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δ−IDEALS IN PSEUDO-COMPLEMENTED ALMOST DISTRIBUTIVE FUZZY
LATTICES

A. Nasreen Sultana1 and R. Kamali

ABSTRACT. The concept of δ−ideals is introduced in a Pseudo-Complemented
Almost Distributive Fuzzy Lattice (PCADFL) and some important properties
of these ideals are derived. PCADFL are characterized in terms of δ−ideals.
In addition, prime ideals also verified in PCADFL. Finally, some properties of
δ−ideals are studied with respect to fuzzy lattice homomorphism.

1. INTRODUCTION

The theory of pseudo-complementation was introduced and extensively stud-
ied in semi-lattices and particularly in distributive lattices by O. Frink [3] and G.
Birkhoff [1]. SG. Karpagavalli and A. Nasreen Sultana [7] introduced Pseudo-
Complementation on Almost Distributive Fuzzy Lattices (PCADFL) and proved
that it is equationally definable on ADFL by using properties of pseudo-complem
-entation on almost distributive lattice using the fuzzy partial order relation and
fuzzy lattice defined by I. Chon [8]. In [6], N. Rafi, Ravi Kumar Bandaru and S.
N. Rao introduced δ−ideals in Pseudo-complemented Almost Distributive Lat-
tices and some important properties are derived. In this paper, the concept of
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δ−ideals is introduced in a Pseudo-Complemented Almost Distributive Fuzzy
Lattices (PCADFL) in terms of pseudo-complementation and filters. We derive a
set of equivalent conditions for the class of all δ−ideals to become a fuzzy lattice
of all ideals, which leads to a characterization of PCADFL.

2. PRELIMINARIES

In this section, we recall certain basic definitions and results required.

Definition 2.1. [4] Let L be an ADFL and I be any non empty subset of R. Then
I is said to be an ideal of an ADFL L, if it satisfies the following axioms:

(1) a, b ∈ I implies that a ∨ b ∈ I,
(2) a ∈ I, b ∈ R implies that a ∧ b ∈ I.

Definition 2.2. [5] A prime ideal of L is called a minimal prime ideal if it is a
minimal element in the set of all prime ideals L ordered by set inclusion.

Theorem 2.1. [5] Let L be an ADL. Then a prime ideal P is minimal if and only
if for any x ∈ P , there exist an element y /∈ P such that x ∧ y = 0.

Definition 2.3. [6] Let L be a pseudo-complemented ADL. Then for any filter F
of L, define the set δ(F ) = {x ∈ L|x∗ ∈ F}.

Definition 2.4. [2] An element x of a pseudo-complemented lattice L is called
dense if x∗ = 0 and the set D(L) of all dense element of L forms a filter of L.

3. δ− IDEALS IN PSEUDO-COMPLEMENTED ALMOST DISTRIBUTIVE FUZZY

LATTICES

In this section, the concept of δ−ideals is extended in Pseudo-Complemented
Almost Distributive Fuzzy Lattice (PCADFL). Throughout this paper (R,A) stands
for a PCADFL (R,∨,∧,∗ , 0, 1).

Definition 3.1. Let (R,A) be a PCADFL, then for any filter F of R, the set δ(F) is
defined as follows: A(δ(F), a) > 0, for a ∈ R, a∗ ∈ F .

Theorem 3.1. Let (R,A) be a PCADFL with maximal elements. Then for any filter
F of R, δ(F) is an ideal of R.
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Proof. Since 0∗ ∈ F , we get that 0 ∈ δ(F). Let a, b ∈ δ(F). Then a∗, b∗ ∈ F ,
which implies a∗ ∧ b∗ ∈ F . Since F is a filter of R. Therefore a∗ ∧ b∗ = (a ∨ b)∗

where (a∨ b)∗ ∈ F . Hence A(a∗ ∧ b∗, (a∨ b)∗) > 0. Now, let a ∈ δ(F) and r ∈ R.
Then a∗ ∈ F , that implies a∗∨r∗ ∈ F , where a∗∨r∗ = (a∧r)∗ such that a∗ = a∗∗∗

where a = a ∧ r then
A(a∗, a∗∗∗) = A((a ∧ r)∗, (a ∧ r)∗∗∗)

= A((a ∧ r)∗, (a∗ ∨ r∗)∗∗)

= A((a ∧ r)∗, (a∗∗ ∧ r∗∗)∗)

= A((a ∧ r)∗, (a∗∗∗ ∨ r∗∗∗))

= A((a ∧ r)∗, (a∗ ∨ r∗))

= A((a ∧ r)∗, (a ∧ r)∗)

= 1 > 0.

