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CONNECTION BETWEEN FUZZY PROXIMITIES AND FUZZY
UNIFORMITIES

Md. Arshaduzzaman

ABSTRACT. The present paper introduces the concept of fuzzy proximity and
fuzzy uniformity. Moreover every fuzzy uniformity induces a fuzzy proximity
and vice- versa. Here we shall study some connection between fuzzy unifor-
mities and fuzzy uniformities induces fuzzy proximities in a canonical way and
vice-versa.

1. INTRODUCTION

Many concepts of general topology were extended to fuzzy set theory after
the papers of Zadeh and Chang. Fuzzy uniformities were introduced by Lowen
and Hutton, [1]. The two approaches are quite difficult. The one proposed by
Hutton suits in a better manner to Fuzzy set theory.

The concept of Fuzzy proximity till then was unsatisfactory. Its “Fuzzyness”
was rather poor since these proximities were in a canonical one-one correspon-
dence with the usual proximities.

1corresponding author
2020 Mathematics Subject Classification. 54E05, 03E72.
Key words and phrases. Fuzzy proximity, fuzzy uniformity, fuzzy topological spaces, uniform

spaces.
Submitted: 15.08.2020; Accepted: 07.01.2021; Published: 24.02.2021.

933



934 Arshaduzzaman

Moreover the open sets of the induced topologies are crisp and though every
Lowen fuzzy uniformities induces a fuzzy proximity, this correspondence cannot
work well since the two structures do not give the same fuzzy topology.

For the re reasons, anther definition of fuzzy proximity was given by Artico
and Moresco, [3] which enables to associate a topology in a completely different
way. Moreover every fuzzy uniformity induces a fuzzy proximity and vice-versa.

1.1. Notations and preliminaries. (L, ∨, ∧,′ ) is a (complete) completely dis-
tributive lattice with order reserving involution ′(= complementation).

Given a set X, any element of LX is called fuzzy set. If Y is a subset of X, we
shall use the same letter Y to indicate the element of LX . We define:

f (x) = l ifx ∈ Y

f(x) = 0 otherwise.

i.e. a ∈ L, x ∈ X; as denote the elements of LX which takes the value ‘a’ at the
point x and 0 elsewhere, ax is said to be a fuzzy point and x its support. Also
lx= x. If µ ∈ LX . We say that ax belongs to µ or that ax is a fuzzy point of
µ if a ≤ µ (x).

LX inherits a structure of Lattice with order reversing involution in a natural
way by defining ∨, ∧, ′ point wise (same notation of L is used.)

If f : X → Y is a function and µ, v belong to LX , LY respectively, are usual
we put

f← (v) (x) = v (f(x)) = (vof) (x) for x ∈ X

f (µ) (y) = sup {µ (x) : x ∈ X, f(x) = y} for y ∈ Y

f (f← (v)) = v ∧ f (x) and f (f(µ)) ≥ µ

Clearly f f← (v) ∈ LX , f (µ) ∈ LY .

Moreover f← preserves complementation, arbitrary unions and arbitrary in-
tersections and that:

f (Vi∈ I µi) = V
i∈I
f (µi)

A fuzzy topological spaces is a pair (X, τ) where τ ∈ LX contains the con-
stants O and 1 is closed under finite intersection and arbitrary unions. The
elements of τ are called open and their complements closed.

Given a fuzzy topological space (X, τ) a fuzzy set µ ∈ LX is said to be τ−nhd
(or simply nhd) of ax if there exists v ∈ τ such that ax ≤ v ≤ µ. Clearly a
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fuzzy set is open iff it is a nhd of any of its points, interior and closure of fuzzy
sets are defined in the usual way.

If (X, τ) and (Y, τ ′) are fuzzy topological spaces a function f : X → Y is said
to be continuous if f←(v) ∈ τ for every v ∈ τ ′.

Now we use the definition of fuzzy uniform space given by Huttorn. We
denote the set of maps. U : LX → LX which satisfy

(i) U (O) = O
(ii) U : Lx → Lx

(iii) U
(
v
i∈ I

µi

)
= v

i∈ I
U (µi) for µ, µi ∈ LX

If U, V belongs to Z, we define U ∧ V to be the infimum of U and V in Z which
turns out to satisfy

(U ∧ V ) (µ) = ∧
µ1∨µ2=µ

(U (µ1) ∨ (µ2)) .

