

Advances in Mathematics: Scientific Journal **10** (2021), no.2, 901–910 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.2.19

$\delta-\mathrm{IDEALS}$ IN PSEUDO-COMPLEMENTED ALMOST DISTRIBUTIVE FUZZY LATTICES

A. Nasreen Sultana¹ and R. Kamali

ABSTRACT. The concept of δ -ideals is introduced in a Pseudo-Complemented Almost Distributive Fuzzy Lattice (PCADFL) and some important properties of these ideals are derived. PCADFL are characterized in terms of δ -ideals. In addition, prime ideals also verified in PCADFL. Finally, some properties of δ -ideals are studied with respect to fuzzy lattice homomorphism.

1. INTRODUCTION

The theory of pseudo-complementation was introduced and extensively studied in semi-lattices and particularly in distributive lattices by O. Frink [3] and G. Birkhoff [1]. SG. Karpagavalli and A. Nasreen Sultana [7] introduced Pseudo-Complementation on Almost Distributive Fuzzy Lattices (PCADFL) and proved that it is equationally definable on ADFL by using properties of pseudo-complem -entation on almost distributive lattice using the fuzzy partial order relation and fuzzy lattice defined by I. Chon [8]. In [6], N. Rafi, Ravi Kumar Bandaru and S. N. Rao introduced δ --ideals in Pseudo-complemented Almost Distributive Lattices and some important properties are derived. In this paper, the concept of

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 06D72, 06B10, 06D15, 08A72.

Key words and phrases. Almost Distributive Fuzzy Lattice (ADFL), Pseudo-Complemented Almost Distributive Fuzzy Lattice (PCADFL), ideal, prime ideal, δ -ideal, filter, maximal element.

Submitted: 08.01.2021; Accepted: 06.02.2021; Published: 22.02.2021.

 δ -ideals is introduced in a Pseudo-Complemented Almost Distributive Fuzzy Lattices (PCADFL) in terms of pseudo-complementation and filters. We derive a set of equivalent conditions for the class of all δ -ideals to become a fuzzy lattice of all ideals, which leads to a characterization of PCADFL.

2. Preliminaries

In this section, we recall certain basic definitions and results required.

Definition 2.1. [4] Let L be an ADFL and I be any non empty subset of R. Then I is said to be an ideal of an ADFL L, if it satisfies the following axioms:

(1) $a, b \in I$ implies that $a \lor b \in I$,

(2) $a \in I, b \in R$ implies that $a \land b \in I$.

Definition 2.2. [5] A prime ideal of L is called a minimal prime ideal if it is a minimal element in the set of all prime ideals L ordered by set inclusion.

Theorem 2.1. [5] Let L be an ADL. Then a prime ideal P is minimal if and only if for any $x \in P$, there exist an element $y \notin P$ such that $x \wedge y = 0$.

Definition 2.3. [6] Let L be a pseudo-complemented ADL. Then for any filter F of L, define the set $\delta(F) = \{x \in L | x^* \in F\}.$

Definition 2.4. [2] An element x of a pseudo-complemented lattice L is called dense if $x^* = 0$ and the set D(L) of all dense element of L forms a filter of L.

3. $\delta-$ Ideals in Pseudo-Complemented Almost Distributive Fuzzy Lattices

In this section, the concept of δ -ideals is extended in Pseudo-Complemented Almost Distributive Fuzzy Lattice (PCADFL). Throughout this paper (R, A) stands for a PCADFL $(R, \lor, \land, ^*, 0, 1)$.

Definition 3.1. Let (R, A) be a PCADFL, then for any filter \mathcal{F} of R, the set $\delta(\mathcal{F})$ is defined as follows: $A(\delta(\mathcal{F}), a) > 0$, for $a \in R, a^* \in \mathcal{F}$.

Theorem 3.1. Let (R, A) be a PCADFL with maximal elements. Then for any filter \mathcal{F} of R, $\delta(\mathcal{F})$ is an ideal of R.

