ODEs to first order differential equations. The approximate solution
y(x) of equation (1.1) is derived by approximating the polynomial of degree m

given by

(2.2) y(x) ≈ Y (x) =
m∑
j=0

aj(x− xn)j, xn ≤ x ≤ xn+k, a0 6=0 .

Differentiation of equation (2.2) up to order four gives

(2.3) Y (iv)(x) =
m∑
j=4

j(j − 1)(j − 2)(j − 3)aj(x− xn)(j−4).

Now interpolating x = xn, xn+1, xn+2, . . . , xn+k−1 in equation (2.2), we have the
following results

Y (xn) = yn = a0

Y (xn+1) = yn+1 = a0 + a1h+ a2h
2 + a3h

3 + ...+ amh
m

...

Y (xn+k−1) = yn+k−1 = a0 + (k − 1)a1h+ (k − 1)2a2h
2 + · · ·+ (k − 1)mamh

m.

(2.4)

Collocating equation (2.3) at x = xn, xn+1, xn+2, . . . , xn+k we have

(2.5) fn+k = Y (iv)(xn+k) =
m∑
j=4

j(j − 1)(j − 2)(j − 3)aj(xn+k − xn)(j−4).

In particular we consider equation (2.4) and (2.5) for k = 5, m = 10 and form the
matrix for our proposed method to evaluate the required continuous coefficients.
By matrix inversion method the coefficients are obtained as functions of yn and
fn. Putting them in equation (2.2) and substitution at x = xn+5 gives the discrete
solution as

yn+5 = yn − 5yn+1 + 10yn+2 − 10yn+3 + 5yn+4

+
h4

720
[fn − 125fn+1 − 350fn+2 + 350fn+3 + 125fn+4 − fn+5].

(2.6)
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3. ANALYSIS OF THE METHOD

Equation (2.6) represents a particular case of standard LMM as

(3.1)
5∑

j=0

αjyn+j = h4
5∑

j=0

βjfn+j.

In order to find the error constant and order of this method we write equation
(3.1) in difference operator form

(3.2) L(y(x), h) =
5∑

j=0

(αjy(xn + jh)− h4βjf(xn + jh)),

where y(x) is assumed to be a continuously differentiable function of higher order.
Using Taylor’s series expansion, the difference operator (3.2) can be expressed as

L(y(x), h) = γ0y(x) + γ1hy
′(x) + γ2h

2y′′(x) + γ3h
3y′′′(x) + ...+ γp+2h

p+2yp+2(x).

Using [10] the order of the method is p if γ0 = γ1 = γ2 = · · · = γp = γp+1 = γp+2 =

0 and γp+3 6= 0. In the present method p = 8 and the error constant is γ11 = 1
3024

.

Zero stability and convergence
The first characteristic polynomial from equation (2.6) is considered for analysing

the zero stability, i.e., r5 − 5r4 + 10r3 − 10r2 + 5r − 1 = 0 which gives r = 1 of
multiplicity not exceeding the value of k . Hence the method is zero stable and
since the order p > 1 the method is consistent. As per [11] the convergence of the
method is also established.

4. NUMERICAL EXAMPLES

Application of the method in fourth order IVPs has been carried on by calculat-
ing yn+1, yn+2, yn+3, yn+4 by Taylor’s series expansion and their first, second, third
and fourth derivatives up to p = 8. Higher order derivatives are obtained by using
partial differentiation. Two examples are considered for two IVPs to implement
the ILMM and the results have produced marginal errors as compared with the
exact solution.

Example 1. y(iv) = 16y + 128 cosh 2x, y(0) = 1, y′(0) = 24, y′′(0) = 20, y′′′(0) =

−160, 0 ≤ x ≤ 1, h = 0.1. The exact solution is y = −3
2
e2x+ 5

2
e−2x+2x(e2x− e−2x)+

16 sin 2x.
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TABLE 1. Computational data of Example-1

x Exact Solution Approx. Solution Error in ODE45 Absolute Error
0.1 3.473966439192117 3.473966439192127 2.070193e−06 1.0214051× 10−14

0.2 5.997358406207853 5.997358406207840 2.561710e−06 1.3322676× 10−14

0.3 8.437114762547758 8.437114762547504 2.808199e−06 2.072751× 10−14

0.4 10.683678043446914 10.683678043447408 2.863389e−06 4.938272× 10−13

0.5 12.656214004453984 12.656214004452369 2.794668e−06 1.614708× 10−12

0.6 14.308142774140519 14.308142774139625 2.684461e−06 8.935074× 10−13

0.7 15.632932343466662 15.632932343464278 2.631204e−06 2.38387× 10−12

0.8 16.670187757298784 16.670187757299818 2.750214e−06 1.033839× 10−12

0.9 17.512165555130117 17.512165555138381 3.174765e−06 8.263612× 10−12

1.0 18.310954520294541 18.310954520353818 8.510556e−07 5.927702× 10−11

TABLE 2. Computational data of Example-2

x Exact Solution Approx. Solution Error in ODE45 Absolute Error
0.1 11.710717749892432 11.710717749635059 1.425637e−05 2.5737× 10−10

0.2 11.501533206561351 11.501533204623515 5.149911e−05 1.93783× 10−9

0.3 11.467221263557018 11.467221291768432 1.023663e−06 2.8211413× 10−8

0.4 11.566935513414810 11.566935347735537 6.1683250e−06 1.656792× 10−7

0.5 11.774738297187065 11.774738912461428 1.064189e−07 6.152743× 10−7

0.6 12.073845248837996 12.073843502291169 9.623654e−07 1.746546× 10−6

0.7 12.453123902379366 12.453128073933891 6.064467e−07 4.171554× 10−6

0.8 12.904960459474843 12.904951606536839 1.000908e−07 8.85293× 10−6

0.9 13.423957295241237 13.423974557104920 5.682060e−07 1.72618× 10−5

1.0 14.006135152856297 14.006260343085421 1.357815e−03 1.251902× 10−4

Example 2. y(iv) = 26y′ − 25y + 50(x + 1)2, y(0) = 12.16, y′(0) = −6, y′′(0) =

34, y′′′(0) = −130, h = 0.1, 0 ≤ x ≤ 1. The exact solution is y = e−5x + 5e−x + 2x2 +

4x+ 154
25
.

5. CONCLUSIONS

Application of proposed method to selected numerical problems with non over-
lapping intervals obtains higher degree of accuracy when compared with the re-
sults of exact solutions as well as solutions obtained by ODE45. Since this method
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is convergent, consistent and stable, computation in larger intervals are also pos-
sible .As our numerical tests provide better results than ODE 45 (Runge-kutta
method), it implies the present method contributes a better agreement towards
the approximate solution than reduction method.
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