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DIHEDRAL GROUP AS GENERALIZED CONJUGACY CLASS GRAPH AND ITS
RELEVANT MATRICES

SITI NUR SHAFILA CHE KAMARUZAMAN AND ATHIRAH NAWAWI1

ABSTRACT. In this paper, the generalized conjugacy class graph for dihedral group
of order 2n is constructed to show the relation between the orbits and their car-
dinalities. The orbits of the set denoted by Ω must be computed first by using
conjugation action. The elements in each orbit are all pairs of commuting ele-
ments in the form of (a, b) where a and b are elements of the dihedral group and
the lowest common multiple of the order of the elements has to be two. Also here,
some relevant matrices named as adjacency, incident and Laplacian matrices that
can represent the graph are also constructed. Eigenvalues from those matrices are
computed to give information on graph energies either energy, denoted by ε(ΓG)

or Laplacian energy, denoted by LE(ΓG). Interestingly, we have found that the
values for both ε(ΓG) and LE(ΓG) are equal.

1. INTRODUCTION

Group theory is a branch of abstract algebra developed to study and manipulate
abstract concepts involving symmetry. Group theory studies algebraic structures
such as groups, rings, fields and vector spaces. One of the most important alge-
braic structure is groups. Groups are widely used in many branches of physical
sciences. This happened because groups are often form when an operation like
multiplication or composition is applied to a set or system. Many types of groups

1corresponding author
2020 Mathematics Subject Classification. 05C25.
Key words and phrases. Dihedral group, Laplacian matrix, Incidence matrix, Adjacency matrix,

Generalized conjugacy class graph, Graph Energy.
59



60 S.N.S.C. KAMARUZAMAN AND A. NAWAWI

are found such as group of matrices, dihedral group, symmetry group, cyclic group
and others. Interestingly, graph is used to show the behaviour or properties of
some groups.

Graph theory begins with very simple geometric ideas and has many powerful
applications to solve real world problem. In chemistry, graph theory is used to
solve molecular problems and the molecular structure can be represented as a
graph where the atoms are the vertices and the edges represent the bond between
the atoms. Normally, a graph G = (V,E) consists of two sets V and E. The
elements of V are called vertices(or nodes). Then, the elements of E are called
edges. The sets V and E are the vertex set and edge set of G and are often denoted
by V (G) and E(G), respectively (see [4]).

There are vast amount of studies have been done in order to show the relation
between group theory and graph theory. For example, a graph related to conju-
gacy classes is introduced by Bertram et al.(1990) (see [1]). In 2013, Omer et al.
(see [7]) constructed the conjugacy class graph using the probability of metacyclic
2-groups. Furthermore, Omer et al.(2015) (see [8]) introduced generalized conju-
gacy class graph where the vertices of the graphs are the non-central orbits under
group action on a set and the edges are formed if the cardinalities of the orbits are
not coprime. Recently, Zaid et al. (2018) (see [10]) constructed generalized con-
jugacy class graph based on the orbits of three nonabelian metabelian groups of
order 12. The resulting graphs are complete graphs K2, K3 and K6. They further
used the orbits to find the probability that an element of the group fixes the set
containing all pairs of commuting elements of size two.

The theory of graph energy has been used by chemists in approximating the en-
ergies related to π electron orbitals in conjugated hydrocarbon. Besides its chem-
ical applications, there are a few applications in other field of science such as in
graph entropies, modelling of properties of proteins and in the search for the ge-
netic causes of Alzheimer disease. In mathematics, the energy of a graph of a
group is basically the sum of the absolute values of the eigenvalues. Nowadays,
many researchers have carried out their investigation on the energies of graphs
related to adjacency matrix and Laplacian matrix. The concept of energy and
Laplacian energy have been considered in Gutman and Bapat (see [3,4]).

In this study, generalized conjugacy class graph of dihedral group of order 2n,
where 6 ≤ n ≤ 12 is constructed to show the relation between the orbits and their
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cardinalities. Then, from the graphs formed, it can be represented as adjacency,
incidence and Laplacian matrices.

2. PRELIMINARIES

Some basic definitions and steps used in this research are given in this section. In
this research, there are six steps as follows:

STEP 1: Constructing the Cayley table to extract information on the commutativity
property.

STEP 2: Determine the elements in Ω set that can be defined as below:

Ω = {(a, b) ∈ D2n ×D2n | ab = ba, a 6= b, lcm(| a |, | b |) = 2} .

STEP 3: Identifying the orbits by using the concept of group action.

Definition 2.1 (Group Acts on Set (see [9])). Let G be a group and X be a set. G
acts on X if there is a function:

∗ : G×X −→ X,

such that

i. (g ∗ h) ∗ x = g ∗ (h ∗ x) , for all g , h ∈ G, x ∈ X,
ii. there exists e ∈ G such that e ∗ x = x for all x ∈ X.

Definition 2.2 (Orbit (see [2])). Suppose G is a finite group that act on a set Ω and
ω ∈ Ω. The orbit of ω, denoted by

O(ω) = {g · ω | g ∈ G,ω ∈ Ω} .

If the group action is conjugation action, the orbit is written as

O(ω) =
{
g · ω · g−1|g ∈ G,ω ∈ Ω

}
.

Hence, O(ω) is called the conjugacy classes of ω in G. We denote by K as the number
of conjugacy classes in a group. Orbit of point ω in set Ω is the set of element of Ω to
which ω can be moved by element in G.

STEP 4: Constructing the Generalized Conjugacy Class Graph, ΓΩc
G .
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Definition 2.3 (Generalized Conjugacy Classes Graph (see [8])). Let G be a finite
non abelian group and let Ω be a set of G. If G acts on the set Ω, the vertices of
generalized conjugacy class graph are K(Ω) − |A|, where K(Ω) is the number of
conjugacy class under group action on Ω and A = {ω ∈ Ω, ωg = gω, g ∈ G}, the
central orbits (or sometimes called the central conjugacy classes). Two vertices of ΓΩc

G

are connected by an edge if their cardinalities are not set-wise relatively prime.

STEP 5: Finding the matrices of the Generalized Conjugacy Class Graph.

Definition 2.4 (Adjacency Matrix (see [6])). Let G be a graph of order n and size
m, where V (G) = {v1, v2, .., vn} and E(G) = {e1, e2, . . . , em}. The adjacency matrix
of G is n× n matrix A(G) = [aij], where

[aij] =

 1, if vivj ∈ E(G),

0, if there is no edge between vi and vj,

where i is a row and j is a column.