Hence (a ∧ r)∗ ∈ F . So that (a ∧ r) ∈ δ(F). Therefore δ(F) is an ideal of R. �

Definition 3.2. Let (R,A) be a PCADFL. An ideal I of (R,A) is called a δ−ideal of
PCADFL if A(I, δ(F)) > 0, for some filter F of R.

Example 1. Let R = {0, x, y, z, 1}. Define a fuzzy relation A : R× R→ [0, 1] and
a∗ = 0 if a 6= 0 and 0∗ = x. Clearly (R,A) is a fuzzy poset. Then (R,∨,∧, 0) is
an ADFL with 0 and a → a∗ is a PCADFL on (R,A) whose Hasse diagram is given
below.

1

z

x

0

y

FIGURE 1. Hasse diagram of PCADFL R = {0, x, y, z, 1}

Now, let us consider I = {0, x} and F = {y, z, 1}. Clearly I is an ideal of R and
F is a filter of R. By definition 3.2. which satisfies A(I, δ(F)) > 0, for some filter
F of R. Which implies δ(F) = a|a∗ ∈ F . Hence δ(F) = {0, x} such that δ(F) = I.
Therefore I is a δ−ideal of R.
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Theorem 3.2. Let (R,A) be a PCADFL, then for each a ∈ R, (a∗] is a δ−ideal of R
if and only if A(δ([a)), (a∗]) > 0.

Proof. Let x ∈ (a∗]. Then x ∧ a = 0 and x∗ ∧ a = a, where a ∈ [a). So that

A(x ∧ a, 0) = A(x ∧ x∗ ∧ a, 0) = A(0 ∧ a, 0) = A(0, 0) = 1 > 0.

Thus, x∗ ∈ [a) which implies x ∈ δ([a)), such that, (a∗] ⊆ δ([a)). Conversely, if
x ∈ δ([a)) and x∗ ∈ [a) then x∗ ∧ a = a. Thus x ∧ a∗ = x. Therefore x ∈ (a∗].
Such that δ([a)) ⊆ (a∗] and hence (a∗] ∈ δ([a)). Therefore A((a∗], δ([a)) > 0.
Since δ([a)) ≤ (a∗]. We have A(δ([a)), (a∗]) > 0. Therefore (a∗] = δ([a)) by
anti-symmetry of A. Hence A(δ([a)), (a∗]) > 0. Therefore (a∗] is a δ−ideal of
R. �

Lemma 3.1. Let (R,A) be a PCADFL. Every prime ideal without dense element is
a δ−ideal if and only if A(P, δ(R− P )) > 0.

Proof. Let a ∈ P where P is a prime ideal of R without dense element and
a ∧ a∗ = 0 ∈ P . Then clearly, A(a ∧ a∗, 0) = A(a∗, 0) since a∗ = 0 and A(0, 0) =

1 > 0. If a∗ = 0 then clearly it is a dense element of R and said to be a∨a∗ which
is not in P . Hence a∨a∗ /∈ P , that implies a∗ /∈ P . Therefore a∗ ∈ (R−P ). Thus
a ∈ δ(R− P ). Since P ⊆ δ(R− P ) implies that A(P, δ(R− P )) > 0. Conversely,
suppose that a ∈ δ(R − P ). Then a∗ ∈ (R − P ) which implies that a∗ /∈ P .
Therefore δ(R − P ) ⊆ P such that A(δ(R − P ), P ) > 0. Thus P = δ(R − P )

by antisymmetry property of A. Hence A(P, δ(R − P )) > 0. Therefore P is a
δ−ideal. �

Lemma 3.2. Let (R,A) be a PCADFL. Every minimal prime ideal of R is a δ−ideal
if and only if A(P ∩D(R), φ) > 0.

