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ULTIMATE BOUNDEDNESS RESULT FOR A CERTAIN SYSTEM OF THIRD
ORDER NONLINEAR DIFFERENTIAL EQUATIONS

A. L. Olutimo1, O. J. Oni, and O. C. Ayeni

ABSTRACT. The paper studies the problem of ultimate boundedness behaviour
of solutions for a certain system of third order nonlinear differential equations.
Using the Lyapunov’s second (or direct) method, we obtain sufficient conditions
for the ultimate boundedness of solutions for the non-homogeneous nonlinear
differential equations. Our results complement and extend some well known
results on the third order differential equations in the literature.

1. INTRODUCTION

In the relevant literature, many works have been done on the qualitative prop-
erties of solutions of third order nonlinear differential equations. The specific
property we shall be interested in is the ultimate boundedness property of so-
lutions because it plays vital role in characterizing the behaviour of solutions
of nonlinear differential equations and critical parameters describing dynamical
systems. The number of results related to the ultimate boundedness of solutions
of third order differential equations are few, see [3,5,10–13] and the literature
cited therein. Although all these works were done with the aid of Lyapunov
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function but the Lyapunov function used in most of these works are either in-
complete or contain signum functions. see [4]. This development continues
until in a sequence of results [1,2,8,9] made use of a complete Lyapunov func-
tion to obtain their results. In particular, [9] used a suitable complete Lyapunov
function to obtain ultimate boundedness result for a more general equation. It
must be noted here that finding an appropriate Lyapunov function remains a
general problem. see [6].

This paper is concerned with the problem of ultimate boundedness of solu-
tions of the nonlinear differential equations of the form

(1.1) x′′′ + ψ(x, x′, x′′)x′′ + φ(x, x′, x′′)x′ = p(t, x, x′, x′′),

where ψ ∈ C(R×R×R,R), φ ∈ C(R×R×R,R) and p ∈ C([0,∞)×R×R×R,R),
R the real line −∞ < t < ∞. We consider the case in (1.1) specialized for the
case in [9] where φ(x, x′, x′′)x′ = g(x, x′)+h(x, x′, x′′) is much more complicated.
The difficulty increases depending on the assumptions made on φ and the re-
quirement for a complete Lyapunov function. Our motivation comes from [9]
and the papers mentioned above. Consequently, we shall give an example to
illustrate the effectiveness of the result obtained and provide geometric argu-
ments on the behaviour of solutions of the nonlinear third order system. The
results obtained here extend and complement the results of [9] some others
mentioned in the literature.

Our main result is the following theorem.

2. MAIN RESULT

Theorem 2.1. In addition to the basic assumptions imposed on functions ψ, φ
and p appearing in (1.1), we further suppose that the functions ψ(0, 0, 0) = 0,
φ(0, 0, 0) = 0 and ψ′x, φ

′
y are continuous for all x, y, z. We assume that there exist

positive constants a, b, c and δo, ab− c > 0, c < 1 such that the following conditions
hold:

(i) ψ(x, y, z) ≥ a, for all x, y, z;
(ii) φ(x, y, z) ≥ b, for all x, y, z;

(iii) φ(x, 0, 0) ≥ δo, for all x;
(iv) 0 < φ′x(x, 0, 0) ≤ c, φ′z(x, 0, 0) ≤ 0 for all x, ψ′z(x, y, θ1z) ≥ 0;
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(v) y
∫ y
0
φ′x(x, σ, 0)σdσ ≤ 0, z

∫ y
0
φ′x(x, σ, 0)σdσ ≤ 0 and y

∫ y
0
ψ′x(x, σ, 0)σdσ ≤

0;
(vi) |p(t, x, y, z)| ≤ Do.

Then, there exist a finite constant D1 = D1(a, b, c, do, Do) such that every
solution x(t) of (1.1) satisfies

|x(t)| ≤ D1, |x′(t)| ≤ D1, |x′′(t)| ≤ D1 for all t ≥ 0.

Lemma 2.1. Clearly V (0, 0, 0) = 0 and there exists finite constants k1 > 0 and
k2 > 0 such that

(2.1) k1(x
2 + y2 + z2) ≤ V (x, y, z) ≤ k2(x

2 + y2 + z2).

Our proof of Theorem 2.1 rests entirely on Lemma 2.1 and the scalar function
V = V (x, y, z) defined by

2V =

[
2

∫ x

0

φ(ν, 0, 0)νdν − µ2

b
φ2(x, 0, 0)

]
+ µ2b

[
y +

φ(x, 0, 0)

b

]2
+

[
2

∫ y

0

ψ(x, σ, 0)σdσ − µ−12 − µ1

]
y2 + µ2(z + µ−12 y)2

+ µ2

[
2

∫ y

0

φ(x, σ, 0)σdσ − by2
]
+ µ1(b− µ1)x

2

+ a

[
2

∫ x

0

φ(ν, 0, 0)νdν − φ2(x, 0, 0)