Definition 2.5 (Incidence Matrix (see [6])). Let G be a graph of order n and size m,
where V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}. The incident matrix of
G is n×m matrix I(G) = [bij], where

[bij] =

1, if vi is incident with ej,

0, if there is no edge incident on vi ,

where i is a row and j is a column.

Definition 2.6 (Laplacian Matrix (see [5])). Let G = (V,E) be a finite simple
graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}.
Denoting the degree of vertex i by dG(i), let

D(G) = diag(dG(1), dG(2) . . . ., dG(n))

be the diagonal matrix in which its non-zero entries are the degree of vertices in G.
The Laplacian matrix L(G) of G is defined by L(G)=D(G)-A(G), where A(G) is
the adjacency matrix of G.

STEP 6: Computing some information from the matrices such as eigenvalues and
energies.
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Definition 2.7 (Energy (see [4])). The energy of the graph ΓG is defined as follows:

ε(ΓG) =
n∑

i=1

| λi |,

where λ1, . . . , λn are the eigenvalues of the adjacency matrix of ΓG.

Definition 2.8 (Laplacian Energy (see [3])). Let G be a graph with n vertices and m
edges. Let µ1, µ2 . . . µn be the eigenvalues of the Laplacian matrix of G. The Laplacian
energy is defined as follows:

LE(ΓG) =
n∑

i=1

| µi −
2m

n
| .

3. MAIN RESULTS

We assume G = D2n presented by D2n = 〈a, b | an = b2 = 1, bab = a−1〉, the di-
hedral group of order 2n, to be the focused group for this study. Here, we consider
n = 6, 7, 8, 9, 10, 11, 12 in order to establish more general observations.

Earlier in this section, we show in details of two examples of the calculation
of Oi, the orbits of generalized conjugacy class graph for D22 and D24. Then, this
discussion is followed by the construction of the generalized conjugacy class graph,
ΓΩc
G , which depends on the number of different orbits obtained. Next, we represent

the resulting graphs into relevant matrices named as adjacency, incidence and
Laplacian matrices. In the end of this section, we use the information on the
eigenvalues of some matrices constructed, to find graph energies denoted by ε(ΓG)

and LE(ΓG).

3.1. Calculation of Orbits of Generalized Conjugacy Class Graph.

In this subsection, we display Table 1 which gives information on the total num-
ber of orbits of generalized conjugacy class graph, central and non-central orbits.
The required calculations were carried out by hand and also with the help of
MAPLE. Two examples of the calculations will follow after Table 1.



64 S.N.S.C. KAMARUZAMAN AND A. NAWAWI

Table 1: The Number of Orbits of Generalized Conju-
gacy Class Graph

Dihedral
Group, D2n

Number of
Orbits, K(Ω)

Number of Central
Orbits

Number of
Non-central Orbits

D12 12 2 10

D14 2 0 2

D16 12 2 10

D18 2 0 2

D20 12 2 10

D22 2 0 2

D24 12 2 10

Now, calculation in details is shown below for D22.

Example 1. Dihedral group of order 22, D22.
Let G be the dihedral group of order 22, D22 = 〈a, b | a11 = b2 = 1, bab = a−1〉 and

Ω is a set where

Ω = {(x, y) ∈ D22 ×D22 | xy = yx, x 6= y, lcm(| x |, | y |) = 2}.

Based on the Cayley table, the elements of the set Ω in D22 is found as follows:

Ω = {(1, b), (1, ab), (1, a2b), (1, a3b), (1, a4b), (1, a5b), (1, a6b), (1, a7b), (1, a8b),

(1, a9b), (1, a10b), (b, 1), (ab, 1), (a2b, 1), (a3b, 1), (a4b, 1), (a5b, 1), (a6b, 1),

(a7b, 1), (a8b, 1), (a9b, 1), (a10b, 1)}

and giving the number of elements in the set Ω, | Ω |= 22. Next, the orbits of the set
Ω are calculated by using Definition 2.2 as follows:

When ω = (1, b), then O(1, b) = {g · (1, b) · g−1 | g ∈ D22}. Substituting g with all
elements of D22, the following conditions are obtained:

if g = 1 : (1 · (1, b) · 1) = (1, b) · 1 = (1, b) ;
if g = a : (a · (1, b) · a10) = (a, ab) · a10 = (1, a2b) ;
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if g = a2 : (a2 · (1, b) · a9) = (a2, a2b) · a9 = (1, a4b) ;
if g = a3 : (a3 · (1, b) · a8) = (a3, a3b) · a8 = (1, a6b) ;
if g = a4 : (a4 · (1, b) · a7) = (a4, a4b) · a7 = (1, a8b) ;
if g = a5 : (a5 · (1, b) · a6) = (a5, a5b) · a6 = (1, a10b) ;
if g = a6 : (a6 · (1, b) · a5) = (a6, a6b) · a5 = (1, ab) ;
if g = a7 : (a7 · (1, b) · a4) = (a7, a7b) · a4 = (1, a3b) ;
if g = a8 : (a8 · (1, b) · a3) = (a8, a8b) · a3 = (1, a5b) ;
if g = a9 : (a9 · (1, b) · a2) = (a9, a9b) · a2 = (1, a7b) ;
if g = a10 : (a10 · (1, b) · a) = (a10, a10b) · a = (1, a9b) ;
if g = b : (b · (1, b) · b) = (b, 1) · b = (1, b) ;
if g = ab : (ab · (1, b) · ab) = (ab, a) · ab = (1, a2b) ;
if g = a2b : (a2b · (1, b) · a2b) = (a2b, a2) · a2b = (1, a4b) ;
if g = a3b : (a3b · (1, b) · a3b) = (a3b, a3) · a3b = (1, a6b) ;
if g = a4b : (a4b · (1, b) · a4b) = (a4b, a4) · a4b = (1, a8b) ;
if g = a5b : (a5b · (1, b) · a5b) = (a5b, a5) · a5b = (1, a10b) ;
if g = a6b : (a6b · (1, b) · a6b) = (a6b, a6) · a6b = (1, ab) ;
if g = a7b : (a7b · (1, b) · a7b) = (a7b, a7) · a7b = (1, a3b) ;
if g = a8b : (a8b · (1, b) · a8b) = (a8b, a8) · a8b = (1, a5b) ;
if g = a9b : (a9b · (1, b) · a9b) = (a9b, a9) · a9b = (1, a7b) ; and
if g = a10b : (a10b · (1, b) · a10b) = (a10b, a10) · a10b = (1, a9b)·

Therefore, we have found O(1, b), the orbit for (1, b) as follows:

1) O(1, b) = {(1, b), (1, ab), (1, a2b), (1, a3b), (1, a4b), (1, a5b), (1, a6b), (1, a7b), (1, a8b),

(1, a9b), (1, a10b)}.