Proof. Let (R,A) be a PCADFL and P be a minimal prime ideal of R. If a ∈
P ∩D(R). Then a ∈ P and a ∈ D(R) only if a∗ = 0. A Prime ideal P is minimal
if and only if to each a ∈ P there exists b /∈ P such that a ∧ b = 0 and a∗ ∧ b = b.
Thus A(a∗ ∧ b, b) = A(0 ∧ b, b) = A(0, b) suppose that b = 0, A(0, 0) = 1 > 0.
Therefore, if b = 0 ∈ P , which is a contradiction. Thus P ∩ D(R) = φ by
antisymmetry property of A. Hence A(P ∩ D(R), φ) > 0. Therefore P is a
δ−ideal. �

Lemma 3.3. Let (R,A) be a PCADFL. A proper δ−ideal contains no dense element
if and only if A(δ(F) ∩D(R), φ) > 0.
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Proof. Let I be a proper δ−ideal of PCADFL then A(I, δ(F)) > 0, for some filter
F of R. Suppose that a ∈ δ(F)∩D(R). If a ∈ D(R), we have a∗ = 0 ∈ F which is
a contradiction. Therefore δ(F)∩D(R) = φ . Hence A(δ(F)∩D(R), φ) > 0. �

Let us denote the set of all δ−ideals of R by J δ(R). We can observe clearly
from example (1) that J δ(R) is not a sublattice of J (R) of all ideals of R.
Consider F = {y, z, 1} and G = {x, z, 1}. Clearly F and G are filters of R. Now
δ(F) = {0, x} and δ(G) = {0, y}. But δ(F) ∨ δ(G) = {0, x, y, z} is not a δ−ideal
of R, because z ∈ δ(F) ∨ δ(G) is a dense element. In the following theorem we
prove that J δ(R) forms a complete almost distributive fuzzy lattice.

Theorem 3.3. Let (R,A) be a PCADFL. Then the set J δ(R) forms a complete
almost distributive fuzzy lattice.

Proof. Suppose that (R,A) be a PCADFL and F and G be any two filters of R,
define two binary operations u and t as follows:

δ(F) u δ(G) = δ(F u G) and δ(F) t δ(G) = δ(F ∨ G).

It is clear that δ(FuG) is the infimum of δ(F) and δ(G) in J δ(R). Also δ(F)tδ(G)
is a δ−ideal of R. Suppose that δ(F), δ(G) ⊆ δ(F ∨ G) = δ(F) t δ(G). Hence
A(δ(F) u δ(G), δ(F u G)) > 0 and A(δ(F) t δ(G), δ(F ∨ G)) > 0. Let δ(H)
be a δ−ideal of R such that δ(F) ⊆ δ(H) implies that A(δ(F), δ(H)) > 0 and
δ(G) ⊆ δ(H) which implies that A(δ(G), δ(H)) > 0 by antisymmetry property
of A, where H is a filter of R. Now we claim that δ(F ∨ G) ⊆ δ(H). Thus
A(δ(F ∨ G), δ(H)) > 0. Let a ∈ δ(F ∨ G). Then a∗ ∈ F ∨ G. Hence a∗ = f ∧ g for
some f ∈ F and g ∈ G. Since f ∈ F and g ∈ G, we get that f ∗ ∈ δ(F) ⊆ δ(H)
and g∗ ∈ δ(G) ⊆ δ(H). Then, for f ∗ ∈ δ(H) and g∗ ∈ δ(H) which implies
f ∗ ∨ g∗ ∈ δ(H).

A(f ∗ ∨ g∗, a) = A((f ∧ g)∗, a) = A((f ∧ g)∗∗∗, a) since (a∗ = a∗∗∗)

= A((f ∗ ∨ g∗)∗∗, a) = A((f ∗∗ ∧ g∗∗)∗, a)

= A((a∗)∗, a) = A(a∗∗, a) since (a∗∗ = a)

= A(a, a) = 1 > 0.