Proof. Since $0^* \in \mathcal{F}$, we get that $0 \in \delta(\mathcal{F})$. Let $a, b \in \delta(\mathcal{F})$. Then $a^*, b^* \in \mathcal{F}$, which implies $a^* \wedge b^* \in \mathcal{F}$. Since \mathcal{F} is a filter of R. Therefore $a^* \wedge b^* = (a \lor b)^*$ where $(a \lor b)^* \in \mathcal{F}$. Hence $A(a^* \land b^*, (a \lor b)^*) > 0$. Now, let $a \in \delta(\mathcal{F})$ and $r \in R$. Then $a^* \in \mathcal{F}$, that implies $a^* \lor r^* \in \mathcal{F}$, where $a^* \lor r^* = (a \land r)^*$ such that $a^* = a^{***}$ where $a = a \land r$ then

$$A(a^*, a^{***}) = A((a \land r)^*, (a \land r)^{***})$$

= $A((a \land r)^*, (a^* \lor r^*)^{**})$
= $A((a \land r)^*, (a^{***} \land r^{**})^*)$
= $A((a \land r)^*, (a^{***} \lor r^{***}))$
= $A((a \land r)^*, (a^* \lor r^*))$
= $A((a \land r)^*, (a \land r)^*)$
= $1 > 0.$

Hence $(a \wedge r)^* \in \mathcal{F}$. So that $(a \wedge r) \in \delta(\mathcal{F})$. Therefore $\delta(\mathcal{F})$ is an ideal of R. **Definition 3.2.** Let (R, A) be a PCADFL. An ideal I of (R, A) is called a δ -ideal of PCADFL if $A(I, \delta(\mathcal{F})) > 0$, for some filter \mathcal{F} of R.

Example 1. Let $R = \{0, x, y, z, 1\}$. Define a fuzzy relation $A : R \times R \rightarrow [0, 1]$ and $a^* = 0$ if $a \neq 0$ and $0^* = x$. Clearly (R, A) is a fuzzy poset. Then $(R, \lor, \land, 0)$ is an ADFL with 0 and $a \rightarrow a^*$ is a PCADFL on (R, A) whose Hasse diagram is given below.

FIGURE 1. Hasse diagram of PCADFL $R = \{0, x, y, z, 1\}$

Now, let us consider $I = \{0, x\}$ and $\mathcal{F} = \{y, z, 1\}$. Clearly I is an ideal of R and \mathcal{F} is a filter of R. By definition 3.2. which satisfies $A(I, \delta(\mathcal{F})) > 0$, for some filter \mathcal{F} of R. Which implies $\delta(\mathcal{F}) = a | a^* \in \mathcal{F}$. Hence $\delta(\mathcal{F}) = \{0, x\}$ such that $\delta(\mathcal{F}) = I$. Therefore I is a δ -ideal of R.

Theorem 3.2. Let (R, A) be a PCADFL, then for each $a \in R$, $(a^*]$ is a δ -ideal of R if and only if $A(\delta([a)), (a^*]) > 0$.

Proof. Let $x \in (a^*]$. Then $x \wedge a = 0$ and $x^* \wedge a = a$, where $a \in [a)$. So that

$$A(x \land a, 0) = A(x \land x^* \land a, 0) = A(0 \land a, 0) = A(0, 0) = 1 > 0.$$

Thus, $x^* \in [a)$ which implies $x \in \delta([a))$, such that, $(a^*] \subseteq \delta([a))$. Conversely, if $x \in \delta([a))$ and $x^* \in [a)$ then $x^* \wedge a = a$. Thus $x \wedge a^* = x$. Therefore $x \in (a^*]$. Such that $\delta([a)) \subseteq (a^*]$ and hence $(a^*] \in \delta([a))$. Therefore $A((a^*], \delta([a)) > 0$. Since $\delta([a)) \leq (a^*]$. We have $A(\delta([a)), (a^*]) > 0$. Therefore $(a^*] = \delta([a))$ by anti-symmetry of A. Hence $A(\delta([a)), (a^*]) > 0$. Therefore $(a^*]$ is a δ -ideal of R.

Lemma 3.1. Let (R, A) be a PCADFL. Every prime ideal without dense element is a δ -ideal if and only if $A(P, \delta(R - P)) > 0$.