This means the following:

O(1, b) = O(1, ab) = O(1, a2b) = O(1, a3b) = O(1, a4b) = O(1, a5b) = O(1, a6b)

= O(1, a7b) = O(1, a8b) = O(1, a9b) = O(1, a10b).

When ω = (b, 1), then O(b, 1) = {g · (b, 1) · g−1 | g ∈ D22}. Substituting g with all
elements of D22, the following conditions are obtained:

if g = 1 : (1 · (b, 1) · 1) = (b, 1) · 1 = (b, 1) ;
if g = a : (a · (b, 1) · a10) = (ab, a) · a10 = (a2b, 1) ;
if g = a2 : (a2 · (b, 1) · a9) = (a2b, a2) · a9 = (a4b, 1) ;
if g = a3 : (a3 · (b, 1) · a8) = (a3b, a3) · a8 = (a6b, 1) ;
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if g = a4 : (a4 · (b, 1) · a7) = (a4b, a4) · a7 = (a8b.1) ;
if g = a5 : (a5 · (b, 1) · a6) = (a5b, a5) · a6 = (a10b, 1) ;
if g = a6 : (a6 · (b, 1) · a5) = (a6b, a6) · a5 = (ab, 1) ;
if g = a7 : (a7 · (b, 1) · a4) = (a7b, a7) · a4 = (a3b, 1) ;
if g = a8 : (a8 · (b, 1) · a3) = (a8b, a8) · a3 = (a5b, 1) ;
if g = a9 : (a9 · (b, 1) · a2) = (a9b, a9) · a2 = (a7b, 1) ;
if g = a10 : (a10 · (b, 1) · a) = (a10b, a10) · a = (a9b, 1) ;
if g = b : (b · (b, 1) · b) = (1, b) · b = (b, 1) ;
if g = ab : (ab · (b, 1) · ab) = (a, ab) · ab = (a2b, 1) ;
if g = a2b : (a2b · (b, 1) · a2b) = (a2, a2b) · a2b = (a4b, 1) ;
if g = a3b : (a3b · (b, 1) · a3b) = (a3, a3b) · a3b = (a6b, 1) ;
if g = a4b : (a4b · (b, 1) · a4b) = (a4, a4b) · a4b = (a8b, 1) ;
if g = a5b : (a5b · (b, 1) · a5b) = (a5, a5b) · a5b = (a10b, 1) ;
if g = a6b : (a6b · (b, 1) · a6b) = (a6, a6b) · a6b = (ab, 1) ;
if g = a7b : (a7b · (b, 1) · a7b) = (a7, a7b) · a7b = (a3b, 1) ;
if g = a8b : (a8b · (b, 1) · a8b) = (a8, a8b) · a8b = (a5b, 1) ;
if g = a9b : (a9b · (b, 1) · a9b) = (a9, a9b) · a9b = (a7b, 1) ; and
if g = a10b : (a10b · (b, 1) · a10b) = (a10, a10b) · a10b = (a9b, 1)·

Therefore, we have found O(b, 1), the orbit for (b, 1) as follows:

2) O(b, 1) = {(b, 1), (ab, 1), (a2b, 1), (a3b, 1), (a4b, 1), (a5b, 1), (a6b, 1), (a7b, 1), (a8b, 1),

(a9b, 1), (a10b, 1)}

This means the following:

O(b, 1) = O(ab, 1) = O(a2b, 1) = O(a3b, 1) = O(a4b, 1) = O(a5b, 1) = O(a6b, 1)

= O(a7b, 1) = O(a8b, 1) = O(a9b, 1) = O(a10b, 1).

Based on above calculation we list all the orbits of the set Ω for D22 and relabel them
with Oi where i = 1, . . . , K(Ω) for convenience as follows:

O1 = O(1, b) = {(1, b), (1, ab), (1, a2b), (1, a3b), (1, a4b), (1, a5b), (1, a6b), (1, a7b),

(1, a8b), (1, a9b), (1, a10b)},

O2 = O(b, 1) = {(b, 1), (ab, 1), (a2b, 1), (a3b, 1), (a4b, 1), (a5b, 1), (a6b, 1), (a7b, 1),

(a8b, 1), (a9b, 1), (a10b, 1)}.
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According to Definition 2.2, the number of orbits in D22 is K(Ω) = 2.

Next, calculation in details for D24 is shown below where we notice a significant
difference in terms of the existence of central-orbits.

Example 2. Dihedral group of order 24, D24.
Let G be the dihedral group of order 24, D24 = 〈a, b | a12 = b2 = 1, bab = a−1〉, and

Ω is a set where

Ω = {(x, y) ∈ D24 ×D24 | xy = yx, x 6= y, lcm(| x |, | y |) = 2}.

Based on the Cayley table, the elements of the set Ω in D24 is found as follows:

Ω ={(1, a6), (1, b), (1, ab), (1, a2b), (1, a3b), (1, a4b), (1, a5b),

(1, a6b), (1, a7b), (1, a8b), (1, a9b), (1, a10b), (1, a11b),

(a6, 1), (a6, b), (a6, ab), (a6, a2b), (a6, a3b), (a6, a4b),

(a6, a5b), (a6, a6b), (a6, a7b), (a6, a8b), (a6, a9b),

(a6, a10b), (a6, a11b), (b, 1), (b, a6), (b, a6b), (ab, 1),

(ab, a6), (ab, a7b), (a2b, 1), (a2b, a6), (a2b, a8b), (a3b, 1),

(a3b, a6), (a3b, a9b), (a4b, 1), (a4b, a6), (a4b, a10b),

(a5b, 1), (a5b, a6), (a5b, a11b), (a6b, 1), (a6b, a6),

(a6b, b), (a7b, 1), (a7b, a6), (a7b, ab), (a8b, 1), (a8b, a6),

(a8b, a2b), (a9b, 1), (a9b, a6), (a9b, a3b), (a10b, 1),

(a10b, a6), (a10b, a4b), (a11b, 1), (a11b, a6), (a11b, a5b)},

and giving the number of elements in the set Ω, | Ω |= 62. Next, the orbit of the set Ω

are calculated by using Definition 2.2 as follows:

