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BOUNDS FOR THE ZEROS OF POLYNOMIALS BASED ON CERTAIN
MATRIX INEQUALITIES

Mohammad Odeh

ABSTRACT. The Frobenius companion matrix plays an important link between
matrix analysis and polynomials. In this paper, we apply some matrix inequali-
ties involving spectral norm, spectral radius, numerical radius, and partitioned
matrices to types of Frobenius companion matrix of monic polynomials to de-
rive further new upper bounds for the zeros of polynomials. Using this method,
we found several main results which can be referred to in Theorems 2.1}2.6]
showing that some of them are better than some known results such as Fujii
and Kubo [5], Cauchy [[4]], Kittaneh [11]], and Linden [14]] by giving an ex-
ample and comparing with them. In addition, we prove new numerical radius
inequalities for 2 x 2 matrices, which are shown in Propositions Then
we applied some of these inequalities to the Frobenius matrix and got the new
upper bounds of the zeros of the polynomials as shown in Theorems |2.812.11
then we compared it with some results in the example, and it turns out that it
is better.

1. INTRODUCTION

The problem of Locating the zeros of polynomials has attracted the attention
of many mathematicians, including famous ones like Cauchy and Montel. In
addition to the classical complex analysis methods, matrix analysis techniques
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have been used to obtain upper and lower bounds for the zeros of polynomials.
In the same context, The Frobenius companion matrix plays an important link
between matrix analysis and the geometry of polynomials. It has been used for
the location of the zeros of polynomials by matrix methods (see, e.g., [1,2,/4,/5,
10-14], and references therein).

Suppose that p(z) = 2"+a,2" '+ - -+asz +a; is a complex monic polynomial
with n > 2 and a; # 0. Let z1, 29, 23, ..
a way that |z,| > |z1| > --- > |z,|. The Frobenius companion matrix C, of p is
defined as

., zp be the zeros of p arranged in such

[ —a, —an_y —ay —ay |

1 0 0 0

=] o 1 0 0
00 10 |

It is well-known that the characteristic polynomial of C, is p itself. Thus, the
zeros of p are exactly the eigenvalues of C,, (see, e.g., [7, p. 316]).
Let p1(2) = (2 — an)p(z) = 2" — b2t — b, 12"% — .-+ — byz — by. Then

21,225,235 - -

panion matrix C,, of p; is given by

., 2y and a, are the zeros of p;. The corresponding Frobenius com-

0 b, b, by by

1 0 0 0 0

o 0 1 0 0 0

P10 0 1 0 O
00 0 1 0 |

We have

[ b, b, by by 0 ]

0 b, bs by by

o 10 0 0 0

L 0 1 0O 0 0 |’

L0 0 1 0 0
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and
[ bot B2t bas oo bubs bubs buby buby |
b, bn—1 <o b by by 0
0 b, cee by bs by by
3= 1 o - 0 0 0 0 |,

0 1 e 0 0 0 0

0 0 .1 0 0 0
where b; = ana; —a;_1 for j =1,2,... n,with ag = 0. Let p,(2) = (22 — a,z +
az — a,_1)p(z) = 2" — 2" ' — .-+ — cyz — ¢,. The corresponding Frobenius

companion matrix C,, of p, is given by

[0 0 ¢p ot Cog - o ¢ ]
1 0 0 0 0 0 0
01 0 0 0 0 0
o 0 0 1 0 0 0 0
P21 0 0 0 1 0 0 O
00 0 0 1 0 0
|00 0 0 0 1 0 ]
We get
[ 0 ¢, che1 - o g O |
0 0 ¢ -+ 3 ¢
1 0 0 0 0 O
052 =10 1 0 0 0 0 |,
0 0 1 0 0 O
0 O o --- 1 0 0
where bj = Upaj — aj—1 and C; = —CLnb]’ + Ap—1a5; — Gj—2 fOTj = 1, 2, oo, n, with