Proof. Let $a \in P$ where P is a prime ideal of R without dense element and $a \wedge a^* = 0 \in P$. Then clearly, $A(a \wedge a^*, 0) = A(a^*, 0)$ since $a^* = 0$ and A(0, 0) = 1 > 0. If $a^* = 0$ then clearly it is a dense element of R and said to be $a \vee a^*$ which is not in P. Hence $a \vee a^* \notin P$, that implies $a^* \notin P$. Therefore $a^* \in (R - P)$. Thus $a \in \delta(R - P)$. Since $P \subseteq \delta(R - P)$ implies that $A(P, \delta(R - P)) > 0$. Conversely, suppose that $a \in \delta(R - P)$. Then $a^* \in (R - P)$ which implies that $a^* \notin P$. Therefore $\delta(R - P) \subseteq P$ such that $A(\delta(R - P), P) > 0$. Thus $P = \delta(R - P)$ by antisymmetry property of A. Hence $A(P, \delta(R - P)) > 0$. Therefore P is a δ -ideal.

Lemma 3.2. Let (R, A) be a PCADFL. Every minimal prime ideal of R is a δ -ideal if and only if $A(P \cap D(R), \phi) > 0$.

Proof. Let (R, A) be a PCADFL and P be a minimal prime ideal of R. If $a \in P \cap D(R)$. Then $a \in P$ and $a \in D(R)$ only if $a^* = 0$. A Prime ideal P is minimal if and only if to each $a \in P$ there exists $b \notin P$ such that $a \wedge b = 0$ and $a^* \wedge b = b$. Thus $A(a^* \wedge b, b) = A(0 \wedge b, b) = A(0, b)$ suppose that b = 0, A(0, 0) = 1 > 0. Therefore, if $b = 0 \in P$, which is a contradiction. Thus $P \cap D(R) = \phi$ by antisymmetry property of A. Hence $A(P \cap D(R), \phi) > 0$. Therefore P is a δ -ideal.

Lemma 3.3. Let (R, A) be a PCADFL. A proper δ -ideal contains no dense element if and only if $A(\delta(\mathcal{F}) \cap D(R), \phi) > 0$.

Proof. Let *I* be a proper δ -ideal of PCADFL then $A(I, \delta(\mathcal{F})) > 0$, for some filter \mathcal{F} of *R*. Suppose that $a \in \delta(\mathcal{F}) \cap D(R)$. If $a \in D(R)$, we have $a^* = 0 \in \mathcal{F}$ which is a contradiction. Therefore $\delta(\mathcal{F}) \cap D(R) = \phi$. Hence $A(\delta(\mathcal{F}) \cap D(R), \phi) > 0$. \Box

Let us denote the set of all δ -ideals of R by $\mathcal{J}^{\delta}(R)$. We can observe clearly from example (1) that $\mathcal{J}^{\delta}(R)$ is not a sublattice of $\mathcal{J}(R)$ of all ideals of R. Consider $\mathcal{F} = \{y, z, 1\}$ and $\mathcal{G} = \{x, z, 1\}$. Clearly \mathcal{F} and \mathcal{G} are filters of R. Now $\delta(\mathcal{F}) = \{0, x\}$ and $\delta(\mathcal{G}) = \{0, y\}$. But $\delta(\mathcal{F}) \lor \delta(\mathcal{G}) = \{0, x, y, z\}$ is not a δ -ideal of R, because $z \in \delta(\mathcal{F}) \lor \delta(\mathcal{G})$ is a dense element. In the following theorem we prove that $\mathcal{J}^{\delta}(R)$ forms a complete almost distributive fuzzy lattice.

Theorem 3.3. Let (R, A) be a PCADFL. Then the set $\mathcal{J}^{\delta}(R)$ forms a complete almost distributive fuzzy lattice.

