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ABSTRACT. For a commutative ring R with unity 1 6= 0, let Z(R) be the set
of zero-divisors of R. A simple graph Γ(R) is associated to R with vertices
Z(R)∗ = Z(R) − {0},the set of nonzero zero-divisors of R, and for distinct
x, y ∈ Z(R)∗, the vertices x and y are adjacent if and only if xy = 0. Thus
Γ(R) is the empty graph if and only if R is an integral domain. Moreover, a
nonempty Γ(R) is finite if and only if R is finite. In this article an algorithm to
compute zero-divisors of the ring Zn[X]/(X2) is developed.

1. INTRODUCTION

All rings in this paper are commutative rings with unity 1 6= 0. The idea
of a zero-divisor graph of a commutative ring was introduced by I.Beck in
1988 [4],where he was mainly interested in colorings. Then D.D.Anderson and
M.Naseer continued this investigation of colorings of a commutative ring. Their
definition was slightly different from ours, they let all elements of the ring R be
the vertices and had for any distinct elements x and y are adjacent if and only if
xy = 0, [1].
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Anderson and Livingston introduced and studied the zero-divisor graph whose
vertices are the non-zero zero-divisors, [3]. These graphs turn out to best exhibit
the properties of the set of zero-divisors of a commutative ring. The zero-divisor
graph helps us to study the algebraic properties of rings using graph theoretical
tools. Some algebraic properties of rings can be translated into graph theory
language and then the geometric properties of graphs help to explore some in-
teresting results in the algebraic structures of rings. The zero-divisor graph of
a commutative ring has been studied extensively by Anderson, Frazier, Lauve,
Levy, Livingston [2, 3],Axtell, Coykendall, Stickless [6], Akbari and Mohamma-
dian [7], and more.

This paper is organized as follows, in section 2 an algorithm to compute Γ(Zn)

is presented. This was originally given by Krone [5]. This algorithm is developed
to compute Γ(Zn[X]/(X2)) in section 3.

Note that gcd(a, b) and U(R) are denoted for greatest common divisor be-
tween the two numbers a and b and the units of the ring R, respectively. Also,
for any positive integer r, φ(r) is the Euler’s φ-function, which is the number
of positive integers that less than or equals r and relatively prime to r. The
following results are necessary throughout this paper.

Lemma 1.1. [8] Let p be a prime number and n ≥ 1, then φ(pn) = pn(1− 1
p
).

Lemma 1.2. [8] Given two integers a and b.If gcd(a, b) = d then gcd(a
d
, b
d
) = 1.

Theorem 1.1. Let the ring R = Zn[X]/(X2). Then a + bx is zero-divisor in R if
and only if a is zero-divisor in Zn.

Proof. Suppose that a+bx is zero-divisor in Zn[X]/(X2), then there exists c+dx 6=
0, such that (a+ bx)(c+ dx) = 0, hence ac+ (bc+ da)x = 0, if c 6= 0 then ac = 0,
so a is zero-divisor. If c = 0, then d 6= 0 and ad = 0, hence a is a zero-divisor.
Consequently, Suppose that a is a zero-divisor in Zn, then there exists c 6= 0,such
that ac = 0, hence cx(a + bx) = 0 for any b ∈ Zn. So a + bx is a zero-divisor in
Zn[X]/(X2). �

Theorem 1.2. Let R and S be any two commutative rings with unity different
than zero, then

(R⊕ S)[X]/(X2) ∼= R[X]/(X2)⊕ S[X]/(X2).
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Corollary 1.1. Let Zn
∼= Zpr⊕Zqt, where p and q are relatively prime integers and

r and t are positive integers, then

(Zpr ⊕ Zqt)[X]/(X2) ∼= Zpr [X]/(X2)⊕ Zqt [X]/(X2).

2. AN ALGORITHM FOR CALCULATING Γ(Zn)

This algorithm is recursive in nature and construct the graph for a given ring
from sub-graphs which themselves are zero-divisor graphs of rings of smaller
orders. This was presented by Joan Krone [5].