ap = a—1 = 0. Letps(2) = (2° — anz® + (af — ap-1) 2 — a; + 20,051 — an—2) p(2)
= "3 —d, 2" —...—dyz—d;. The corresponding Frobenius companion matrix
C,, of ps is given by
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000 d, dy-1 - dy dy
100 0 0 0 0
010 O 0 0 0
o 001 O 0 0 0
P10 00 1 0 0 0 |’
000 O 1 0 0
1000 0 o - 1 0]
where bj = ApQj; — Aj—_1,C; = —anbj + Ap—105 — G52, and dj = —QnCj — an_lbj_l -+
an—2a; — aj_3 for j=1,2,... ,n,withay =a_1 =a_,=0.

In fact, it should be mentioned here that the zeros of p are contained in the
zeros of py, po, and ps. So, any upper bound for the zeros of p;, p,, or p3 can be
considered as an upper bound for the zeros of p.

Let M, (C) denote the algebra of all nxn complex matrices. The eigenvalues of
A are denoted by A; (4), A2 (A),..., A\, (A), and are arranged so that |\, (A)| >
A2 (A)] > --- > |\, (A)|. The singular values of A (i.e., the eigenvalues of
|A| = (A*A)%) are denoted by s; (A), s2(A),..., s, (A), and arranged so that
51(A) > s5(A) > --- > 5, (A). Recall that 57 (A) = X; (A*A) = \; (A A*) for
j=12...,n. For A € M,(C), let r(A), w(A), and ||A|| denote the spectral
radius, the numerical radius, and the spectral norm of A, respectively. Recall
that w (A) = max|, =1 |( Az, z )|. Now, If z any zero of p, then

2] <7 (A) Sw (A) < [A]l = s1(4)

(see, e.g., [8]).

2. MAIN RESULTS

In this section, we employ various matrix inequalities involving the spectral
norm, the spectral radius, and the numerical radius to the companion matrices
2 3 2

Cyp, Gy, C5, Cy Oy, C

p2?

The following lemma can be found in [7, p. 175].

and C), to obtain new bounds for the zeros of p.
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Lemma 2.1. Let A = [a;;] € M, (C) be a Hermitian matrix written in partitioned
form as

T

where x € C" ' and A € M,,(C). Then
det A = a,, det A — z* (adj A) X,

where adj A is the adjugate (classical adjoint) of A.

The following Lemma is used in the proof of Theorem 2.1

I —Ap-1 —0p-2 —a; 0 |
1 0 0O O
Lemma 2.2. Let M = 0 1 0 O |.Then
0 0 10|
IM|*=a+1,

where a = Z;:ll la;|” .

Proof. The characteristic polynomials of M M* is determinant of the partitioned

matrix ) )
t—a ap_1 Gp_2 az ai
Ap—1 t—1 0 0 0
Qn—2 0 t—-1 0 0
tI — MM* = . . .
ay 0 0 t—1 0
ap 0 0 0 t—-1 |

Now using Lemma 2.1}, we get

det (tI — MM*) = (t — 1) det Ay — |an_s|> (t —1)" 72,

where . )
t—a ap-1 Qp—9 Qg
an—1 t—1 0 0

| a2 0 0 t—1 ]
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Applying Lemma to A, again, we get

det Al = (t — 1) det AQ — ]an,3]2 (t — 1)n73 y

where
[ t—a any Gny - asz ]
A1 t—1 0 0
A2: Ap—2 O t_l st 0
@m0 0 t—1

Continue this process to get
det (t — MM*) = (t — 1)" 2 (2 — (a + 1) 1) .
Since 52 (Cp,) = A; (Cp,Cy, ) , it follows that

s1(M) = M| =vVa+1,
sn (M) = 0,

and

sj(M)=1forj=2,....,n—1.

Now we are in a position to derive new bound for the zeros of p.