Moreover we define

U−1 (µ) = inf {ρ : U (ρ′) ≤ µ′} ,

an element U such that U = U−1 is called symmetric.

Definition 1.1. A fuzzy uniformity on X is a subset ℘ of Z such that

℘ 6= φ(U1)

U ∈ ℘andU ≤ V ∈ Z implies V ∈ ℘(U2)

U, V ∈ ℘ implies U ∧ V ∈ ℘(U3)

U ∈ ℘ implies there exists V ∈ ℘ such that V ◦ V ≤ U(U4)

U ∈ ℘ implies U−1 ∈ ℘(U5)

Subbasis and basis of a uniformity get the obvious significance. Clearly (U5)
may be replaced by: ℘ has a basis of symmetric elements.

Given a function f : X → Y , for any V : LY → LY , we define

f← (V ) : LX → LX by

f← (V ) (µ) = f← (V (f (µ)))

for any µ ∈ LX .
It is clear that V satisfies (i) to (iii), then f←(V ) satisfies (i) to (iii) too.
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If (X, ℘) and (Y,f) are uniform spaces, a function f : X → Y is said to be a
uniform map if for every V ∈ f, the element f← (V ) belongs to ℘.

Hutton showed that any Fuzzy uniformity ℘ induces a fuzzy topology by
putting µ ∈ τ℘ iff

µ = sup
{
ρ ∈ LX : U (ρ) ≤ µ for someU ∈ ℘

}
Moreover every uniform map from (X, ℘) to (Y,f) is continuous equipping

X and Y with the induced fuzzy topologies.

2. SOME RESULTS

Proposition 2.1. Let (X, ℘) to (Y,f) be uniform spaces f : X → Y a function
and τ ′ a subbasis of f. Then f is a uniform map iff f← (S) ∈ ℘ for every S ∈ τ ′.

Proof. The ‘only if’ part is trivial. For the converse let us suppose that if S1

and S2 belong to τ ′, then f← (S1 ∧ S2) belongs to ℘; namely we show that
f← (S1 ∧ S2) = f← (S1) ∧ f← (S2).

First we observe that first number of the quality is les than or equal to the
second one. For the other inequality we have for

µ ∈ LX and x ∈ X (f← (S1) ∧ f← (S2) ) (µ) (x)

= ∧
µ1 v µ2=µ

(S1 (f (µ1))) ∨ (S2 (f (µ2))) (f(x))

andf← (S1 ∧ S2) (µ) (x)

= (S1 ∧ S2) (f (µ)) (f (x))

= v1 v v2 (S1 (v1) ∨ S2 (v2)) (f(x))

we see that inf v1 ∨ v2 = f (µ), we then have

(f← (v1) ∧ µ) ∨ (f← (v2) ∧ µ)

= f← (v1) ∧ (f← (v2)) ∧ µ

= f← (v1 ∨ v2) ∧ µ = f← (f (µ)) ∧ µ = µ
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Moreover for i = 1, 2

f (f← (vi) ∧ µ) (y) = sup {f← (vi) ∧ µ) (x) : f (x) = y}

= sup {vi (f(x) ∧ µ (x) : f (x) = y)}

= vi (y) ∧ sup {µ (x) := f(x) = y}

= vi (y) ∧ f(µ) (y) = vi (y)

Hence if we take µi = f← (vi) ∧ µ, we have µ1 ∨ µ2 = µ and f (µi) = vi and the
conclusion follows. �

Definition 2.1. A Fuzzy proximity on a set X is a function δ : LX × LX → {0, 1}
which satisfies for any µ, v, p ∈ Lx the following conditions:

(P1) δ (0,1) = 0

(P2) δ (µ, ρ) = δ (ρ, µ)

(P3) δ (µ, ρ) ∨ δ (v, ρ) = δ (µ ∨ v, ρ)

(P4) if (µ, ρ) = 0 there exists γ ∈ LX Such that δ (µ, λ) = 0, δ (ρ, γ′) = 0

(P5) δ (µ, ρ) = 0, implies µ ≤ ρ′

The pair (X, δ) is said to be fuzzy proximity space.
If δ (µ, ρ) = 0 we say that µ and ρ are far, otherwise we say that they re

proximal. (P1 − P4) are the natural extensions of classical case. (P5) needs
some comment since A. Katsaras formulated the analogous axiom in a different
manner. In the case L = {0, 1} , (P5) means exactly that if two subsets intersect
then they are proximal. In the case L = {0, 1} = 1, (P5) means that µ and ρ are
proximal whenever exist x ∈ X such that µ (x) + ρ (x) 〉 1.