Since a∗ = f ∧ g which implies f = f ∗∗ and g = g∗∗ where (a∗)∗ = (f ∗∗ ∧ g∗∗)∗.
Since f ∗ ∨ g∗ ∈ δ(H) which implies (f ∗∗ ∧ g∗∗)∗ ∈ δ(H). Therefore a∗∗ ∈ δ(H).
Hence a ∈ δ(H). Thus δ(F)t δ(G) = δ(F ∨G) is the supremum of both δ(F) and
δ(G) in J δ(R). Therefore A(δ(F) t δ(G), δ(F ∨ G)) > 0. Hence (J δ(R),u,t) is
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a fuzzy lattice. Clearly, J δ(R) is a fuzzy partially ordered set with respect to set
inclusion. Then by the extension of the property, we can obtain that J δ(R) is a
complete fuzzy lattice. Therefore J δ(R) is a complete almost distributive fuzzy
lattice. �

Theorem 3.4. Let (R,A) be a PCADFL. B∗(R) is a fuzzy sublattice of the lattice
J δ(R) of all δ−ideals of R and hence is a Boolean fuzzy algebra. Moreover, the
mapping a→ (a∗] is a dual homomorphism from R onto B∗(R).

Proof. Suppose that (R,A) be a PCADFL. Let (a∗], (b∗] ∈ B∗(R) for any a, b ∈ R.
Then (a∗] u (b∗] ∈ B∗(R).

A((a∗] t (b∗], ((a ∧ b)∗]) = A(δ([a)) t δ([b)), ((a ∧ b)∗])

= A(δ([a) ∨ [b)), ((a ∧ b)∗])

= A(δ([a ∧ b)), ((a ∧ b)∗])

= A((a ∧ b)∗], ((a ∧ b)∗])

= 1 > 0.

Hence ((a ∧ b)∗] ∈ B∗(R). Therefore B∗(R) is a fuzzy sublattice of J δ(R) and
it is an almost distributive fuzzy lattice. Such that (0∗∗] and (0∗] are the least
and greatest elements of B∗(R). Now for any a ∈ R,A((a∗] u (a∗∗], (0]) > 0 and
similarly

A((a∗] t (a∗∗], δ(R)) = A(δ([a)) t δ([a∗)), δ(R))

= A(δ([a) t [a∗)), δ(R))

= A(δ([a) ∨ [a∗)), δ(R))

= A(δ([a ∧ a∗)), δ(R))

= A(δ([0)), δ(R))

= A(δ(R), δ(R))

= 1 > 0.

Since δ(R) = R. Hence (a∗∗] is the complement of (a∗] in B∗(R). Therefore
(B∗(R),u,t, 0) is a bounded almost distributive fuzzy lattice in which every
element is complemented. The remaining part can be proved easily. �

Lemma 3.4. Let (R,A) be a PCADFL. Every proper δ−ideal is contained in a min-
imal prime ideal.
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Proof. Suppose that (R,A) be a PCADFL. Let I be a proper δ−ideal of R. Then
A(I, δ(F)) > 0, for some filter F of R. Clearly δ(F) ∩ D(R) = φ which implies
that A(δ(F) ∩ D(R), φ) > 0. Then there exists a prime ideal P of R such that
δ(F) ⊆ P and P ∩D(R) = φ. Let a ∈ P and a ∈ P ∩D(R) then we always have
a∧a∗ = 0, suppose that a∗ ∈ P . A Prime ideal P is minimal if and only if to each
a ∈ P there exists a∗ /∈ P such that a ∧ a∗ = 0. Thus which is a contradiction.
Therefore P is a minimal prime ideal of R. �

Corollary 3.1. Let (R,A) be a PCADFL. The minimal prime ideals of a PCADFL are
maximal elements of the complete fuzzy lattice J δ(R). Clearly, it was observed that
J δ(R) is not a fuzzy sublattice of the ideal fuzzy lattice J (R). Consequently, we
prove some equivalent conditions for J δ(R) to become a fuzzy sublattice of J (R),
which leads to a characterization of PCADFL as follows.