]
+ [a−

1
2y + a

1
2φ(x, 0, 0)]2

+

[
2

∫ y

0

φ(x, σ, 0)σdσ − a−1y2
]
+ [2

∫ y

0

ψ(x, σ, 0)σdσ − ay2]

+ (µ1x+ ay + z)2,

(2.2)

where
1

a
< µ2 <

b

c
,

and

(2.3) µ1 < min

{
b, (1 + a),

(ab− c)− 2−1(1 + µ2)

[a+ 2−1(φ(x, y, z)− b)2]
,

2(aµ2 − 1)

[ψ(x, y, z)− a]2

}
,

and µ1, µ2 are some positive constants.
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By the hypothesis of the Theorem 2.1, we have that this term in (2.2),

2

∫ x

0

φ(ν, 0, 0)νdν − µ2

b
φ2(x, 0, 0)

= 2

[ ∫ x

0

φ(ν, 0, 0)νdν − µ1

b

∫ x

0

φ(ν, 0, 0)
dφ(ν, 0, 0)

dν
dν − µ2

b
φ2(0, 0)

]
= 2

[ ∫ x

0

φ(ν, 0, 0)νdν − µ2

b

∫ x

0

φ(ν, 0, 0)φ′ν(ν, 0, 0)νdν

]
= 2

∫ x

0

(1− µ2

b
φ′ν(ν, 0, 0))φ(ν, 0, 0)νdν

= 2

[
1− µ2

b
φ′ν(ν, 0, 0)

]
φ(ν, 0, 0)

∫ x

0

νdν ≥ (1− µ2

b
c)δox

2.

Similarly,

a

[
2

∫ x

0

φ(ν, 0, 0)νdν − φ2(x, 0, 0)

]
≥ (1− c)aδox2,

[2

∫ y

0

ψ(x, σ, 0)σdσ − µ−12 − µ1]y
2 ≥ (a− µ−12 − µ1)y

2,

µ2

[
2

∫ y

0

φ(x, σ, 0)σdσ − by2
]
≥ 0,

Similarly, the term

[2

∫ y

0

ψ(x, σ, 0)σdσ − ay2] ≥ 0,

and finally, [
2

∫ y

0

φ(x, σ, 0)σdσ − a−1y2
]
≥ (b− a−1)y2.

Combining these estimates, we have

V ≥
[
(1− µ2

b
c)δo + (1− c)aδo + µ1(b− µ1)

]
x2 +

[
(a− µ−12 − µ1) + (b− a−1)

]
y2

+ [a−
1
2y + a

1
2φ(x, 0, 0)]2 + µ2b

[
y +

φ(x, 0, 0)

b

]2
+ µ2(z + µ−12 y)2 + (µ1x+ ay + z)2.

By the earlier assumptions on a, b, c, the constants (1−µ2b
−1c)δo, µ1(b−µ1), aδo(1−

c), (a− µ−12 − µ1) and (b− a−1) are positive by the inequalities in (2.3). So,

V (x, y, z) ≥ ζ1(x
2 + y2) + µ2(z + µ−12 y)2 + (µ1x+ ay + z)2,
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where ζ1 = min

{
(1−µ2b

−1c)δo+µ1(b−µ1)+aδo(1−c), (a−µ−12 −µ1)+(b−a−1)
}

.

Thus, it is evident from the terms contained in the above inequality that there
exists a constant k1 > 0 small enough such that

V (x, y, z) ≥ k1(x
2 + y2 + z2).

To prove the right side of inequality (2.1), the hypotheses (i) - (iii) of Theorem
2.1 and using the fact that

2|x||y| ≤ x2 + y2

yields from V , term by term

2aµ1|xy| ≤ 2|x||y| ≤ aµ1(x
2 + y2)

2a|yz| ≤ 2a|y||z| ≤ a(y2 + z2)

2|yz| ≤ 2|y||z| ≤ (y2 + z2)

2µ1|xz| ≤ 2µ1|x||z| ≤ µ1(x
2 + z2)

2

∫ x

0

φ(ν, 0, 0)νdν ≤ δox
2

2

∫ y

0

φ(x, σ, 0)σdσ ≤ by2

2µ2

∫ y

0

φ(x, σ, 0)dσ ≤ µ2by
2

2a

∫ x

0

φ(ν, 0, 0)νdν ≤ abx2

2

∫ y

0

ψ(x, σ, 0)dσ ≤ ay2

2a

∫ y

0

ψ(x, σ, 0)dσ ≤ a2y2

2µ2φ(x, 0, 0) ≤ µ2δox
2

2yφ(x, 0, 0) ≤ δo|x||y| ≤ δo(x
2 + y2).
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It follows that

V (x, y, z) ≤
(
2δo + ab+ µ1b+ aµ1 + µ1 + µ2δo

)
x2

+

(
2a+ a(1− µ1) + b+ 1 + a2 + µ2b+ δo

)
y2

+

(
µ1 + µ2 + 2 + a

)
z2,

≤ ζ2(x
2 + y2 + z2),

where ζ2 = max

{
2δo + ab+ µ1b+ aµ1 + µ1 + µ2δo, 2a+ a(1− µ1) + b+ 1 + a2 +

µ2b+ δo, µ1 + µ2 + 2 + a

}
.