Proof. Suppose that (R, A) be a PCADFL and \mathcal{F} and \mathcal{G} be any two filters of R, define two binary operations \sqcap and \sqcup as follows:

$$\delta(\mathcal{F}) \sqcap \delta(\mathcal{G}) = \delta(\mathcal{F} \sqcap \mathcal{G}) \text{ and } \delta(\mathcal{F}) \sqcup \delta(\mathcal{G}) = \delta(\mathcal{F} \lor \mathcal{G}).$$

It is clear that $\delta(\mathcal{F} \sqcap \mathcal{G})$ is the infimum of $\delta(\mathcal{F})$ and $\delta(\mathcal{G})$ in $\mathcal{J}^{\delta}(R)$. Also $\delta(\mathcal{F}) \sqcup \delta(\mathcal{G})$ is a δ -ideal of R. Suppose that $\delta(\mathcal{F}), \delta(\mathcal{G}) \subseteq \delta(\mathcal{F} \lor \mathcal{G}) = \delta(\mathcal{F}) \sqcup \delta(\mathcal{G})$. Hence $A(\delta(\mathcal{F}) \sqcap \delta(\mathcal{G}), \delta(\mathcal{F} \sqcap \mathcal{G})) > 0$ and $A(\delta(\mathcal{F}) \sqcup \delta(\mathcal{G}), \delta(\mathcal{F} \lor \mathcal{G})) > 0$. Let $\delta(\mathcal{H})$ be a δ -ideal of R such that $\delta(\mathcal{F}) \subseteq \delta(\mathcal{H})$ implies that $A(\delta(\mathcal{F}), \delta(\mathcal{H})) > 0$ and $\delta(\mathcal{G}) \subseteq \delta(\mathcal{H})$ which implies that $A(\delta(\mathcal{G}), \delta(\mathcal{H})) > 0$ by antisymmetry property of A, where \mathcal{H} is a filter of R. Now we claim that $\delta(\mathcal{F} \lor \mathcal{G}) \subseteq \delta(\mathcal{H})$. Thus $A(\delta(\mathcal{F} \lor \mathcal{G}), \delta(\mathcal{H})) > 0$. Let $a \in \delta(\mathcal{F} \lor \mathcal{G})$. Then $a^* \in \mathcal{F} \lor \mathcal{G}$. Hence $a^* = f \land g$ for some $f \in \mathcal{F}$ and $g \in \mathcal{G}$. Since $f \in \mathcal{F}$ and $g \in \mathcal{G}$, we get that $f^* \in \delta(\mathcal{F}) \subseteq \delta(\mathcal{H})$ and $g^* \in \delta(\mathcal{G}) \subseteq \delta(\mathcal{H})$. Then, for $f^* \in \delta(\mathcal{H})$ and $g^* \in \delta(\mathcal{H})$ which implies $f^* \lor g^* \in \delta(\mathcal{H})$.

$$\begin{aligned} A(f^* \lor g^*, a) &= A((f \land g)^*, a) = A((f \land g)^{***}, a) \text{ since } (a^* = a^{***}) \\ &= A((f^* \lor g^*)^{**}, a) = A((f^{**} \land g^{**})^*, a) \\ &= A((a^*)^*, a) = A(a^{**}, a) \text{ since } (a^{**} = a) \\ &= A(a, a) = 1 > 0. \end{aligned}$$

Since $a^* = f \wedge g$ which implies $f = f^{**}$ and $g = g^{**}$ where $(a^*)^* = (f^{**} \wedge g^{**})^*$. Since $f^* \vee g^* \in \delta(\mathcal{H})$ which implies $(f^{**} \wedge g^{**})^* \in \delta(\mathcal{H})$. Therefore $a^{**} \in \delta(\mathcal{H})$. Hence $a \in \delta(\mathcal{H})$. Thus $\delta(\mathcal{F}) \sqcup \delta(\mathcal{G}) = \delta(\mathcal{F} \vee \mathcal{G})$ is the supremum of both $\delta(\mathcal{F})$ and $\delta(\mathcal{G})$ in $\mathcal{J}^{\delta}(R)$. Therefore $A(\delta(\mathcal{F}) \sqcup \delta(\mathcal{G}), \delta(\mathcal{F} \vee \mathcal{G})) > 0$. Hence $(\mathcal{J}^{\delta}(R), \sqcap, \sqcup)$ is a fuzzy lattice. Clearly, $\mathcal{J}^{\delta}(R)$ is a fuzzy partially ordered set with respect to set inclusion. Then by the extension of the property, we can obtain that $\mathcal{J}^{\delta}(R)$ is a complete fuzzy lattice. Therefore $\mathcal{J}^{\delta}(R)$ is a complete almost distributive fuzzy lattice.