Theorem 3.5. Let (R,A) be a PCADFL with maximal elements. Then the following
are equivalent:

(1) (R,A) is a PCADFL
(2) For any a, b ∈ R, A(a∗ ∨ b∗, (a ∧ b)∗) > 0

(3) For any two filters F ,G of R, A(δ(F ∨ G), δ(F) ∨ δ(G)) > 0

(4) J δ(R) is a fuzzy sublattice of J (R).

Proof.
(1) =⇒ (2): Assume that (R,A) is a PCADFL. Let a, b ∈ R.

A((a ∧ b)∗, a∗ ∨ b∗) = A((a ∧ b)∗∗∗, a∗ ∨ b∗)

= A((a∗ ∨ b∗)∗∗, a∗ ∨ b∗)

= A((a∗∗ ∧ b∗∗)∗, a∗ ∨ b∗)

= A((a∗∗∗ ∨ b∗∗∗), a∗ ∨ b∗)

= A(a∗ ∨ b∗, a∗ ∨ b∗)

= 1 > 0.

Therefore A((a ∧ b)∗, a∗ ∨ b∗) > 0.

(2) =⇒ (3): Assume the condition (2). Let F and G are the two filters of
R. We always have δ(F) ∨ δ(G) ⊆ δ(F ∨ G). Conversely, let a ∈ δ(F ∨ G). Then
a∗ ∈ F ∨ G which implies a∗ = f ∧ g for any f ∈ F and g ∈ G. There exists
(a∗)∗ = (f∧g)∗, such that a∗∗ = f ∗∨g∗. Therefore f ∗∨g∗ ∈ δ(F)∨δ(G). Thus a ∈
δ(F)∨δ(G). Hence δ(F∨G) ⊆ δ(F)∨δ(G). ThereforeA(δ(F∨G), δ(F)∨δ(G)) > 0.
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Since (δ(F) ∨ δ(G) ≤ δ(F ∨ G)). Such that A(δ(F) ∨ δ(G), δ(F ∨ G)) > 0 which
implies δ(F) ∨ δ(G) = δ(F ∨ G) by antisymmetry property of A. Therefore
A(δ(F ∨ G), δ(F) ∨ δ(G)) > 0.

(3) =⇒ (4): It is obvious.
(4) =⇒ (1): Assume that J δ(R) is a fuzzy sublattice of J (R). By theorem

3.4, for any a, b ∈ R, let (a∗], (b∗] ∈ B∗(R). Such that (0∗∗] and (0∗] are the least
and greatest elements of B∗(R). Now for any a ∈ R,A((a∗] u (a∗∗], (0]) > 0.
Hence ((a ∧ b)∗] ∈ B∗(R). Therefore B∗(R) is a fuzzy sublattice of J δ(R) and
it is an almost distributive fuzzy lattice. Since δ(R) = R. Hence (a∗∗] is the
complement of (a∗] in B∗(R). Therefore (B∗(R),u,t, 0) is a bounded almost
distributive fuzzy lattice in which every element is complemented. Clearly, it
satisfies the conditions of PCADFL. Therefore (R,A) is a PCADFL. Hence proved.

�

If f is a homomorphism of a PCADFL R with 0 into another PCADFL R′ with
0′. Such that Kerf = {a ∈ R|f(a) = 0} = {0} and f is onto, then f is need not
be an isomorphism which is observed by an example as follows.

Example 2. Suppose thatR = {0, x, y} andR′ = {0′, z} be two chains of PCADFLs.
A mapping is defined as f : R → R′ by f(0) = 0′, f(x) = z and f(y) = z.
Therefore f is a fuzzy lattice homomorphism from R → R′ and also f is onto.
Hence Kerf = {0}. Since f is not one-one. Therefore f is not an isomorphism.

Theorem 3.6. Let R and R′ be two PCADFLs with pseudo-complementation ∗

and f : R → R′ an onto homomorphism. If Ker f = {0}, then prove that
A(f(a∗), {f(a)}∗) > 0 for all a ∈ R.