Case 1: If n = pk for some prime p and integer k > 1.
(a) Find the zero-divisor of Zpk , by taking the numbers 1, 2, . . . , pk−1−1,

then multiply those numbers by p. Hence, we get the zero-divisors
of Zpk .

(b) Divide the zero-divisors into k − 1 sets according to how many fac-
tors of p each divisor has, they are, S1, S2, . . . , Sk−1.

(c) Connected vertices in the graph from the set Sm, to the vertices in
the set St, such that m+ t ≥ k.

Case 2: If n = prqt where p and q are relatively prime integers, hence Zn =

Zpr × Zqt.
(a) Find the zero-divisors of Zpr and Zqt, by using (1) in case1.
(b) Put T1 = (x, 0) : x ∈ Zpr − {0} and T2 = (0, y) : y ∈ Zqt − {0}.
(c) Connected every elements of T1 to every element of T2.
(d) For each zero-divisor d of Zpr − {0} connected (d, 0) to (e, f) where

de = 0 and f ∈ Zqt.
(e) For each zero-divisor a of Zqt − {0} connected (0, a) to (c, b) where

ab = 0 and c ∈ Zpr .
(f) Connected (x, y) to (w, z) where x,w ∈ Z(Zpr)

∗ and y, z ∈ Z(Zqt)
∗

and xw = 0 in Zpr and yz = 0 in Zqt.

Example 1. Let R = Z36
∼= Z4 × Z9, then T1 = {(1, 0), (2, 0), (3, 0)} and

T2 = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8)}.

Hence every element of T1 is connected to every element of T2. Now Z(Z4)
∗ = {2}.

Then (2, 0) is connected to every element in the set

{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8)}.
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Moreover Z(Z6)
∗ = {3, 6}. Then (0, 3) is connected to every element in the set

{(0, 6), (1, 6), (2, 6), (3, 6), (1, 3), (2, 3), (3, 3)}

and (0, 6) is connected to every element in the set {(0, 3), (1, 3), (2, 3), (3, 3), (1, 6),

(2, 6), (3, 6)}. Also, (2, 3) and (2, 6) are connected.

3. AN ALGORITHM FOR CALCULATING Γ(Zn[X]/(X2))

Considering the algorithm for calculating Γ(Zn[X]/(X2)), the following cases
and sub cases are presented.

Case 1: For Zpn [X]/(X2), where p prime number and n ≥ 1.
First,we consider the zero-divisors of Zpn [X]/(X2), they are of three
types:
(a) By applying the algorithm in the previous section that calculates the

zero-divisor graph of Zpn, we get the n − 1 sets according to how
many factors of p each divisor has, and they are, S1, S2, . . . , Sn−1,
where Si = {rpi : gcd(r, pn−i) = 1}.

(b) Consider the n sets, E0, E1, . . . , En−1, where Ei = {bx : b ∈ Si}. We
mean by the set S0 = {a : a ∈ U(Zpn)} and E0 = {bx : b ∈ S0}.

(c) Consider the (n − 1)n sets, Si,j, such that i = 1, 2, . . . , n − 1 and
j = 0, 1, . . . , n− 1. Where

Si,j = {a+ bx : a ∈ Si and b ∈ Sj}

=
{
a+ bx : gcd(a, pn) = pi and gcd(b, pn) = pj

}
=

{
a+ bx : gcd(

a

pi
, pn−i) = 1 and gcd(

b

pj
, pn−j) = 1

}
.

Set

r = a/pi and s = b/pj,

then

Si,j = {rpi + spjx : gcd(r, pn−i) = 1 and gcd(s, pn−j) = 1}.