When ω = (1, a6), then O(1, a6) = {g · (1, a6) · g−1 | g ∈ D24}. Substituting g with
all elements of D24, the following conditions are obtained:

if g = 1 : (1 · (1, a6) · 1) = (1, a6) · 1 = (1, a6) ;
if g = a : (a · (1, a6) · a11) = (a, a7) · a11 = (1, a6) ;
if g = a2 : (a2 · (1, a6) · a10) = (a2, a8) · a10 = (1, a6) ;
if g = a3 : (a3 · (1, a6) · a9) = (a3, a9) · a9 = (1, a6) ;
if g = a4 : (a4 · (1, a6) · a8) = (a4, a10) · a8 = (1, a6) ;
if g = a5 : (a5 · (1, a6) · a7) = (a5, a11) · a7 = (1, a6) ;
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if g = a6 : (a6 · (1, a6) · a6) = (a6, 1) · a6 = (1, a6) ;
if g = a7 : (a7 · (1, a6) · a5) = (a7, a) · a5 = (1, a6) ;
if g = a8 : (a8 · (1, a6) · a4) = (a8, a2) · a4 = (1, a6)

if g = a9 : (a9 · (1, a6) · a3) = (a9, a3) · a3 = (1, a6) ;
if g = a10 : (a10 · (1, a6) · a2) = (a10, a4) · a2 = (1, a5) ;
if g = a11 : (a11 · (1, a6) · a) = (a11, a5) · a = (1, a6) ;
if g = b : (b · (1, a6) · b) = (b, a6b) · b = (1, a6) ;
if g = ab : (ab · (1, a6) · ab) = (ab, a7b) · ab = (1, a6) ;
if g = a2b : (a2b · (1, a6) · a2b) = (a2b, a8b) · a2b = (1, a6) ;
if g = a3b : (a3b · (1, a6) · a3b) = (a3b, a9b) · a3b = (1, a6) ;
if g = a4b : (a4b · (1, a6) · a4b) = (a4b, a10b) · a4b = (1, a6) ;
if g = a5b : (a5b · (1, a6) · a5b) = (a5b, a11b) · a5b = (1, a6) ;
if g = a6b : (a6b · (1, a6) · a6b) = (a6b, b) · a6b = (1, a6) ;
if g = a7b : (a7b · (1, a6) · a7b) = (a7b, ab) · a7b = (1, a6) ;
if g = a8b : (a8b · (1, a6) · a8b) = (a8b, a2b) · a8b = (1, a6) ;
if g = a9b : (a9b · (1, a6) · a9b) = (a9b, a3b) · a9b = (1, a6) ;
if g = a10b : (a10b · (1, a6) · a10b) = (a10b, a4b) · a10b = (1, a6) ; and
if g = a11b : (a11b · (1, a6) · a11b) = (a11b, a5b) · a11b = (1, a6)·.

Therefore, we have found the following two central orbits:
1) O(1, a6) = {(1, a6)},

2) O(a6, 1) = {(a6, 1)}.

When ω = (1, b), then O(1, b) = {g · (1, b) · g−1 | g ∈ D24}. Substituting g with all
elements of D24, the following conditions are obtained:

if g = 1 : (1 · (1, b) · 1) = (1, b) · 1 = (1, b) ;
if g = a : (a · (1, b) · a11) = (a, ab) · a11 = (1, a2b) ;
if g = a2 : (a2 · (1, b) · a10) = (a2, a2b) · a10 = (1, a4b) ;
if g = a3 : (a3 · (1, b) · a9) = (a3, a3b) · a9 = (1, a6b) ;
if g = a4 : (a4 · (1, b) · a8) = (a4, a4b) · a8 = (1, a8b) ;
if g = a5 : (a5 · (1, b) · a7) = (a5, a5b) · a7 = (1, a10b) ;
if g = a6 : (a6 · (1, b) · a6) = (a6, a6b) · a6 = (1, b) ;
if g = a7 : (a7 · (1, b) · a5) = (a7, a7b) · a5 = (1, a2b) ;
if g = a8 : (a8 · (1, b) · a4) = (a8, a8b) · a4 = (1, a4b) ;
if g = a9 : (a9 · (1, b) · a3) = (a9, a9b) · a3 = (1, a6b) ;
if g = a10 : (a10 · (1, b) · a2) = (a10, a10b) · a2 = (1, a8b) ;
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if g = a11 : (a11 · (1, b) · a) = (a11, a11b) · a = (1, a10b) ;
if g = b : (b · (1, b) · b) = (b, 1) · b = (1, b) ;
if g = ab : (ab · (1, b) · ab) = (ab, a) · ab = (1, a2b) ;
if g = a2b : (a2b · (1, b) · a2b) = (a2b, a2) · a2b = (1, a4b) ;
if g = a3b : (a3b · (1, b) · a3b) = (a3b, a3) · a3b = (1, a6b) ;
if g = a4b : (a4b · (1, b) · a4b) = (a4b, a4) · a4b = (1, a8b) ;
if g = a5b : (a5b · (1, b) · a5b) = (a5b, a5) · a5b = (1, a10b) ;
if g = a6b : (a6b · (1, b) · a6b) = (a6b, a6) · a6b = (1, b) ;
if g = a7b : (a7b · (1, b) · a7b) = (a7b, a7) · a7b = (1, a2b) ;
if g = a8b : (a8b · (1, b) · a8b) = (a8b, a8) · a8b = (1, a4b) ;
if g = a9b : (a9b · (1, b) · a9b) = (a9b, a9) · a9b = (1, a6b) ;
if g = a10b : (a10b · (1, b) · a10b) = (a10b, a10) · a10b = (1, a8b) ; and
if g = a11b : (a11b · (1, b) · a11b) = (a11b, a11) · a11b = (1, a10b)·

Therefore, we have found the following two orbits:

3) O(1, b) =
{

(1, b), (1, a2b), (1, a4b), (1, a6b), (1, a8b), (1, a10b)
}

= O(1, a2b) = O(1, a4b) = O(1, a6b) = O(1, a8b) = O(1, a10b),

4) O(b, 1) =
{

(b, 1), (a2b, 1), (a4b, 1), (a6b, 1), (a8b, 1), (a10b, 1)
}

= O(a2b, 1) = O(a4b, 1) = O(a6b, 1) = O(a8b, 1) = O(a10b, 1).