Proof. Let R and R′ be two PCADFLs with pseudo-complementation ∗ and a ∈ R.
We have A(f(a) ∧ f(a∗), 0) = A(f(a ∧ a∗), 0) = A(f(0), 0)) = A(0, 0) = 1 > 0.

Suppose f(a) ∧ f(s) = 0 for some s ∈ R. Such that A(f(a) ∧ f(s), 0) =

A(f(a ∧ s), 0) = A(f(0), 0) = A(0, 0) = 1 > 0. Hence a ∧ s ∈ Kerf = {0}, since
a ∧ s = 0 and a∗ ∧ s = s. So that A(f(a∗) ∧ f(s), f(s)) = A(f(a∗ ∧ s), f(s)) =

A(f(s), f(s)) > 1 = 0. Clearly, f(a∗) is the pseudo-complement of f(a) in R′.
Which implies A(f(a∗), {f(a)}∗) = 1. Similarly, A({f(a)}∗, f(a∗)) = 1. There-
fore A(f(a∗), {f(a)}∗) = A({f(a)}∗, f(a∗)) = 1. So, we get A(f(a∗), {f(a)}∗) > 0

for all a ∈ R. �
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In the following theorem, we prove that the image of a δ−ideal of R under
the above fuzzy lattice homomorphism is again a δ−ideal.

Theorem 3.7. Let R and R′ be two PCADFLs with pseudo-complementation * and
f : R → R′ an onto fuzzy lattice homomorphism such that Ker f = {0}, then
prove that if I is a δ−ideal of R, then f(I) is a δ−ideal of R′.

Proof. Let I be a δ−ideal of R. Then A(I, δ(G)) > 0 for some filter G of R.
Clearly f(G) also a filter in R′. To show that A(δ{f(G)}, f{δ(G)}) > 0. Since
x ∈ f{δ(G)}. Then x = f(a) for any a ∈ δf (G). Therefore a∗ ∈ G. Now,
A(f(a) ∧ f(a∗), 0) = A(f(a ∧ a∗), 0) = A(f(0), 0) = A(0, 0) = 1 > 0. Therefore
A(f(a) ∧ f(a∗), 0) = A(f(a∗) ∧ f(a), 0) = 1. Since f(a∗) ∈ f(G) and {f(a)}∗ ∈
f(G) which implies {f(a)}∗ ∧ f(a∗) = f(a∗). Hence x = f(a) ∈ δ{f(G)}. Thus
f{δ(G)} ⊆ δ{f(G)}. Conversely, let y ∈ δ{f(G)}. Since f is onto, let a ∈ R such
that y = f(a). Then {f(a)}∗ ∈ f(G). Therefore {f(a)}∗ = f(x) for any x ∈ G. So
that,

A(f(a) ∧ {f(a)}∗, 0) = A(f(a) ∧ f(x), 0)

= A(f(a ∧ x), 0)

= A(f(0), 0)

= 1 > 0.

Since a ∧ x = 0, such that a ∧ x ∈ Kerf = {0}, there exists a∗ ∧ x = x where
x ∈ G. Similarly, a∗ ∈ G then a ∈ δ(G). Therefore y = f(a) ∈ f{δ(G)}. Thus
δ{f(G)} ⊆ f{δ(G)} and hence which implies A(δ{f(G)}, f{δ(G)}) > 0. Since
f{δ(G)} ≤ δ{f(G)}, we get A(f{δ(G)}, δ{f(G)} > 0. So, we have f{δ(G)} =

δ{f(G)} by antisymmetry property of A. Therefore A(δ{f(G)}, f{δ(G)}) > 0.
Hence proved. �

4. CONCLUSION

In this paper, some properties of δ−ideals are studied and then proved that
the set of all δ−ideals of a PCADFL forms a complete almost distributive fuzzy
lattice. Necessary and sufficient conditions for a pseudo-complemented ADL
to become PCADFL were investigated. In future, we can develop δ−ideals of
PCADFL into δ−filters of PCADFL and also which can be characterized in terms
of filter congruences.
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