Theorem 3.4. Let (R, A) be a PCADFL. $\mathcal{B}^*(R)$ is a fuzzy sublattice of the lattice $\mathcal{J}^{\delta}(R)$ of all δ -ideals of R and hence is a Boolean fuzzy algebra. Moreover, the mapping $a \to (a^*]$ is a dual homomorphism from R onto $\mathcal{B}^*(R)$.

Proof. Suppose that (R,A) be a PCADFL. Let $(a^*], (b^*] \in \mathcal{B}^*(R)$ for any $a, b \in R$. Then $(a^*] \sqcap (b^*] \in \mathcal{B}^*(R)$.

$$\begin{aligned} A((a^*] \sqcup (b^*], ((a \land b)^*]) &= A(\delta([a)) \sqcup \delta([b)), ((a \land b)^*]) \\ &= A(\delta([a) \lor [b)), ((a \land b)^*]) \\ &= A(\delta([a \land b)), ((a \land b)^*]) \\ &= A((a \land b)^*], ((a \land b)^*]) \\ &= 1 > 0. \end{aligned}$$

Hence $((a \wedge b)^*] \in \mathcal{B}^*(R)$. Therefore $\mathcal{B}^*(R)$ is a fuzzy sublattice of $\mathcal{J}^{\delta}(R)$ and it is an almost distributive fuzzy lattice. Such that $(0^{**}]$ and $(0^*]$ are the least and greatest elements of $\mathcal{B}^*(R)$. Now for any $a \in R$, $A((a^*] \sqcap (a^{**}], (0]) > 0$ and similarly

$$A((a^*] \sqcup (a^{**}], \delta(R)) = A(\delta([a)) \sqcup \delta([a^*)), \delta(R))$$

= $A(\delta([a) \sqcup [a^*)), \delta(R))$
= $A(\delta([a) \lor [a^*)), \delta(R))$
= $A(\delta([a \land a^*)), \delta(R))$
= $A(\delta([0)), \delta(R))$
= $A(\delta(R), \delta(R))$
= $1 > 0.$

Since $\delta(R) = R$. Hence $(a^{**}]$ is the complement of $(a^*]$ in $\mathcal{B}^*(R)$. Therefore $(\mathcal{B}^*(R), \Box, \Box, 0)$ is a bounded almost distributive fuzzy lattice in which every element is complemented. The remaining part can be proved easily. \Box

Lemma 3.4. Let (R, A) be a PCADFL. Every proper δ -ideal is contained in a minimal prime ideal.

Proof. Suppose that (R, A) be a PCADFL. Let I be a proper δ -ideal of R. Then $A(I, \delta(\mathcal{F})) > 0$, for some filter \mathcal{F} of R. Clearly $\delta(\mathcal{F}) \cap D(R) = \phi$ which implies that $A(\delta(\mathcal{F}) \cap D(R), \phi) > 0$. Then there exists a prime ideal P of R such that $\delta(\mathcal{F}) \subseteq P$ and $P \cap D(R) = \phi$. Let $a \in P$ and $a \in P \cap D(R)$ then we always have $a \wedge a^* = 0$, suppose that $a^* \in P$. A Prime ideal P is minimal if and only if to each $a \in P$ there exists $a^* \notin P$ such that $a \wedge a^* = 0$. Thus which is a contradiction. Therefore P is a minimal prime ideal of R.

Corollary 3.1. Let (R, A) be a PCADFL. The minimal prime ideals of a PCADFL are maximal elements of the complete fuzzy lattice $\mathcal{J}^{\delta}(R)$. Clearly, it was observed that $\mathcal{J}^{\delta}(R)$ is not a fuzzy sublattice of the ideal fuzzy lattice $\mathcal{J}(R)$. Consequently, we prove some equivalent conditions for $\mathcal{J}^{\delta}(R)$ to become a fuzzy sublattice of $\mathcal{J}(R)$, which leads to a characterization of PCADFL as follows.