When ω = (1, ab), then O(1, ab) = {g · (1, ab) · g−1 | g ∈ D24}. Substituting g with
all elements of D24, the following conditions are obtained:

if g = 1 : (1 · (1, ab) · 1) = (1, ab) · 1 = (1, ab);
if g = a : (a · (1, ab) · a11) = (a, a2b) · a11 = (1, a3b);
if g = a2 : (a2 · (1, ab) · a10) = (a2, a3b) · a10 = (1, a5b) ;
if g = a3 : (a3 · (1, ab) · a9) = (a3, a4b) · a9 = (1, a7b);
if g = a4 : (a4 · (1, ab) · a8) = (a4, a5b) · a8 = (1, a9b);
if g = a5 : (a5 · (1, ab) · a7) = (a5, a6b) · a7 = (1, a11b) ;
if g = a6 : (a6 · (1, ab) · a6) = (a6, a7b) · a6 = (1, ab);
if g = a7 : (a7 · (1, ab) · a5) = (a7, a8b) · a5 = (1, a3b);
if g = a8 : (a8 · (1, ab) · a4) = (a8, a9b) · a4 = (1, a5b);
if g = a9 : (a9 · (1, ab) · a3) = (a9, a10b) · a3 = (1, a7b);
if g = a10 : (a10 · (1, ab) · a2) = (a10, a11b) · a2 = (1, a9b);
if g = a11 : (a11 · (1, ab) · a) = (a11, b) · a = (1, a11b);
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if g = b : (b · (1, ab) · b) = (b, a11) · b = (1, a11b);
if g = ab : (ab · (1, ab) · ab) = (ab, 1) · ab = (1, ab);
if g = a2b : (a2b · (1, ab) · a2b) = (a2b, a) · a2b = (1, a3b) ;
if g = a3b : (a3b · (1, ab) · a3b) = (a3b, a2) · a3b = (1, a5b) ;
if g = a4b : (a4b · (1, ab) · a4b) = (a4b, a3) · a4b = (1, a7b) ;
if g = a5b : (a5b · (1, ab) · a5b) = (a5b, a4) · a5b = (1, a9b) ;
if g = a6b : (a6b · (1, ab) · a6b) = (a6b, a5) · a6b = (1, a11b) ;
if g = a7b : (a7b · (1, ab) · a7b) = (a7b, a6) · a7b = (1, ab);
if g = a8b : (a8b · (1, ab) · a8b) = (a8b, a7) · a8b = (1, a3b) ;
if g = a9b : (a9b · (1, ab) · a9b) = (a9b, a8) · a9b = (1, a5b) ;
if g = a10b : (a10b · (1, ab) · a10b) = (a10b, a9) · a10b = (1, a7b) ; and
if g = a11b : (a11b · (1, ab) · a11b) = (a11b, a10) · a11b = (1, a9b)·

Therefore, we have found the following orbits:

5) O(1, ab) =
{

(1, ab), (1, a3b), (1, a5b), (1, a7b), (1, a9b), (1, a11b)
}

= O(1, a3b) = O(1, a5b) = O(1, a7b) = O(1, a9b) = O(1, a11b),

6) O(ab, 1) =
{

(ab, 1), (a3b, 1), (a5b, 1), (a7b, 1), (a9b, 1), (a11b, 1)
}

= O(a3b, 1) = O(a5b, 1) = O(a7b, 1) = O(a9b, 1) = O(a11b, 1).

When ω = (b, a6), then O(b, a6) = {g · (b, a6) · g−1 | g ∈ D24}. Substituting g with
all elements of D24, the following conditions are obtained:

if g = 1 : (1 · (b, a6) · 1) = (b, a6) · 1 = (b, a6) ;
if g = a : (a · (b, a6) · a11) = (ab, a7) · a11 = (a2b, a6) ;
if g = a2 : (a2 · (b, a6) · a10) = (a2b, a8) · a10 = (a4b, a6) ;
if g = a3 : (a3 · (b, a6) · a9) = (a3b, a9) · a9 = (a6b, a6) ;
if g = a4 : (a4 · (b, a6) · a8) = (a4b, a10) · a8 = (a8b, a6) ;
if g = a5 : (a5 · (b, a6) · a7) = (a5b, a11) · a7 = (a10b, a6) ;
if g = a6 : (a6 · (b, a6) · a6) = (a6b, 1) · a6 = (1, a6) ;
if g = a7 : (a7 · (b, a6) · a5) = (a7b, a) · a5 = (a2b, a6) ;
if g = a8 : (a8 · (b, a6) · a4) = (a8b, a2) · a4 = (a4b, a6) ;
if g = a9 : (a9 · (b, a6) · a3) = (a9b, a3) · a3 = (a6b, a6) ;
if g = a10 : (a10 · (b, a6) · a2) = (a10b, a4) · a2 = (a8b, a6) ;
if g = a11 : (a11 · (b, a6) · a) = (a11b, a5) · a = (a10b, a6) ;
if g = b : (b · (b, a6) · b) = (1, a6b) · b = (b, a6) ;
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if g = ab : (ab · (b, a6) · ab) = (a, a7b) · ab = (a2b, a6) ;
if g = a2b : (a2b · (b, a6) · a2b) = (a2, a8b) · a2b = (a4b, a6) ;
if g = a3b : (a3b · (b, a6) · a3b) = (a3, a9b) · a3b = (a6b, a6) ;
if g = a4b : (a4b · (b, a6) · a4b) = (a4, a10b) · a4b = (a8b, a6) ;
if g = a5b : (a5b · (b, a6) · a5b) = (a5, a11b) · a5b = (a10b, a6) ;
if g = a6b : (a6b · (b, a6) · a6b) = (a6, b) · a6b = (b, a6) ;
if g = a7b : (a7b · (b, a6) · a7b) = (a7, ab) · a7b = (a2b, a6) ;
if g = a8b : (a8b · (b, a6) · a8b) = (a8, a2b) · a8b = (a4b, a6) ;
if g = a9b : (a9b · (b, a6) · a9b) = (a9, a3b) · a9b = (a6b, a5b) ;
if g = a10b : (a10b · (b, a6) · a10b) = (a10, a4b) · a10b = (a8b, a6) ; and
if g = a11b : (a11b · (b, a6) · a11b) = (a11, a5b) · a11b = (a10b, a6)·

Then, we have found another two orbits as follows:

7) O(b, a6) =
{

(b, a6), (a2b, a6), (a4b, a6), (a6b, a6), (a8b, a6), (a10b, a6)
}

= O(a2b, a6) = O(a4b, a6) = O(a6b, a6) = O(a8b, a6) = O(a10b, a6),

8) O(a6, b) =
{

(a6, b), (a6, a2b), (a6, a4b), (a6, a6b), (a6, a8b), (a6, a10b)
}

= O(a6, a2b) = O(a6, a4b) = O(a6, a6b) = O(a6, a8b) = O(a6, a10b).