Second, if z1, z2 ∈ Γ(Zpn [X]/(X2)), then the question is what are the
cases for which z1z2 = 0. We have six subcases:
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Case 1.1: Every element in the set Si is connected to every element in the
set Sj if and only if i + j ≥ n, this follows from the algorithm
that calculates the zero-divisor graph of Zpn. Hence every element
in Si is connected to every element in the set Sj such that j =

n− i, n− i+ 1, . . . , n− 1.
Case 1.2: Every element in the set Si is connected to every element in the set

Ej if and only if i + j ≥ n, Hence every element in Si is connected
to every element in the set Ej such that j = n− i, n− i+1, . . . , n−1.

Case 1.3: Every element in the set Si is connected to every element in the set
Sk,m if and only if i + k ≥ n, and i + m ≥ n .In other words, when
the set Si is connected to the two sets Sk and Sm. Hence, every
element in Si is connected to every element in the set Sk,m such
that k = n− i, n− i+ 1, . . . , n− 1 and m = n− i, n− i+ 1, . . . , n− 1.

Case 1.4: Every element in the set Ei is connected to every element in the set
Ej for all i and j.Hence, Every element in Ei is connected to every
element in the set Ej such that j = 0, 1, . . . , n− 1.

Case 1.5: Every element in the set Ei is connected to every element in the
set Sk,m if and only if i + k ≥ n .In other words,when the set Si is
connected to the set Sk. Hence, every element in Ei is connected to
every element in the set Sk,m such that k = n− i, n− i+ 1, . . . , n− 1

and m = 0, 1, . . . , n− 1.
Case 1.6: Consider the two sets Si,j and Sk,m. The essential condition in order

that elements in the set Si,j are connected to elements in the set
Sk,m is i + k ≥ n. Now consider for the following sub cases that
i+ k ≥ n.

(a) If i + m ≥ n and j + k < n. Then no element in the set Si,j is
connected to any element in the set Sk,m. Similarly, if i + m < n

and j + k ≥ n. Then no element in the set Si,j is connected to any
element in the set Sk,m.

(b) If i + m < n and j + k < n and i + m 6= j + k, then no element
in the set Si,j connected to any element in the set Sk,m. To show
that, let y1 = r1p

i + s1p
jx ∈ Si,j and y2 = r2p

k + s2p
mx ∈ Sk,m,

if y1y2 = 0, then r1s2p
i+m + s1r2p

j+k = 0 (mod pn), suppose that
i + m < j + k, then r1s2 + s1r2p

j+k−(i+m) = 0 (mod pn−(i+m)) s2 ≡
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−r−1
1 s1r2p

j+k−(i+m) (mod pn−(i+m)). But gcd(s2, p
n−m) = 1, which is

a contradiction.
(c) If i + m ≥ n and j + k ≥ n, then every element in the set Si,j is

connected to every element in the set Sk,m. In other words, every
element in the set Si is connected to the elements of the two sets Sk

and Sm. and the elements of the set Sj are connected to the set Sk.
Since j + k ≥ n and i + k ≥ n, then k ≥ n− t, where t = min{i, j}
and m ≥ n − i. Hence every element in the set Si,j is connected to
every element in the set Sk,m, such that k = n− t, n− t+1, . . . , n−1

where t = min{i, j} and m = n− i, n− i+ 1, . . . , n− 1.
(d) If i + m < n and j + k < n and i + m = j + k, then there exists

elements in the set Si,j which are connected to elements in the set
Sk,m.

Now, since i+k ≥ n and j+k < n, then n−i ≤ k < n−j and that
inequality has a solution if and only if i > j. Also, since i+m = j+k

then m = j + k − i ≥ 0, so k ≥ i − j. Thus there exists elements
in the set Si,j that are connected to elements in the set Sk,m such
that k = w,w + 1, . . . , n − j − 1 where w = max{n − i, i − j} and
m = j + k − i.

To find these elements, let

Si,j = {rpi + spjx : gcd(r, pn−i) = 1 and gcd(s, pn−j) = 1};

Sk,m = {rpk + spmx : gcd(r, pn−k) = 1 and gcd(s, pn−m) = 1}.