Theorem 2.1. Ler z be any zero of p, then

n—1 n
2l < (DD lalP + 14 D ey — aj
j=1 j=1
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[ —Qp—1 —0ap—2
1 0
Proof. Let A = 0 1
|0 0
I —Qp + Apq
0
B = 0
i 0

0

0
0
0

and

—as + ay
0
0

0

0
0

0

825

Then C, = A + B. So, by the triangle inequality, we have ||C,| < || 4| + || B]| -

By using Lemma we have

IA[l =

and by compute ||B|| = \/2?21 la; — a;_1|*. Consequently

n—1 n
1C < 4| D lasl* + 14 | D lay — a5,
j=1 j=1

which yields the desired inequality.

Theorem 2.2. If z is any zero of p;, then

n i
2] < (1 +2) |bj|2> .
7=1

Proof. First write the companion matrix of p; as C; = L + N + F, where

bn bnfl bl
L=|0 0 - 0
0 o0 0

0
0
0

[0 0
0 b,
0 0
[0 0

0
by
0
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0 0
I,y 0|

where I,,_; is the identity matrix of order n — 1. Then note that

and

F =

L'N=L"F=N'L=N'F=F'L=F'N=0.
Since

LY = IN"N | =) [by[?
j=1

and||F*F|| = 1, it follows by the triangle inequality that

IC2||> = |L'L+N*N + F*F|| < |L*L|| + | N*N|| + | F*F||

= 1+2) bl
j=1

and so
Il (123
j=1
Then the result follows from the fact that |z| < ||CZ | ‘% : O

Now, using an argument similar to that used in the proof of The following

1
theorem [2.2| and the fact [z| < ||C3 ||® for every zero z of p,, we have the
following related bound for the zeros of p, .

Theorem 2.3. If = is any zer of p,, then
n g
|2 < (Hw?Z!bﬂQ) ,
j=1
where 5 = by 1" -+ 102+ bu-al” + b bt + busf* + [baf” (75 03]
The following lemma can be found in [9].

Lemma 2.3. Let A € M,,(C) be partitioned as

All A12

A =
Ag1 A

b
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where A;; is an n; x n; matrix for i,j = 1,2 with ny + ny = n. If

i | Al [[As]
A2l || A2zl

then
r(A) §7"04).

In the following two Theorems we use some parttitions of C? and C7 to
estimate r (C2 ) and r (C2,) to derive new bounds for the zeros of p; and p»,
respectively.

Theorem 2.4. If = is any zer of p;, then

1
2

2| < (% {1+A+ (1—A)2+4ND ,

where

N

1 2 2 2 2 2

and

2

n—1 n—2
1
A R GEE DI i
j=1 j=1

n—1
> bdin
j=1

where & = b, 1 [* + 23777 |b[ .

Proof. By applying Lemma [2.3|to C? , partitioned as

2 =

P1

Sll S12
521 522 7
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1 0
b, b b by 0 0l
h Sy = n n—1 - n—2 """ 1 - 00
where oy [1 b, ]7 12 [bn—l by by | 21
_0 0_
[0 0 00 0]
0 0 0 00
S 1 0 0 00 b
29 = 0 1 00 0 , WE nave
00 --- 1 0 0 |

Sull - [I51]
() ([ [1S21]] - []S22]]
1 2
=3 H511H+H522H+\/(HSHH—HSEH) + 4|52l [|S2] ) -

Since ||S11|| = A, ||S12]| = i, and ||Sa:1|| = ||S22|| = 1, it follows that

r(C2) S%{1+/\+\/(1—)\)Q+4u}.

Now the desired bound follows from the fact |z| < r (051)% :

The following lemma can be found in [13].

[ Ch Cp—1 -+ C3 Co2 C 1
0 0 0 0 O
1 0 0 0 O _
Lemma 2.4. Let G = 0 ) 00 o0l with n > 4. Then
: : 0 0 O
| 0 0 1 0 0 |

1
61 = 5 (14 e+ e =1 e + laf)).
where a =377 le;|.