When ω = (ab, a6), then O(ab, a6) = {g · (ab, a6) · g−1 | g ∈ D24}. Substituting g with
all elements of D24, the following conditions are obtained:

if g = 1 : (1 · (ab, a6) · 1) = (ab, a6) · 1 = (ab, a6) ;
if g = a : (a · (ab, a6) · a11) = (a2b, a7) · a11 = (a3b, a6) ;
if g = a2 : (a2 · (ab, a6) · a10) = (a3b, a8) · a10 = (a5b, a6) ;
if g = a3 : (a3 · (ab, a6) · a9) = (a4b, a9) · a9 = (a7b, a6) ;
if g = a4 : (a4 · (ab, a6) · a8) = (a5b, a10) · a8 = (a9b, a6) ;
if g = a5 : (a5 · (ab, a6) · a7) = (a6b, a11) · a7 = (a11b, a6) ;
if g = a6 : (a6 · (ab, a6) · a6) = (a7b, 1) · a6 = (ab, a6) ;
if g = a7 : (a7 · (ab, a6) · a5) = (a8b, a) · a5 = (a3b, a6) ;
if g = a8 : (a8 · (ab, a6) · a4) = (a9b, a2) · a4 = (a5b, a6) ;
if g = a9 : (a9 · (ab, a6) · a3) = (a10b, a3) · a3 = (a7b, a6) ;
if g = a10 : (a10 · (ab, a6) · a2) = (a10b, a2) · a2 = (a9b, a6) ;
if g = a11 : (a11 · (ab, a6) · a) = (a11b, a) · a = (a11b, a6) ;
if g = b : (b · (ab, a6) · b) = (a11, a6b) · b = (a11b, a6) ;
if g = ab : (ab · (ab, a6) · .ab) = (1, a7b) · ab = (ab, a6) ;
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if g = a2b : (a2b · (ab, a6) · a2b) = (a, a8b) · a2b = (a3b, a6) ;
if g = a3b : (a3b · (ab, a6) · a3b) = (a2, a9b) · a3b = (a5b, a6) ;
if g = a4b : (a4b · (ab, a6) · a4b) = (a3, a10b) · a4b = (a7b, a6) ;
if g = a5b : (a5b · (ab, a6) · a5b) = (a4, a11b) · a5b = (a9b, a6) ;
if g = a6b : (a6b · (ab, a6) · a6b) = (a5, b) · a6b = (a11b, a6) ;
if g = a7b : (a7b · (ab, a6) · a7b) = (a6, ab) · a7b = (ab, a6) ;
if g = a8b : (a8b · (ab, a6) · a8b) = (a7, a2b) · a8b = (a3b, a6) ;
if g = a9b : (a9b · (ab, a6) · a9b) = (a8, a3b) · a9b = (a5b, a6) ;
if g = a10b : (a10b · (ab, a6) · a10b) = (a9, a4b) · a10b = (a7b, a6) ;and
if g = a11b : (a11b · (ab, a6) · a11b) = (a10, a5b) · a11b = (a9b, a6)·.

Therefore, we have found the following two orbits:

9) O(ab, a6) =
{

(ab, a6), (a3b, a6), (a5b, a6), (a7b, a6), (a9b, a6), (a11b, a6)
}

= O(a3b, a6) = O(a5b, a6) = O(a7b, a6) = O(a9b, a6) = O(a11b, a6),

10) O(a6, ab) =
{

(a6, ab), (a3b, a6), (a5b, a6), (a7b, a6), (a9b, a6), (a11b, a6)
}

= O(a3b, a6) = O(a5b, a6) = O(a7b, a6) = O(a9b, a6) = O(a11b, a6).

When ω = (b, a6b), then O(b, a6b) = {g · (b, a6b) · g−1 | g ∈ D24}. Substituting g
with all elements of D24, the following conditions are obtained:

if g = 1 : (1 · (b, a6b) · 1) = (b, a6b) · 1 = (b, a6b) ;
if g = a : (a · (b, a6b) · a11) = (ab, a7b) · a11 = (a2b, a8b) ;
if g = a2 : (a2 · (b, a6b) · a10) = (a2b, a8b) · a10 = (a4b, a10b) ;
if g = a3 : (a3 · (b, a6b) · a9) = (a3b, a9b) · a9 = (a6b, b) ;
if g = a4 : (a4 · (b, a6b) · a8) = (a4b, a10b) · a8 = (a8b, a2b) ;
if g = a5 : (a5 · (b, a6b) · a7) = (a5b, a11b) · a7 = (a10b, a4b) ;
if g = a6 : (a6 · (b, a6b) · a6) = (a6b, b) · a6 = (b, a6b) ;
if g = a7 : (a7 · (b, a6b) · a5) = (a7b, ab) · a5 = (a2b, a8b) ;
if g = a8 : (a8 · (b, a6b) · a4) = (a8b, a2b) · a4 = (a4b, a10b) ;
if g = a9 : (a9 · (b, a6b) · a3) = (a9b, a3b) · a3 = (a6b, b) ;
if g = a10 : (a10 · (b, a6b) · a2) = (a10b, a4b) · a2 = (a8b, a2b) ;
if g = a11 : (a11 · (b, a6b) · a) = (a11b, a5b) · a = (a10b, a4b) ;
if g = b : (b · (b, a6b) · b) = (1, a6) · b = (b, a6b) ;
if g = ab : (ab · (b, a6b) · ab) = (a, a7) · ab = (a2b, a8b) ;
if g = a2b : (a2b · (b, a6b) · a2b) = (a2, a8) · a2b = (a4b, a10b) ;
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if g = a3b : (a3b · (b, a6b) · a3b) = (a3, a9) · a3b = (a6b, b) ;
if g = a4b : (a4b · (b, a6b) · a4b) = (a4, a10) · a4b = (a8b, a2b) ;
if g = a5b : (a5b · (b, a6b) · a5b) = (a5, a11) · a5b = (a10b, a4b) ;
if g = a6b : (a6b · (b, a6b) · a6b) = (a6, 1) · a6b = (b, a6b) ;
if g = a7b : (a7b · (b, a6b) · a7b) = (a7, a) · a7b = (a2b, a8b) ;
if g = a8b : (a8b · (b, a6b) · a8b) = (a8, a2) · a8b = (a4b, a10b) ;
if g = a9b : (a9b · (b, a6b) · a9b) = (a9, a3) · a9b = (a6b, b) ;
if g = a10b : (a10b · (b, a6b) · a10b) = (a10, a4) · a10b = (a8b, a2b) ; and
if g = a11b : (a11b · (b, a6b) · a11b) = (a11, a5) · a11b = (a10b, a4b)·

Therefore, we have found the following orbit:

11) O(b, a6b) =
{

(b, a6b), (a2b, a8b), (a4b, a10b), (a6b, b), (a8b, a2b), (a10b, a4b)
}

= O(a2b, a8b) = O(a4b, a10b) = O(a6b, b) = O(a8b, a2b) = O(a10b, a4b).