Definition 2.2. Let (X, δ) and (Y, η) be fuzzy proximity spaces. A function f is a
proximity map if one of the following equivalent condition holds:

(a) For every, v, σ ∈ LY , η (v, σ) = 0 implies δ (f← (v), f← (σ)) = 0

(b) For every µ, ρ ∈ LX , δ (µ, ρ) = 1 implies η (fµ), f (ρ)) = 1

To see that conditions (a) and (b) are equivalent, we may use part (i) of the
following Lemma.

Lemma 2.1. Let (X, δ) be a fuzzy proximity space. For every µ, ρ ∈ LX and
δ (µ, ρ) = 1

(i) η(f(µ), f(ρ)) = 1
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(ii) If δ (µ, ρi) = 0 for i = 1, . . . n, then δ
(
∧µi
i=1...n

, ∨ ρi
i=1...n

)
= 0.

Proof. One can use (P3) to prove (i) and (P3) to prove (ii). �

Remark 2.1. Clearly the set of all proximities on a given set X can be equipped with
a partial order by defining δ1 finer than δ2(or δ2 coarser than δ1) if the identity of
X is a proximity map from (X, δ1) to (X, δ2).

We shall define the fuzzy topology induced by fuzzy proximity.
We take a proximity space (X, δ) a nd for any, µ ∈ Lx we put

int (µ) = sup {ρ : δ (ρ. µ′) = 0} ,

and denote it by µ0 or int (µ).

Theorem 2.1. The function int : LX → LX satisfies the interior axioms namely,
we have for µ, ρ ∈ LX

(I1) int (1) = 1
(I2) int (µ) ≤ µ

(I3) int (int (µ)) = int µ

(I4) int (µ ∧ ρ) = int (µ) ∧ int (ρ)

Proof. (I1) and (I2) follow trivially from (P1) and (P5) respectively.
(I3) clearly int (int (µ)) ≤ int (µ)

We now take ρ such δ (ρ, µ′) = 0.
By (P4) there exist γ such that δ (ρ, γ′) = 0 and δ (γ, µ′) = 0; hence ρ ≤

int (γ), ρ ≤ int (µ) and int (γ) ≤ int (µ) because int is monotone, therefore
γ ≤ int (int (µ)) for every ρ, such that δ (ρ, µ′) = 0.

So that int (int µ) ≥ int (µ)

(I4) Trivially int (µ ∧ ρ ≤ int (µ) ∧ int (ρ)).
For the converse, we see that in a completely distributive lattice, the infinite

distributive law holds, hence we have

int (µ) ∧ int (ρ) = sup { v : δ (v, µ) = 0 } ∧ sup {σ : δ (σ, ρ′) = 0}

= sup {v ∧ σ : δ (v, µ′) = 0 = δ (σ : ρ′)}

≤ sup {t : δ (t, µ′ ∨ ρ′) = 0}

sup {t : δ (t, µ ∧ ρ) ′ = 0 }

int (µ ∧ ρ) �
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Definition 2.3. The fuzzy topology induced by fuzzy proximity δ is denoted by τδ
and consists of all fuzzy sets µ ∈ LX such that µ = int (µ).

Clearly the closure of µ in the topology τδ denoted Clτδ (µ) or Cl (µ) is given by
(int (µ′))′.

Remark 2.2. (I) If L = I then µ is a τδ− nhd of ax iff for every b<a we have

δ (bx, I − µ) = 0

(II) : If (X, δ) is a classical proximity space, for any µ ∈ LX , we put

coz (µ) = (x ∈ X : µ (x) > 0) and

define δ̂ (µ, ρ) = 0 iff coz (µ) δcoz (ρ).
Then δ̂ is fuzzy proximity and τδ open fuzzy sets are exactly the characteristic

functions of the sets which are open in the topology induced by δ.
(III) The fuzzy proximity introduced by Katsaras [2] satisfy conditions IP1 –

P5) and the δ of the example above is a Katsaras proximity. Furthermore, given
a Katsaras proximity η, it is clear to prove that there exists a classical proximity
δ such that δ̂ = η; indeed for A, B subset of X. We put Aδ B iff AηB.