Our first theorem is related to the result in [|13]].

, and
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Theorem 2.5. If z is any zero of p, and n > 4, then

N

where
=5 (14D lgl+ (1+Zlcjl2> —4(jerf + |eal?)
j=1 j=1
Proof. Let
Cn = [0],012*[% Cn—2 &1 0]7
0 [0 ¢, c3 Co €1 |
] 0 0 0O 0 O
1 0 0 0
Ca = | 0], andCr= 5 0 0 0
) : 0O 0 O
0
L 0 0 1 0 0|
Then
o2 _ Cin Cho _
b2 C121 022

Using Lemma we get

iz <o

[[Cual] [|Chral|
[[Cor||  [|Cal|

)

1
=3 (HCHH + ||Caal| + \/(HCHH — [|Cas|1)* + 4[| Caa| HcmH) -

According to Lemma we have that ||Cy|| = 7. By simple computations,
ICull =0,

|[Cha]]

and
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Consequently,

Recalling that |2| < r ((152)% : O

Now;, in the following Theorem we use the fact r (A) = r (D 'AD) for any
invertiable matrix D to get generalized bound for the zeros of p;.

Theorem 2.6. If z is any zero of p; and n > 4, then

1
o< (max{ﬂ,ﬁwn\}m
2 To T

n—1
+ (max{r— 2 1by, |} a) +4— (”+2> ;> |,
2 1

j:

Whereoz::ma:x;{’"—3 L T"”}

re’ Ty’ Torp

Proof. Let D = diagonal (11,72, r,), where 1,75 r, are postive real numbers.

Then ~ .
0 %bn e 7“7;;1 bn—z 17:_?
no9 .00
DC,D=]0 2 - 0 0
[0 0 0 = o
and
_ Null [Nzl
oy (D) < (] 1 |
() =r (D7 D) ([nNmn Voo
where
0 m2p, T Tap o ... Inp
N — 1 Ny = 1 1 1
11 77:_; O ]7 12 [ O O O ]7
[0 = 0 0 0
0 0 noQ 0
Ny = . . 7andN22: .4 .
N : 0
0 0 0 0 ™ 0
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)

1
=5 (Il 1Vl U0 = Dl 4 ¥l )

Applying Lemma we have

[Nl [Nz
r(C < r
(o) ([ INall Nl

By tedious computatlons one can show that || Ny;|| = max {” L2 |bn|} || N1a|| =

T2’ T

r1

\/Z Ta+2 |b %, || Nay || = 2, and || Noz|| = «, it follows that

Now the desired bound follows from the fact that |z| < r (C,,) . O

The following two lemmas are well-known and they can be found in [15]
and [16} p. 133], respectively. The first lemma gives a useful formulation of the
numerical radius.

Lemma 2.5. Let A € M,,(C). Then

w(A) =max|| Re ( wA)H.

0eER

Lemma 2.6. Let T,, be the n x n tridiagonal matrix given by

01 o0 0

2 03 0
=101 o0 0
L 1

: 2

1
00 3 0]

Then the eigenvalues of T,, are

Aj = cos Wlforj:1,2,...,n
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Proposition 2.1. Let A, B,C, D € M,,(C). Then
w <

Proof. Let M = A B
C D

A B
C D

1 ) .
) < max (w( ReA),w(ReD))+ W (e’eB +e ).

. Using Lemma |[2.5} we have

| Re (¢"M)[[ = r(Re (¢"M))
1<i9AB L A*C*)
= —rfe
2 C D B* D

ez’GA + e—iGA* ez‘GB + e—i@c*
ei@c« + e—iOB* eieD + 6—i0D*

_ ;( )

By applying the triangle inequality of the numerical radius norm and Lemma

[2.5] we get

1 e A+ e A* 0
w (M) 5 \w i0 —i y*
2 0 e?D+e "D

= max(w(ReA),w(ReD))+ %w (e”B+eC").

