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REST OF A VERTEX IN A GRAPH

R. Rajendra, P. Siva Kota Reddy1, and C .N. Harshavardhana

ABSTRACT. We define the rest of a vertex v in a graph as the number of geodesics
passing through v minus the degree of v. The total rest of a graph is the sum
of rests of all the vertices in that graph. We made some observations, compute
rest of vertices in some standard graphs and obtain some interesting results.

1. INTRODUCTION

For standard terminology and notion in graph theory, we follow the text-book
of Harary [4].

Let G = (V,E) be a graph (finite, undirected, simple). We say that a graph
G is vertex transitive if the automorphism group of G acts transitively on V (G).
A regular graph G with v vertices and degree k is said to be strongly regular,
denoted by G = srg(v, k, λ, µ), if there exist integers λ and µ such that any two
adjacent vertices have λ common neighbors and any two non-adjacent vertices
have µ common neighbors [2].

The concept of stress of a vertex in a graph was defined by Alfonso Shim-
bel [10] in 1953. The concept has many applications in the study of biological
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networks, social networks etc. Some related works can be found in [5–7,9,11].
Further, the concepts of stress number of a graph and stress regular graphs
have been studied by K. Bhargava, N.N. Dattatreya, and R. Rajendra in their
paper [1]. By the motivation of stress of a vertex and stress number of a graph,
Rajendra et al. [8] defined stress indices for graphs.

2. DEFINITIONS

Definition 2.1 (Alfonso Shimbel [10]). Let G be a graph and v be a vertex in
G. The stress of v, denoted by strG(v) or simply str(v), is defined as the number of
geodesics in G passing through v.

We denote the maximum stress among all the vertices of G by ΘG and mini-
mum stress among all the vertices of G by θG.

Definition 2.2. Let G be a graph and v be a vertex in G. The rest of v, denoted by
rG(v) or simply r(v), is defined as

(2.1) r(v) = str(v)− deg(v).

The rest of a vertex v is the number of geodesics passing through v minus the
number of edges incident on v.

We denote the maximum rest among all the vertices of G by RG and minimum
rest among all the vertices of G by ρG.

Definition 2.3 (S. Arumugam). A graph is said to be k-stress regular if all of its
vertices have stress k.

Definition 2.4. A graph is said to be k-rest regular if all of its vertices have rest k.

Definition 2.5. Let G = (V,E) be a graph. The total stress of G, denoted by
Nstr(G), is defined as,

Nstr(G) =
∑
v∈V

str(v).

Definition 2.6. Let G = (V,E) be a graph. The total rest of G, denoted by R(G),
is defined as,

(2.2) R(G) =
∑
v∈V

r(v).
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3. SOME OBSERVATIONS

(1) Since for any vertex v in a graph G, str(v) ≥ 0, by the Definition 2.2,
r(v) ≥ − deg(v). It follows that the rest of a pendant vertex in a graph is
−1 because stress is zero and the degree is 1 for that vertex.

(2) If N is the number of geodesics of length at least 2 in a graph G, then
by the Definitions 2.1 and 2.2, for any vertex v in G, we have

− deg(v) ≤ r(v) ≤ N − deg(v)

and −∆ ≤ r(v) ≤ N − δ.
(3) If there is no geodesic of length ≥ 2 passing through a vertex v in a

graph G, then str(v) = 0 and r(v) = − deg(v). Hence for any vertex v in
a complete graph Kn, we have r(v) = 1− n.

(4) For a pendant vertex v in a graph G, r(v) = −1.
(5) By the Definition 2.2, it follows that,

(a) A regular graph is rest regular if and only if it is stress regular.
(b) A stress regular graph is rest regular if and only if it is regular.

A regular graph may not be rest regular because a regular graph need
not be stress regular. A stress regular graph may not be rest regular
because a stress regular graph need not be regular.

(6) A graph G is 0-rest regular if and only if str(v) = deg(v), ∀v ∈ V (G).
(7) If η is an automorphism of a graph G and v is any vertex in G, then

r(v) = r(η(v)). Hence it follows that any vertex transitive graph is rest
regular. However the converse is not true. The path P3 is rest regular,
but it is not vertex transitive since it is not regular (it is not stress regular
also).

4. SOME RESULTS

Theorem 4.1. Let G be any graph and let v be any vertex in G. Then
r(v) = − deg(v) if and only if the neighbors of v induce a complete subgraph.

Proof. We have,

r(v) = − deg(v) ⇐⇒ str(v) = 0 (By Definition 2.2)

⇐⇒ the neighbors of v induce a complete subgraph.

�
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The following corollary is immediate from the Theorem 4.1.

Corollary 4.1. A connected graph is (1 − n)-rest regular if and only if it is a
complete graph.

Proposition 4.1. For any graph G of diameter d with e edges, the total rest of G,
is given by

R(G) = Nstr(G)− 2e = −2f1 +
d−1∑
i=2

(i− 1)fi,(4.1)

where fi is the number of geodesics of length i in G.