To prove that δ is a usual proximity and δ̂ = η, we consider the fact that for
every µ, ρ ∈ IX we have that the closure of µ introduced by Katsaras (denoted
by µ̄ in this example) is a characteristic function and

µηρ iff µ̄ρ̄ iff coz (µ) η coz (ρ)iff coz (µ) δ coz (ρ) ,

iff δ̂ (µ, ρ) = 1. Thus Katsaras proximity are in a canonical 1-1 correspondence
with the usual proximities.

Proposition 2.2. Let (X, δ), (Y, η) be f. proximity spaces. If : X → Y is proxim-
ity map, then it is continuous equipping X and Y with the induced fuzzy topologies.

Proof. Let v be τη - open set i.e. v sup {σ : η (σ, v′) = 0 } .
Hence f← (v) = sup {f← (σ) : η (σ, v ′) = 0}

≤ sup
{
ρ : δ (ρ, f← (v))′ = 0

}
i.e. f← (v) = int (f← (v)) is a τδ − open set. �

Proposition 2.3. Let δ be a fuzzy proximity on X. Then,

(i) δ (µ, ρ) = 0 iff δ (µ̄, ρ) = 0;

(ii) µ̄ = sup
{
v : δ (µ, ρ) = δ (v, ρ) for every ρ ∈ LX

}
.
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Proof. The ‘if part’ is trivial, for the converse let us take γ such that δ (γ′, µ) =

0 = δ (ρ, γ). Hence γ′ ≤ int (µ′) so that γ ≥ (int (µ′))′ = µ̄ and δ (ρ, µ) = 0.

By (i) we get that µ̄ ≤ sup
{
v : δ (µ, ρ) = δ (v, ρ) for every υ ∈ LX

}
.

We then take v ≤ µ̄ such that γ (µ, ρ) = δ (v, ρ) for every ρ ∈ LX and we put
t = µ̄ ∨ v. We see that t > 6= µ̄ and δ (t, ρ) for every ρ ∈ LX .

Since t′ < (µ̄)′ = int (µ′); by the definition of int there exists σ ≤ t′. such
that δ (µ, σ) = 0while(P5) implies δ (t, σ) = 1 which is a contradiction. �

3. CONNECTION BETWEEN FUZZY PROXIMITIES AND FUZZY UNIFORMITIES

Now we shall study some connection between fuzzy uniformities and fuzzy
proximities. We shall show that any fuzzy uniformity induces a fuzzy proximity
in a canonical way and vice-versa.

Let ℘ be a fuzzy uniformity and for µ, ρ ∈ LX we define
δ℘ (µ, ρ = 0) iff there exists

U ∈ ℘ s.t. U (µ) ≤ ρ′.

Theorem 3.1. δ℘ as defined above is a fuzzy proximity.

Proof. We shall verify properties (P1-P5)

(P1) - is trivial.
(P2) δ℘ (µ, ρ) = δ℘ (ρ, µ) , since for U ∈ ℘, U (µ) ≤ ρ′ iff U−1 (ρ) ≤ µ.

(P3) It is sufficient to prove that

δ℘ (µ, ρ ) = 0 = δ℘(v, ρ)

implies δ℘ (µV v, ρ ) = 0 since the converse is trivial.
If U (µ) ≤ ρ′, V (v) ≤ ρ′, we have (U ∧ V ) (µ ∨ v) ≤ ρ′ and then

δ℘ (µ ∨ v, ρ) = 0.

(P4) Let δ℘ (µ, ρ) = 0∃U ∈ ℘ such that U (µ) ≤ ρ′. We take V ∈ ϑ, then
V = V −1, and

V (V (µ) ) ≤ ρ′ ⇒ V (ρ) ≤ (V (µ))′ .

Hence for γ = V (ρ) we have δ℘ (µ, γ) = 0 = δ℘ (ρ, γ′).

(P5) Trivial.

�
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Remark 3.1. We say that a fuzzy uniformity ℘ is separated if for given points ax,
by such that ax ≤ (by)′ there exists U ∈ ℘ such that:

U (ax) ≤ (by)′.

Theorem 3.2. Let ℘ be a fuzzy uniformity, then ℘ and δ℘ induce the same topol-
ogy.

Proof. Given a fuzzy set µ,we see that {v : ∃U ∈ ℘ such that U (v) ≤ µ } =

{ v : δ℘ (v, µ′ = 0 } and the supermum of the first member of the equality is the
interior of µ in the topology induced by ℘, while the supermum of the second
one is the interior of µ in the topology induced by δ℘. �
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