The following lemma [2.7| gives a bound for the spectral radii of matrices. [

IN

0 B+ e 0C*
e?C + e~ B> 0

The following lemma can be found in [12].
Lemma 2.7. Let A, B € M, (C). Then

1
r(AB) < 2 (IABI| + | BA]|

+\/(||AB|| — 1BA|l)* + 4min (| A|l | BAB||, || B| ||ABA||)> :

0 B

Proposition 2.2. Let B,C € M, (C). If M = o

, Then

1 * * 3 * *
w(M) < < (1B + OB + /o> + 4min ([ B [C*BCT [CTTBCBI)) .
where o = | BC*|| — ||CB*||.
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0 .
Proof. Let M = o . Using Lemma |2.5, we have
|| Re (¢"M)[| = r(Re (¢"M))

1 (sl0 B w0 C

-2 (6 0 B 0 )
1 (] 0 B 4 e 00"

= —r . ,
2 eC + e 0 p* 0
1 ([ o e*B|[ei®B 0

= —r . ) .
2 e?C 0 0 e W0

Using a commutativity property of the spectral radius, we have

0 1 e B 0 0 €'B
HR@ (6 M)H - 27“ 0 e—i@c* 62‘90 0
_ 1 (] o BB
2 c*C 0
_ 1 (] o 8P
2 PP 0
1 gl
= \r(IBFICT) =5 (BlIC]).

By applying Lemma [2.7]and Lemma we get

1 * *
w(M) < < (IBC*| + |ICB|

+y/o2 +4min ([|B] [IC][B[ICIIl, [ICI Bl C] |B|||)>-
Using the fact |||C| | B |C||| = ||C*BC|| and |||B| |C||B||| = ||B*CB|| , we have

1 * * .
w(M) < < (1B + OB + v/o? + 4win ([BT[C*BCT, [CT [B°CBI))
U

Now, we are in a position to derive a new bound for the zeros of ps.

Theorem 2.7. If z is any zero of ps, then

|z| < cos 4+ cos— +-—w(B),
n+3 n+3 2
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where 8= e 0 0 €%, €%, --- €%, e“’dl].

Proof. Partition C,, as
Ly Lo

C,. =
" Loy Lo

Y

where

Ly = C|,and Ly =] 0 1

0

(00 - 10
Since w ( Re Ly;) = 0, and since by Lemma we have w ( Re Lyy) = cos ;7.
Using Proposition |2.1], we get

u + l’w (elez + 671'9[121) ;

<
w(CpS)_(:osn_i_3 5

where €Ly + e Ly = B.
Now the desired bound follows from the fact that |z| < w (C),,). O

The following lemma can be found in [3].

X
Y

Lemma 2.8. Let T = with X € My, (C) and Y € M,,,«x(C). Then

1 1 1
w (T) < G |P|? + 1w2 (XY) + cw (XY P+ PXY),

where P = | X*|” + |V|*.
We use a numerical radius inequality in the following Proposition to establish
a new bound for the zeros of ps.

Proposition 2.3. Let B € My (C), C € M, (C), and D € M,,(C), and let

M = 0B . Then
C D
[0 B 1 1, 1 i
< - - :
w( oD )_w(D)+(16l|N|| + (BC)+8w(BCN+NBC)) ,
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where N = BB* 4+ C*C.

B
Proof. Let U = 810) and V = gol.ThenM:UJrV.Usingthe

triangle inequality and Lemma we get
w(M) = wU+V)
< wU)+w(V)

IN

1 1 1 i
w (D) + (E IN|* + ZwZ (BC) + qw (BON + NBC)) ,

as required. O

The following lemma can be found in [6, pp. 8-9].

