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SINGULARLY PERTURBED LOGISTIC DIFFERENCE EQUATION

A. M. A. EL-Sayed, S. M. Salman, and A. M. A. Abo-Bakr1

ABSTRACT. This paper is concerned with the comparison of the dynamic be-
haviour between the singularly perturbed logistic diference equation with con-
tinuous argument and its difference equation with continuous argument coun-
terpart.

1. INTRODUCTION

Singularly perturbed equations arises in applications where delays and pertur-
bations play a role [1]. Delays arise in many mathematical models of population
dynamics because any species need time to become mature or to digest their
food for their activities [4, 5, 8]. The population represents humans, biological
lifeforms in ecological systems, chemical compounds, farm lands [6].

Let ε ∈ (0, 1] and consider the logistic difference equation with continuous
argument x(t) = ρx(t − 1)(1 − x(t − 1)), t ∈ [0, T ], x(t) = x0, t ≤ 0 and its
singularly perturbed equation

(1.1) ε
dx

dt
+ x(t) = ρx(t− 1)(1− x(t− 1)), t ∈ [0, T ], x(t) = x0, t ≤ 0.
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2. MAIN RESULTS

2.1. Stability and Bifurcation. There are two fixed points of (1.1) (x1)fix = 0

and (x2)fix = 1− 1
ρ
.

The linearized equation at (x1)fix = 0 is dx
dt

= −1
ε
x(t) + ρ

ε
x(t − 1). Assuming

x(t) = eλt, the characteristic equation reads

λ+
1

ε
− ρ

ε
e−λ = 0.

The linearized equation at (x2)fix = 1 − 1
ρ

is dy
dt

= −1
ε
y(t) + 2−ρ

ε
y(t − 1), where

y(t) = y(t)− (1− 1
ρ
). The characteristic equation reads

(2.1) λ+
1

ε
− 2− ρ

ε
e−λ = 0.

Theorem 2.1.

(1) The fixed point (x1)fix = 0 of (1.1) is unstable if ρ < ερ0 or ρ > 1 where

ρ0 = −
√

1

(ε)2
+ (ξ)2, ξ = −1

ε
tanξ, 0 < ξ < π, and is stable if ερ0 < ρ < 1,

(2) The fixed point (x2)fix = 1 − 1
ρ

of (1.1) is local stable if 1 < ρ < 2 − ερ0,
and unstable if ρ < 1 or ρ > 2− ερ0.

Theorem 2.2. When the parameter ρ passes through ρ = ερ0 = −ε
√

1
(ε)2

+ ξ2, ξ =
−1
ε
tanξ, 0 < ξ < π, there is a Hopf Bifurcation from (x1)fix = 0 to a periodic orbit.

When ρ passes through ρ = 2−ερ0, there is a Hopf Bifurcation from (x2)fix = 1− 1
ρ

to a periodic orbit.

Proof. Assume that λ = iω0, ω0 ∈ R+ is a pure imaginary solution of (2.1) for
some parameter value ρ = ρ∗. This leads to the following equations

iω0 +
1

ε
− ρ∗

ε
e−iω0 = 0,

1

ε
− ρ∗

ε
cos(ω0) = 0,

1

ε
=
ρ∗
ε
cos(ω0),

ω0−
ρ∗
ε
sin(ω0) = 0, ω0 =

ρ∗
ε
sin(ω0), ω2

0 +
1

ε2
=
ρ∗
ε2
[cos(ω0)

2 + sin(ω0)
2] =

ρ∗
ε2
,

ρ∗ = ±ε

√
1

(ε)2
+ ω2

0, ω0 =
−1
ε
tanω0.

By Theorem 2.1, ρ∗ = −ε
√

1
ε2
+ ω2

0 is the critical value of ρ, where ω0 is the root

of ω0 =
−1
ε
tanω0, 0 < ω0 < π.
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Now, we are left with the condition d(Re(λ))
dρ

|ρ=ρ∗ 6= 0. To show that this condition
is satisfied, let λ = k(ρ) + iω(ρ) and using (1.1) we get k+ iω+ 1

ε
− ρ

ε
e−k−iω = 0,

(2.2) k +
1

ε
− ρ

ε
e−kcosω = 0,

(2.3) ω +
ρ

ε
e−ksinω = 0.

Differentiate (2.2) and (2.3) with respect to ρ, we obtain

ε
dk

dρ
− e−kcos(ω) + ρe−kcos(ω)

dk

dρ
+ ρe−ksin(ω)

dω

dρ
= 0,

ε
dω

dρ
+ e−ksin(ω) + ρe−kcos(ω)

dω

dρ
− ρe−ksin(ω)dk

dρ
= 0.

Solving for dk
dρ

, we obtain

d(Re(λ))

dρ
|ρ=ρ∗ =

dk

dρ
|k=0,ω=ω0,ρ=ρ∗=

εcos(ω0) + ρ∗
(ε+ ρ∗cos(ω0))2 + (ρ∗sin(ω0))2

=
ερ∗cos(ω0) + ρ2∗

ρ∗[(ε+ ρ∗cos(ω0))2 + (ρ∗sin(ω0))2]

=
ε+ ρ2∗

ρ∗[(ε+ ρ∗cos(ω0))2 + (ρ∗sin(ω0))2]
6= 0.