Suppose that y1 = r1p
i+s1p

jx ∈ Si,j and y2 = r2p
k+s2p

mx ∈ Sk,m,
if y1y2 = 0, then

r1s2p
i+m + s1r2p

j+k ≡ 0(mod pn),where i+m = j + k

r1s2 + s1r2 ≡ 0(mod pn−(i+m))

Note that if p = 2 and i + m = j + k = n − 1, then all elements in
Si,j are connected all elements in Sk,m.

(1) For Zn[X]/(X2), where n = prqt with p and q are relatively prime inte-
gers. Then the calculation of Γ(Zn[X]/(X2)) can be get by applying The-
orem 1.2, case 1 of this section, and following the same manner of case
2 of the algorithm in previous section on Zpr [X]/(X2) and Zqt [X]/(X2).
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Example 2. Consider the ring R = Z27[X]/(X2). then Z(R)∗ is divided into three
types according to case 1,

Type a : S1 = {3, 6, 12, 15, 21, 24}

S2 = {9, 18}

Type b : E0 = {bx : b ∈ U(Z27)}

E1 = {bx : b ∈ S1}

E2 = {bx : b ∈ S2}

Type c : S1,0 = {a+ bx : a ∈ S1, b ∈ U(Z27)}

S1,1 = {a+ bx : a ∈ S1, b ∈ S1}

S1,2 = {a+ bx : a ∈ S1, b ∈ S2}

S2,0 = {a+ bx : a ∈ S2, b ∈ U(Z27)}

S2,1 = {a+ bx : a ∈ S2, b ∈ S1}

S2,2 = {a+ bx : a ∈ S2, b ∈ S2}

Now, by case 1.1, every element in the set S1 is connected to every element in
the set S2, and every element in the set S2 is connected to every element in the
set S2. By case 1.2, every element in the set S1 is connected to every element
in the set E2, and every element in the set S2 is connected to every elements in
the sets E1 and E2. By case 1.3, every element in the set S1 is connected to ev-
ery element in the set S2,2, and every element in the set S2 is connected to every
element in the sets S1,1, S1,2, S2,1 and S2,2. By case 1.4, every element in the
sets E0, E1 and E2 is connected to every element in the sets E0, E1 and E2.
By case 1.5, every element in the set E1 is connected to every element in the sets
S2,0, S2,1 and S2,2, and every element in the set E2 is connected to every element in
the sets S1,0, S1,1, S1,2, S2,0, S2,1 and S2,2. By subcase c of case 1.6, every element in
the sets S1,1, S1,2 is connected to every element in the set S2,2, every element in the
set S2,1 is connected to every element in the sets S2,1 and S2,2, and every element
in the set S2,2 is connected to every element in the set S2,2. By subcase d case 1.6,
there exist elements in the set S2,0 which are connected to elements in the same set.
Also, there exist elements in the set S1,0 which are connected to elements in the set
S2,1.
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Example 3. Let R = Z6[X]/(X2). Then by Corollary 1.1,

Z6[X]/(X2) ∼= Z2[X]/(X2)⊕ Z3[X]/(X2).

By using case 1 of the algorithm, the zero divisor

Z (Z2[X]/(X2))
∗ Type b E0 = {X},

Z (Z3[X]/(X2))
∗ Type b E0 = {X, 2X}.

According to case 2 in section 2 :

T1 = {(1, 0), (X, 0), (1 +X, 0)} ,

T2 = {(0, 1), (0, 2), (0, X), (0, 2X), (0, 1 +X),

(0, 1 + 2X), (0, 2 +X), (0, 2 + 2X)} .

Now every element in T1 is connected to every element in T2 and (X, 0) is connected
to every element in

{(X, 1), (X, 2), (X,X), (X, 1 +X), (X, 2X),

(X, 1 + 2X), (X, 2 +X), (X, 2 + 2X)} .

Also, every element in {(0, X), (0, 2X)} is connected to every element in

{(1, X), (X,X), (1 +X,X), (1, 2X), (X, 2X), (1 +X, 2X)} .

Moreover, (0, X) is connected to (0, 2X) and (X,X) is connected to (X, 2X).
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