Lemma 2.9. Let L, be the n x n matrix given by

00 - 0 0]
10 --- 00
L,=[01 - 00
0 0 10|

Then

L,) = :
w (Ly) COS

Theorem 2.8. If z is any zero of p, then
1< faul 05T+ (L1 o sl + 9 1))
zl < \ay, COSn /3 \a An—1| (|Gp—1 ,

where 1) = Z;‘;ll la |’ .

Proof. Let
M, = [—an]7 Mo = [ —Qp—1 —AQp—2 -+ —QAz —a1 ] )
. [0 0 00|
0 10 00
My = ) , and Myy = 01 00
0 :
| 00 1 0]




836 M. Odeh

Then

=\ M
21 22

My, My ]

So, by the triangle inequality, we have

My 0 0 M
v (|0 ]) (| 32 ])

My 0
0

0 ]) = w (My;) = |a,| and by using Proposition

By computation, w ([
[2.3] we get

([ ] e
M21 M22

1 1 1
+ (E ||NH2 + sz (MyoMay) + gw (Myo Mo N + NM12M21)> ;

N

where N = M, M, + M, Mo, . Using Lemma we have w (M,;) = cos Z. But,
by computations, w(MlgMgl) = |an_1|, w (MlgMglN—f- NM12M21> = 2 |an_1|
(¢ + 1), and ||N|| = (¢ + 1) . Consequently,

1

w(6) <l + cos T+ 7 (10 1+ el (sl 46+ 1)

Recalling that |z| < w (C,), the result follows. O

Theorem 2.9. If z is any zero of p1, then

1
7 1 (1, )\ 1
— | = bn bn :
R A

|z| < cos

where & =1+ 37 [b;[*.

Proof. Partition C), as

Cpl =

Dll D12
D21 D22 ’
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where
Du = (0], Diz=| by by =+ by by |,
[0 0 0 0 |
1
. 10 0 0
D21 = . ’andD22: ]. 0 0
. :
[0 0 10 |

Then By using Proposition we get

1
1 1 1 i
w (Cpl) <w (D22) + (E HAH2 + Zw2 (D12D21) + gw (D12D21A + AD12D21)> )

where A = D,D%, + D3, Dy;. Using Lemma we have w (Dy;) = cos ;5.

But, by using simple computations, we have w (D13D21) = |b,|,w(Di2Da1 A
+ AD15D9y) = 21b,| €, and || A|| = £. Consequently,

1
T 1 1 4
w (Chpy) Scosn+1 —|—E (Z§2+|bn|§+|bn|2) )

Recalling that |z| < w (C),) . O

The following two theorems, however, can be proved similarly as in Theorem
2.9

Theorem 2.10. If z is any zero of p,, then

T 1 - 9
11 ,
n+2+2< +;|CJ|>

Theorem 2.11. If z is any zero of ps, then

[NIES

|z| < cos

=

T 1 " 2
< |1 d;
]z|_cosn+3+2< —1—;]]\)
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Example 1. Consider the polynomial p(z) = z* + 12> + z + 1. Then the upper
bounds for the zeros of this polynomial p(z) estimated by different mathematicians
are as shown in the following table

Bound Value
Fujii and Kubo [5]] | 1.7071
Cauchy [4] 2

Kittaneh [|11] 1.9652
Linden [|14] 1.8333

But if z is a zero of the polynomial p(z) = z* + 2% 4 z + 1, then Theorem gives
2| < 1.3296, Theorem [2.9gives |z| < 1.6508, Theorem[2.10|gives |z| < 1.6951, and
Theorem [2.11| gives |z| < 1.6621 which are better than all the estimates mentioned
above.

Finally, we remark that lower bound counterparts of the upper bounds ob-
tained in this paper can be derived by considering the polynomial £p () whose
zeros are the reciprocals of those of p. This enables us to describe annuli in the
complex plane containing all the zeros of p. Moreover, for k < n, compression
matrix inequalities may be applied to Cz’j in order to obtain further bounds for
the zeros of p.
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