Theorem 3.5. Let (R, A) be a PCADFL with maximal elements. Then the following are equivalent:

- (1) (R, A) is a PCADFL
- (2) For any $a, b \in R$, $A(a^* \lor b^*, (a \land b)^*) > 0$
- (3) For any two filters \mathcal{F}, \mathcal{G} of R, $A(\delta(\mathcal{F} \lor \mathcal{G}), \delta(\mathcal{F}) \lor \delta(\mathcal{G})) > 0$
- (4) $\mathcal{J}^{\delta}(R)$ is a fuzzy sublattice of $\mathcal{J}(R)$.

Proof.

(1)
$$\implies$$
 (2): Assume that (R, A) is a PCADFL. Let $a, b \in R$.

$$A((a \land b)^*, a^* \lor b^*) = A((a \land b)^{***}, a^* \lor b^*)$$

$$= A((a^* \lor b^*)^{**}, a^* \lor b^*)$$

$$= A((a^{***} \lor b^{***}), a^* \lor b^*)$$

$$= A((a^{***} \lor b^{***}), a^* \lor b^*)$$

$$= A(a^* \lor b^*, a^* \lor b^*)$$

Therefore $A((a \wedge b)^*, a^* \vee b^*) > 0$.

(2) \implies (3): Assume the condition (2). Let \mathcal{F} and \mathcal{G} are the two filters of R. We always have $\delta(\mathcal{F}) \lor \delta(\mathcal{G}) \subseteq \delta(\mathcal{F} \lor \mathcal{G})$. Conversely, let $a \in \delta(\mathcal{F} \lor \mathcal{G})$. Then $a^* \in \mathcal{F} \lor \mathcal{G}$ which implies $a^* = f \land g$ for any $f \in \mathcal{F}$ and $g \in \mathcal{G}$. There exists $(a^*)^* = (f \land g)^*$, such that $a^{**} = f^* \lor g^*$. Therefore $f^* \lor g^* \in \delta(\mathcal{F}) \lor \delta(\mathcal{G})$. Thus $a \in \delta(\mathcal{F}) \lor \delta(\mathcal{G})$. Hence $\delta(\mathcal{F} \lor \mathcal{G}) \subseteq \delta(\mathcal{F}) \lor \delta(\mathcal{G})$. Therefore $A(\delta(\mathcal{F} \lor \mathcal{G}), \delta(\mathcal{F}) \lor \delta(\mathcal{G})) > 0$.

= 1 > 0.

Since $(\delta(\mathcal{F}) \lor \delta(\mathcal{G}) \le \delta(\mathcal{F} \lor \mathcal{G}))$. Such that $A(\delta(\mathcal{F}) \lor \delta(\mathcal{G}), \delta(\mathcal{F} \lor \mathcal{G})) > 0$ which implies $\delta(\mathcal{F}) \lor \delta(\mathcal{G}) = \delta(\mathcal{F} \lor \mathcal{G})$ by antisymmetry property of A. Therefore $A(\delta(\mathcal{F} \lor \mathcal{G}), \delta(\mathcal{F}) \lor \delta(\mathcal{G})) > 0$.

(3) \implies (4): It is obvious.

(4) \implies (1): Assume that $\mathcal{J}^{\delta}(R)$ is a fuzzy sublattice of $\mathcal{J}(R)$. By theorem 3.4, for any $a, b \in R$, let $(a^*], (b^*] \in \mathcal{B}^*(R)$. Such that $(0^{**}]$ and $(0^*]$ are the least and greatest elements of $\mathcal{B}^*(R)$. Now for any $a \in R, A((a^*] \sqcap (a^{**}], (0]) > 0$. Hence $((a \land b)^*] \in \mathcal{B}^*(R)$. Therefore $\mathcal{B}^*(R)$ is a fuzzy sublattice of $\mathcal{J}^{\delta}(R)$ and it is an almost distributive fuzzy lattice. Since $\delta(R) = R$. Hence $(a^{**}]$ is the complement of $(a^*]$ in $\mathcal{B}^*(R)$. Therefore $(\mathcal{B}^*(R), \sqcap, \sqcup, 0)$ is a bounded almost distributive fuzzy lattice in which every element is complemented. Clearly, it satisfies the conditions of PCADFL. Therefore (R, A) is a PCADFL. Hence proved.