When ω = (ab, a7b), then O(ab, a7b) = {g · (ab, a7b) · g−1 | g ∈ D24}. Substituting
g with all elements of D24, the following conditions are obtained:

if g = 1 : (1 · (ab, a7b) · 1) = (ab, a7b) · 1 = (ab, a7b) ;
if g = a : (a · (ab, a7b) · a11) = (a2b, a8b) · a11 = (a3b, a9b) ;
if g = a2 : (a2 · (ab, a7b) · a10) = (a3b, a9b) · a10 = (a5b, a11b) ;
if g = a3 : (a3 · (ab, a7b) · a9) = (a4b, a10b) · a9 = (a7b, ab) ;
if g = a4 : (a4 · (ab, a6b) · a8) = (a5b, a11b) · a8 = (a9b, a3b) ;
if g = a5 : (a5 · (ab, a7b) · a7) = (a6b, b) · a7 = (a11b, a5b) ;
if g = a6 : (a6 · (ab, a7b) · a6) = (a7b, ab) · a6 = (ab, a7b) ;
if g = a7 : (a7 · (ab, a7b) · a5) = (a8b, a2b) · a5 = (a3b, a9b) ;
if g = a8 : (a8 · (ab, a7b) · a4) = (a9b, a3b) · a4 = (a5b, a11b) ;
if g = a9 : (a9 · (ab, a7b) · a3) = (a10b, a4b) · a3 = (a7b, ab) ;
if g = a10 : (a10 · (ab, a7b) · a2) = (a11b, a5b) · a2 = (a9b, a3b) ;
if g = a11 : (a11 · (ab, a7b) · a) = (b, a6b) · a = (a11b, a5b)

if g = b : (b · (ab, a7b) · b) = (a11, a5) · b = (a11b, a5b) ;
if g = ab : (ab · (ab, a7b) · ab) = (1, a6) · ab = (ab, a7b) ;
if g = a2b : (a2b · (ab, a7b) · a2b) = (a, a7) · a2b = (a3b, a9b) ;
if g = a3b : (a3b · (ab, a7b) · a3b) = (a2, a8) · a3b = (a5b, a11b) ;
if g = a4b : (a4b · (ab, a7b) · a4b) = (a3, a9) · a4b = (a7b, ab) ;
if g = a5b : (a5b · (ab, a7b) · a5b) = (a4, a10) · a5b = (a9b, a3b) ;
if g = a6b : (a6b · (ab, a7b) · a6b) = (a5, a11) · a6b = (a11b, a5b) ;
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if g = a7b : (a7b · (ab, a7b) · a7b) = (a6, 1) · a7b = (ab, a7b) ;
if g = a8b : (a8b · (ab, a7b) · a8b) = (a7, a) · a8b = (a3b, a9b) ;
if g = a9b : (a9b · (ab, a7b) · a9b) = (a8, a2) · a9b = (a5b, a11b) ;
if g = a10b : (a10b · (ab, a7b) · a10b) = (a9, a3) · a10b = (a7b, ab) ; and
if g = a11b : (a11b · (ab, a7b) · a11b) = (a10, a4) · a11b = (a9b, a3b)·

Therefore, we have found another orbit:

12) O(ab, a7b) =
{

(ab, a7b), (a3b, a9b), (a5b, a11b), (a7b, ab), (a9b, a3b), (a11b, a5b)
}

= O(a3b, a9b) = O(a5b, a11b) = O(a7b, ab) = O(a9b, a3b) = O(a11b, a5b).

Based on above calculation we list all the orbits of the set Ω for D22 and relabel
them with Oi where i = 1, 2, 3 . . . , K(Ω) for convenience as follows:

O1 = O(1, a6) =
{

(1, a6)
}
,

O2 = O(a6, 1) =
{

(a6, 1)
}
,

O3 = O(1, b) =
{

(1, b), (1, a2b), (1, a4b), (1, a6b), (1, a8b), (1, a10b)
}
,

O4 = O(b, 1) =
{

(b, 1), (a2b, 1), (a4b, 1), (a6b, 1), (a8b, 1), (a10b, 1)
}
,

O5 = O(1, ab) =
{

(1, ab), (1, a3b), (1, a5b), (1, a7b), (1, a9b), (1, a11b)
}
,

O6 = O(ab, 1) =
{

(ab, 1), (a3b, 1), (a5b, 1), (a7b, 1), (a9b, 1), (a11b, 1)
}
,

O7 = O(b, a6) =
{

(b, a6), (a2b, a6), (a4b, a6), (a6b, a6), (a8b, a6), (a10b, a6)
}
,

O8 = O(a6, b) =
{

(a6, b), (a6, a2b), (a6, a4b), (a6, a6b), (a6, a8b), (a6, a10b)
}
,

O9 = O(ab, a6) =
{

(ab, a6), (a3b, a6), (a5b, a6), (a7b, a6), (a9b, a6), (a11b, a6)
}
,

O10 = O(a6, ab) =
{

(a6, ab), (a3b, a6), (a5b, a6), (a7b, a6), (a9b, a6), (a11b, a6)
}
,

O11 = O(b, a6b) =
{

(b, a6b), (a2b, a8b), (a4b, a10b), (a6b, b), (a8b, a2b), (a10b, a4b)
}
,

O12 = O(ab, a7b) =
{

(ab, a7b), (a3b, a9b), (a5b, a11b), (a7b, ab), (a9b, a3b), (a11b, a5b)
}
.

According to Definition 2.2, the number of orbits in D24 is K(Ω) = 12.

3.2. Constructing Generalized Conjugacy Class Graphs.

We have found that with respect to conjugation action, the number of orbits of
D14, D18 and D22 is K(Ω) = 2. According to Definition 2.3, we need to exclude
central orbits for each D2n when n = 7, 9 and 11. However, in this case, O1 and
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O2 are the only orbits that can be found. Both of them are non central orbits.
Consequently, the vertices for ΓΩc

D14
,ΓΩc

D18
and ΓΩc

D22
are |V (ΓΩc

D2n
)| = 2 − 0 = 2.

Observing, the cardinalities of each orbit, we can see that |O1| = |O2| 6= 1 and are
not set-wise relatively prime. All the vertices (non central orbits) are connected
by an edge with each others and giving us a complete graph on two vertices, K2.
The graph is illustrated in Figure 1.

Meanwhile, the number of orbits with respect to conjugation action of D12, D16,
D20, D24 on Ω denoted by K(Ω) = 12. By Definition 2.3, we need to exclude
central orbits listed below for each D2n when n = 6, 8, 10 and 12:
D12 : O1 = (1, a3) and 02 = O(a3, 1) ;
D16 : O1 = (1, a4) and 02 = O(a4, 1) ;
D20 : O1 = (1, a5) and 02 = O(a5, 1) and
D24 : O1 = (1, a6) and 02 = O(a6, 1).