Similarly, we can prove that there is a Hopf Bifurcation from the fixed point
(xfix)2 = 1 − 1

ρ
to a periodic orbit whenever ρ passes through the critical value

ρ = 2− ερ0. As ε→ 1, we get the results as in [7]. �

2.2. Discretization of (1.1). Here, the method of steps [2] is used to get a
discretized analogue of (1.1).

For t ∈ (0, 1] : x1(t) = x0e
−t
ε + ρ

ε

∫ t
0
e
s−t
ε x(s − 1)(1 − (x(s − 1)))ds as t −→ 1,

x1 = x0e
−1
ε + ρx0(1− x0)(1− e

−1
ε ).

For t ∈ (1, 2] : x2(t) = x1e
−(t−1)

ε + ρ
ε

∫ t
1
e
s−t
ε x(s− 1)(1− (x(s− 1)))ds as t −→ 2,

x2 = x1e
−1
ε + ρx1(1− x1)(1− e

−1
ε ).

Repeating the process we deduce that for t ∈ (n, n+1] : xn+1(t) = xne
−(t−n)

ε +

ρxn(1− xn)(1− e
−(t−n)

ε ) as t −→ n+ 1,

(2.4) xn+1 = xne
−1
ε + ρxn(1− xn)(1− e

−1
ε ).
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2.3. Stability of fixed points of (2.4). The system (2.4) has two fixed points
(x1)fix = 0 and (x2)fix = 1− 1

ρ
.

(a) (x1)fix = 0 is stable if |e−1
ε + ρ(1− e−1

ε )| < 1,

(b) (x2)fix = 1− 1
ρ

is stable if |e−1
ε + (1− e−1

ε )(2− ρ) < 1.

As ε→ 0, we get the results in [3]. As ε→ 1, we get the results in [7].

2.4. Controlling the system (2.4). The DFC algorithm is suitable for time dis-
crete systems because even if the control loop is included, the dimension of
the phase space stays finite [10]. We want to stabilize the nonzero fixed point
(x2)fix = 1 − 1

ρ
of (2.4) by using the DFC algorithm xn+1 = xne

−1
ε + ρxn(1 −

xn)(1 − e
−1
ε ) + k(xn − xn−1), where k is the feedback gain. Let yn = xn−1 be an

auxiliary variable, we get the 2D map:

(2.5) xn+1 = xne
−1
ε + ρxn(1− xn)(1− e

−1
ε ) + k(xn − yn), yn+1 = xn.

This map has two fixed points (x1, y1) = (0, 0) and (x2, y2) = (1 − 1
ρ
, 1 − 1

ρ
).

(x2, y2) of (2.5) becomes stable when

(2.6)
(ρ− 2)(1− e−1

ε )− (1 + e
−1
ε )

2
< k < 1.

Let kop be the optimal value of the feedback gain which leads to the fastest
convergence towards the desired fixed point. To obtain its value, we linearize
(2.5) around (x2, y2). The Jacobian matrix at (x2, y2) reads

J((x2, y2)) =

(
e

−1
ε + (2− ρ)(1− e−1

ε ) + k −k
1 0

)
.

J((x2, y2)) has two eigenvalues given by λ1,2 = σ±(σ2−4k)
1
2

2
, where σ = e

−1
ε +

(2− ρ)(1− e−1
ε ) + k. When the magnitude of the leading eigenvalue is minimal,

the feedback gain is optimal. If the discriminant is zero (i.e. σ2 = 4k), we
get the required minimal value and the feedback gain becomes optimal k± =

2− e−1
ε + (2− ρ)(1− e−1

ε )± 2(1− e−1
ε + (2− ρ)(1− e−1

ε ))
1
2 . kop = k− because the

magnitudes of |λ1,2| are minimal at k−. Stabilization of the desired fixed point
for any initial conditions can be achieved by first checking the two conditions
|xn−yn| < ν and yn > Yth, where Yth is a threshold value. When these conditions
are satisfied, we switch on the DFC force with k chosen in the interval of stability
(2.6) and stabilize the fixed point. Yth is defined as the intersection of xn =
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yne
−1
ε + ρyn(1− yn)(1− e

−1
ε ) with x+n = yn + ν and is given by

Yth =
e

−1
ε + ρ(1− e−1

ε − 1− ((e
−1
ε + ρ(1− e−1

ε − 1)2 − 4ρ(1− e−1
ε ν)

1
2

2ρ(1− e−1
ε )

.

As ε→ 0, we get the results in [9].

3. NUMERICAL SIMULATIONS

In Figure 1 we perform some numerical simulations to illustrate and confirm
theoretical analysis obtained.

FIGURE 1. Bifurcation diagram and Lyapunov exponent of (2.4).

4. CONCLUSION

In this paper, stability, bifurcation, and chaos of the singularly perturbed Lo-
gistic difference equation with continuous argument are discussed. Local sta-
bility and Hopf bifurcation analysis of the fixed points of the singularly per-
turbed equation were investigated by analyzing the associated eigenvalues of
the characteristic transcendental equation. The singularly perturbed system is
discretized using the method of steps. Local stability of the fixed points of the
discrete system is also investigated. The nonzero fixed point is stabilized using
the delayed feedback control (DFC) algorithm. It is illustrated that the singu-
larly perturbed logistic difference equation with continuous argument behaves
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as its logistic difference equation with continuous argument counterpart when
the perturbation parameter ε −→ 0 and behaves as the logistic delay differential
equation when the perturbation parameter ε −→ 1 within finite time intervals.
Moreover, the theoretical analysis is confirmed by numerical simulations.
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