If *f* is a homomorphism of a PCADFL *R* with 0 into another PCADFL *R'* with 0'. Such that $Kerf = \{a \in R | f(a) = 0\} = \{0\}$ and *f* is onto, then *f* is need not be an isomorphism which is observed by an example as follows.

Example 2. Suppose that $R = \{0, x, y\}$ and $R' = \{0', z\}$ be two chains of PCADFLs. A mapping is defined as $f : R \to R'$ by f(0) = 0', f(x) = z and f(y) = z. Therefore f is a fuzzy lattice homomorphism from $R \to R'$ and also f is onto. Hence $Kerf = \{0\}$. Since f is not one-one. Therefore f is not an isomorphism.

Theorem 3.6. Let R and R' be two PCADFLs with pseudo-complementation * and $f : R \to R'$ an onto homomorphism. If Ker $f = \{0\}$, then prove that $A(f(a^*), \{f(a)\}^*) > 0$ for all $a \in R$.

Proof. Let *R* and *R'* be two PCADFLs with pseudo-complementation * and *a* ∈ *R*. We have $A(f(a) \land f(a^*), 0) = A(f(a \land a^*), 0) = A(f(0), 0)) = A(0, 0) = 1 > 0$. Suppose $f(a) \land f(s) = 0$ for some $s \in R$. Such that $A(f(a) \land f(s), 0) = A(f(a \land s), 0) = A(f(0), 0) = A(0, 0) = 1 > 0$. Hence $a \land s \in Kerf = \{0\}$, since $a \land s = 0$ and $a^* \land s = s$. So that $A(f(a^*) \land f(s), f(s)) = A(f(a^* \land s), f(s)) = A(f(s), f(s)) > 1 = 0$. Clearly, $f(a^*)$ is the pseudo-complement of f(a) in *R'*. Which implies $A(f(a^*), \{f(a)\}^*) = 1$. Similarly, $A(\{f(a)\}^*, f(a^*)) = 1$. Therefore $A(f(a^*), \{f(a)\}^*) = A(\{f(a)\}^*, f(a^*)) = 1$. So, we get $A(f(a^*), \{f(a)\}^*) > 0$ for all $a \in R$. □

In the following theorem, we prove that the image of a δ -ideal of R under the above fuzzy lattice homomorphism is again a δ -ideal.

Theorem 3.7. Let R and R' be two PCADFLs with pseudo-complementation * and $f : R \to R'$ an onto fuzzy lattice homomorphism such that $Ker f = \{0\}$, then prove that if I is a δ -ideal of R, then f(I) is a δ -ideal of R'.

Proof. Let *I* be a δ -ideal of *R*. Then $A(I, \delta(\mathcal{G})) > 0$ for some filter \mathcal{G} of *R*. Clearly $f(\mathcal{G})$ also a filter in *R'*. To show that $A(\delta\{f(\mathcal{G})\}, f\{\delta(\mathcal{G})\}) > 0$. Since $x \in f\{\delta(\mathcal{G})\}$. Then x = f(a) for any $a \in \delta_f(\mathcal{G})$. Therefore $a^* \in \mathcal{G}$. Now, $A(f(a) \wedge f(a^*), 0) = A(f(a \wedge a^*), 0) = A(f(0), 0) = A(0, 0) = 1 > 0$. Therefore $A(f(a) \wedge f(a^*), 0) = A(f(a^*) \wedge f(a), 0) = 1$. Since $f(a^*) \in f(\mathcal{G})$ and $\{f(a)\}^* \in f(\mathcal{G})$ which implies $\{f(a)\}^* \wedge f(a^*) = f(a^*)$. Hence $x = f(a) \in \delta\{f(\mathcal{G})\}$. Thus $f\{\delta(\mathcal{G})\} \subseteq \delta\{f(\mathcal{G})\}$. Conversely, let $y \in \delta\{f(\mathcal{G})\}$. Since *f* is onto, let $a \in R$ such that y = f(a). Then $\{f(a)\}^* \in f(\mathcal{G})$. Therefore $\{f(a)\}^* = f(x)$ for any $x \in \mathcal{G}$. So that,