FIGURE 1. ΓΩc
D14

, ΓΩc
D18

and ΓΩc
D22

as complete graph on two vertices, K2

Consequently, the vertices for ΓΩc
D12

,ΓΩc
D16

,ΓΩc
D20

and ΓΩc
D24

are V (ΓΩc
D2n

) = {O3, O4,

O5, . . . , O10, O11, O12} and hence the number of vertices | V (ΓΩc
D2n

) |= 12 − 2 = 10.
Observing the cardinalities of each orbit for each group, we can see that

|O3| = |O4| = |O5| = |O6|, . . . = |O12| 6= 1

and are not set wise relatively prime. For instance, in D12, |O3|, . . . ,= |O12| = 3

and gcd (3, 3) 6= 1. Hence, all the vertices (non central orbits) are connected by
and edge with each others and giving us complete graph on ten vertices, K10. The
graph is illustrated in Figure 2.

3.3. Relevant Matrices for Generalized Conjugacy Class Graph.
The complete graphs K2 and K10 can be represented as adjacency, incidence

and Laplacian matrices.
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FIGURE 2. ΓΩc
D12

, ΓΩc
D16

, ΓΩc
D20

, and ΓΩc
D24

as complete graph on ten ver-
tices, K10

By Definition 2.4, the following matrices are adjacency matrices for complete
graphs K2 and K10

A(K2) =

v1 v2[ ]
v1 0 1

v2 1 0
,

and

A(K10) =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10



v1 0 1 1 1 1 1 1 1 1 1

v2 1 0 1 1 1 1 1 1 1 1

v3 1 1 0 1 1 1 1 1 1 1

v4 1 1 1 0 1 1 1 1 1 1

v5 1 1 1 1 0 1 1 1 1 1

v6 1 1 1 1 1 0 1 1 1 1

v7 1 1 1 1 1 1 0 1 1 1

v8 1 1 1 1 1 1 1 0 1 1

v9 1 1 1 1 1 1 1 1 0 1

v10 1 1 1 1 1 1 1 1 1 0

.
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By Definition 2.5, the generalized conjugacy class graph can also be represented
as incident matrices. The incidence matrix for complete graph, K2 is:

I(K2) =

e1[ ]
v1 1

v2 1

and the incidence matrix for complete graph, K10 is provided in Appendix A due
to its large dimension.

By Definition 2.6, the Laplacian matrix L(G) ofG is defined by L(G) = D(G)−A(G),
where D(G) is the diagonal matrix of vertex degrees and A(G) is the adjacency
matrix of G. Therefore, Laplacian matrix for complete graph, K2 and K10 can be
constructed as follows:

L(K2) =

[ ]
1 −1

−1 1 ,

and

L(K10) =



9 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 9 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 9 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 9 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 9 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 9 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 9 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 9 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 9 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1 9



.

3.4. Energy and Laplacian Energy.
The results obtained can be used to find the energy and Laplacian energy. By

using Definition 2.7 and Definition 2.8, the energy and Laplacian energy for com-
plete graphs, K2 and K10 can be determined. Based on the adjacency matrix of
generalized conjugacy class graph AK2, the eigenvalues are λ1 = 1 and λ2 = −1
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with multiplicity 1. By Definition 2.7,

ε(ΓΩ
D2n

) =
2∑

i=1

| λi |=| 1 | + | −1 |= 2.

On the other hand, Laplacian energy for complete graph, K2 also are calculated.
Based on the Laplacian matrix of L(K2), the eigenvalues of Laplacian matrix of
generalized conjugacy class graph L(K2) are µ1 = 0 and µ2 = 2 with multiplicity
1. By Definition 2.8,

LE(ΓΩ
D2n

) =
2∑

i=1

| µi −
2m

n
|=| 0− 2(1)

2
| + | 2− 2(1)

2
|

=| −1 | + | 1 |= 2.

Next, the energy and Laplacian energy for complete graph, K10 also can be calcu-
lated. Based on the adjacency matrix of AK10, the eigenvalues of adjacency matrix
of conjugacy class graph AK10 are λ1 = 9 (with multiplicity 1) and λ2, λ3, . . . , λ10 =

−1 with multiplicity 9. By Definition 2.7,

ε(ΓΩ
D2n

) =
10∑
i=1

| λi |=| 9 | +9 | −1 |= 18.

Lastly, based on the Laplacian matrix of L(K10), the eigenvalues of Laplacian ma-
trix of generalized conjugacy class graph L(K10) are µ1 = 0 (multiplicity 1) and
µ2 = 10 (multiplicity 9). By the definition of the Laplacian energy of graph in
Definition 2.8,

LE(ΓΩ
D2n

) =
10∑
i=1

| µi −
2m

n
|=| 0− 2(45)

10
| +9 | 10− 2(45)

10
|

=| −9 | +9 | 1 |= 18.

As a result, for n = 7, 9 and 11, the energy and Laplacian energy is equal to two.
Meanwhile, for n = 6, 8, 10 and 12, the energy and Laplacian energy is equal to 18.

4. CONCLUSION

The following Table 2 gathers all findings from this study - from the generalized
conjugacy class graphs to the energy and Laplacian energy for each of D2n consid-
ered. We can conclude that when n is odd (n = 7, 9, 11), the generalized conjugacy
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class graphs are all isomorphic to a complete graph with two vertices, K2. Mean-
while when n is even (n = 6, 8, 10, 12), the generalized conjugacy class graphs
are all isomorphic to a complete graph with ten vertices, K10. Consequently, the
dimension of adjacency and Laplacian matrices are similar according to even and
odd cases. For n odd (n = 7, 9, 11), the dimension of adjacency and Laplacian
matrices is 2× 2, whilst for n even (n = 6, 8, 10, 12), the dimension is 10× 10.

In addition to that, it is found that the energy and Laplacian energy have the
same values conforming to even and odd cases as well. This will motivate us
to investigate further if this situation has relation with the properties of certain
conjugacy classes of this group.

TABLE 2. Generalized Conjugacy Class Graph and Its Graph Energies

Dihedral
Group, D2n

Generalized Conjugacy
Class Graph, ΓΩc

D2n

Energy,
ε(ΓG)

Laplacian
Energy, LE(ΓG)

D12 K10 18 18

D14 K2 2 2

D16 K10 18 18

D18 K2 2 2

D20 K10 18 18

D22 K2 2 2

D24 K10 18 18
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