Proof. By the Definition 2.6, we have

R(G) =
∑
v∈V

r(v) =
∑
v∈V

str(v)− deg(v)

=
∑
v∈V

str(v)−
∑
v∈V

deg(v)

= Nstr(G)− 2e.

It is easy to see that

(4.2) Nstr(G) =
d−1∑
i=2

(i− 1)fi.

Using (4.2) and e = f1 in (2.2), we get

R(G) = −2f1 +
d−1∑
i=2

(i− 1)fi.

�

Proposition 4.2.

(i) In a complete bipartite Kmn, if A and B are the partite sets of Kmn with
|A| = m and |B| = n, then

r(v) =


n(n− 1)

2
− n, if v ∈ A,

m(m− 1)

2
−m, if v ∈ B,

;(4.3)

and

R(Km,n) =
mn

2
(m+ n− 2)− 2mn.(4.4)
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(ii) In a cycle Cn on n vertices, for any vertex v,

r(v) =


(n− 1)(n− 3)

8
− 2, if n is odd,

n(n− 2)

8
− 2, if n is even,

;(4.5)

and

R(Cn) =


n(n− 1)(n− 3)

8
− 2n, if n is odd,

n2(n− 2)

8
− 2n, if n is even.

(4.6)

(iii) Let Wd(n,m) denote the windmill graph [3] constructed for n ≥ 2 and
m ≥ 2 by joining m copies of the complete graph Kn at a shared universal
vertex v. Then

r(v) =
m(m− 1)(n− 1)2

2
−m(n− 1),(4.7)

r(w) = −(n− 1),(4.8)

and

R(Wd(n,m)) =
m(m− 1)(n− 1)2

2
−mn(n− 1).(4.9)

Proof.

(i) In a complete bipartite Kmn, if A and B are the partite sets of Kmn with
|A| = m and |B| = n, then

str(v) =


n(n− 1)

2
, if v ∈ A,

m(m− 1)

2
, if v ∈ B,

;(4.10)

and

Nstr(Km,n) =
mn

2
(m+ n− 2).(4.11)

Also,

deg(v) =

n, if v ∈ A,
m, if v ∈ B,

;(4.12)

and number of edges in Kmn is mn. Using (4.10) and (4.12) in (2.1),
we get (4.3) and using (4.11) and e = mn in (4.1), we get (4.4).
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(ii) For any vertex v in a cycle Cn,

str(v) =


(n− 1)(n− 3)

8
, if n is odd,

n(n− 2)

8
, if n is even,

;(4.13)

and

Nstr(Cn) =


n(n− 1)(n− 3)

8
, if n is odd,

n2(n− 2)

8
, if n is even,

.(4.14)

Since every vertex has degree 2 and the number of edges e = n in Cn,
using (4.13) and (4.14) in (2.1) and (4.1), respectively, we get (4.5)
and (4.6).

(iii) In the windmill Wd(n,m), for the shared universal vertex v,

str(v) = m(m− 1)(n− 1)2/2, deg(v) = m(n− 1),(4.15)

and for any vertex w 6= v,

str(w) = 0, deg(v) = (n− 1).

Using (4.15) and (4.15) in (2.1), we get (4.7) and (4.8), respectively.
Finally, we have

Nstr(Wd(n,m)) = m(m− 1)(n− 1)2/2,(4.16)

Since the number of edges in Wd(n,m) is mn(n − 1)/2, using (4.16) in
(4.1), we get, (4.9).

�

Proposition 4.3. Let v be an internal vertex of a tree T and let C1, . . . , Cm be the
components of T − v (so that deg(v) = m). Then

r(v) =
∑
i<j

|Ci||Cj| −m.(4.17)

Proof. It is easy to see that

str(v) =
∑
i<j

|Ci||Cj|.(4.18)

Using (4.18) and deg(v) = m, in (2.1), we get (4.17). �
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Theorem 4.2. Let G = (V,E) be a connected graph with at least 3 vertices. In G,
r(v) = − deg(v) for all vertices v except for one if and only if G is a graph with a
unique cut-vertex such that all its blocks are complete subgraphs of G.

Proof. In [1], it is proved that the graph G has all vertices of zero stress except
for one if and only if G is a graph with a unique cut-vertex such that all its blocks
are complete subgraphs of G. Hence the proof follows by Definition 2.2. �

By Theorem 4.2, the following Corollary is immediate:

Corollary 4.2. Let G be a connected graph on n + 1 vertices. Then G = K1n if
and only if G has exactly one vertex of rest n(n − 3)/2 with the rest of remaining
vertices equal to their degrees.

Theorem 4.3.

(i) For any vertex v in a graph G of diameter 2, r(v) equals the number of
unordered pairs of non-adjacent vertices in N(v) minus deg(v).

(ii) Any strongly regular graph G = srg(v, k, λ, µ) is rest regular.

Proof.

(i) For any vertex v in a graph G of diameter 2, str(v) equals the number
of unordered pairs of non-adjacent vertices in N(v) (See [1]). Hence by
Definition 2.2 the result follows.

(ii) Any strongly regular graph G = srg(v, k, λ, µ) is stress regular (See [1]).
Since a strongly regular graph is regular, by Definition 2.2 the result
follows.

�
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