$$A(f(a) \land \{f(a)\}^*, 0) = A(f(a) \land f(x), 0)$$

= $A(f(a \land x), 0)$
= $A(f(0), 0)$
= $1 > 0.$

Since $a \wedge x = 0$, such that $a \wedge x \in Kerf = \{0\}$, there exists $a^* \wedge x = x$ where $x \in \mathcal{G}$. Similarly, $a^* \in \mathcal{G}$ then $a \in \delta(\mathcal{G})$. Therefore $y = f(a) \in f\{\delta(\mathcal{G})\}$. Thus $\delta\{f(\mathcal{G})\} \subseteq f\{\delta(\mathcal{G})\}$ and hence which implies $A(\delta\{f(\mathcal{G})\}, f\{\delta(\mathcal{G})\}) > 0$. Since $f\{\delta(\mathcal{G})\} \leq \delta\{f(\mathcal{G})\}$, we get $A(f\{\delta(\mathcal{G})\}, \delta\{f(\mathcal{G})\}) > 0$. So, we have $f\{\delta(\mathcal{G})\} = \delta\{f(\mathcal{G})\}$ by antisymmetry property of A. Therefore $A(\delta\{f(\mathcal{G})\}, f\{\delta(\mathcal{G})\}) > 0$. Hence proved.

4. CONCLUSION

In this paper, some properties of δ -ideals are studied and then proved that the set of all δ -ideals of a PCADFL forms a complete almost distributive fuzzy lattice. Necessary and sufficient conditions for a pseudo-complemented ADL to become PCADFL were investigated. In future, we can develop δ -ideals of PCADFL into δ -filters of PCADFL and also which can be characterized in terms of filter congruences.

A. Nasreen Sultana and R. Kamali

References

- [1] G. BIRKHOFF: *Lattice theory*, 3rd ed., Amer. Math. Soc. Colloq. Publ., Providence, R. I., **25**, 1967.
- [2] G. GRATZER: General lattice theory, Academic Press, New York, San Francisco, 1978.
- [3] O. FRINK: Pseudo-complements in semi-lattices, J. Duke Math., 29 (1962), 505–514.
- [4] A. BERHANU, T. BEKALU: *Ideals and filters of an almost distributive fuzzy lattice*, AIP Conference Proceedings 1867, (2017), art. id. 020040.
- [5] G. C. RAO, S. RAVI KUMAR: Minimal prime ideals in an ADL, Int. J. Contemp. Sciences, 4 (2009), 475–484.
- [6] N. RAFI, R. K. BANDARU, S. N. RAO: δ-ideals in pseudo-complemented almost distributive lattices, Palestine Journal of Mathematics, 5(2) (2016), 240–248.
- [7] SG. KARPAGAVALLI, A. NASREEN SULTANA: Pseudo-complementation on almost distributive fuzzy lattices, Journal of Critical Reviews, 7(7) (2020), 758–761.
- [8] I. CHON: Fuzzy partial order relations and fuzzy lattices, Korean J. Math., 17(4) (2009), 361–374.

DEPARTMENT OF MATHEMATICS VELS INSTITUTE OF SCIENCE, TECHNOLOGY AND ADVANCED STUDIES CHENNAI, TAMILNADU, INDIA *Email address*: a.nasreensultana@gmail.com

DEPARTMENT OF MATHEMATICS VELS INSTITUTE OF SCIENCE, TECHNOLOGY AND ADVANCED STUDIES CHENNAI, TAMILNADU, INDIA *Email address*: kamali.sbs@velsuniv.ac.in