If we choose a positive constant k2, then we have

V (x, y, z) ≤ k2(x
2 + y2 + z2).

Thus, (2.1) of lemma 2.1 is established where k1, k2 are finite constants.
Now, the proof of Theorem 2.1 follows.

Proof. It is convenient to consider equation (1.1) in equivalent system form

x′ = y,

y′ = z,

z′ = −ψ(x, y, z)z − φ(x, y, z)y + p(t, x, y, z).

(2.4)

Thus, it suffices to prove Theorem 2.1, if we can show that the function V

defined in (2.2) satisfies, for any solution (x(t), y(t), z(t)) of (2.4) such that

d

dt
V (x, y, z) ≤ −k(x2 + y2 + z2), for some constant k > 0.
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Now, differentiating (2.2) along the system (2.4) and after simplification we get

d

dt
V (x, y, z)

= −a[ψ(x, y, z)− ψ(x, y, 0)]yz + µ1bxy + (1 + a)φ(x, 0, 0)xy

+ (1 + µ2)y

∫ y

0

φ′x(x, σ, 0)σdσ + (1 + µ2)y
2φx(x, 0, 0)

+ (1 + µ2)z

∫ y

0

φ′y(x, σ, 0)σdσ + (1 + a)z2 + (1 + µ2)zφ(x, 0, 0)

− (1 + µ2)ψ(x, y, z)z
2 − (1 + µ2)φ(x, y, z)yz − [ψ(x, y, z)− a]xz

+ (1 + a)

∫ y

0

ψ′x(x, σ, 0)σdσ − (1 + a)y2φ(x, y, z) + µ1ay
2 − µ1xyφ(x, y, z)

+ [ax+ (1 + a)y + (1 + µ2)z]p(t, x, y, z).

By (iv) and (v) of Theorem 2.1, we have that

a[ψ(x, y, z)− ψ(x, y, 0)]
z2

yz2 = aψ′z(x, y, θ1z)yz
2 ≥ 0,

y

∫ y

0

φx(x, σ, 0)σdσ ≤ 0,

z

∫ y

0

φy(x, σ, 0)σdσ ≤ 0,∫ y

0

ψx(x, σ, 0)σdσ ≤ 0

and the term

(1 + µ2)zφ(x, 0, 0) = (1 + µ2)z
2φ′z(x, 0, 0) ≤ 0.

Thus, we have
d

dt
V (x, y, z) ≤− 1

2
[(1 + a)− µ1]x

2 − (b− µ2c)y
2

− [(ab− c)− 2−1(1 + µ2)− µ1(a+ 2−1(φ(x, y, z)− b)2)]y2

− [(aµ2 − 1)− µ1

2
[ψ(x, y, z)− a]2]z2 − 1 + µ2

2
a2z2

− 1

2

{
µ1[x+ (φ(x, y, z)− b)y]2 + (1 + a)[x+ φ(x, 0, 0)y]2

}
− (1 + µ2)

2
[y + φ(x, y, z)z]2 − µ1

2
[x+ (ψ(x, y, z)− a)z]2

+ [ax+ (1 + a)y + (1 + µ2)z]p(t, x, y, z).
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If we choose

µ1 < min

{
b, (1 + a),

(ab− c)− 2−1(1 + µ2)

[a+ 2−1(φ(x, y, z)− b)2]
,

2(aµ2 − 1)

[ψ(x, y, z)− a]2

}
we have

d

dt
V (x, y, z) ≤ −1

2
[(1 + a)− µ1]x

2 − (b− µ2c)y
2 − 1 + µ2

2
a2z2

+ [ax+ (1 + a)y + (1 + µ2)z]|p(t, x, y, z)|.

It follows that

d

dt
V (x, y, z) ≤ −k3(x2 + y2 + z2) + k4(|x|+ |y|+ |z|),

where

k3 = min{(1 + a)− µ1, b− µ2c, (
1 + µ2

2
)a2}

and

k4 = Domax{a, (1 + a), (1 + µ2)}.

Hence,

(2.5)
d

dt
V (x, y, z) ≤ −k3(x2 + y2 + z2) + k5(x

2 + y2 + z2)
1
2 ,

where k5 = 3
1
2k4.

If we choose (x2 + y2 + z2)
1
2 ≥ k6 = k5k

−1
3 , inequality (2.5) implies that

(2.6)
d

dt
V (x, y, z) ≤ −k3(x2 + y2 + z2),

we immediately see that

d

dt
V (x, y, z) ≤ −k7, provided, (x2 + y2 + z2) ≥ k7k

−1
3 .

The remainder of the proof of Theorem 2.1 may now be obtained by the use
of estimates (2.1) and (2.6) and an obvious adaptation of the Yoshizawa type
reasoning in [7]. �
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2.1. Example. Consider equation (1.1) in the form

x′′′ +

[
x

1 + x2
+ (x′)3 + (2 + x′′)2

]
x′′ +

[
ln(x+ 2)

1 + x2
+ (x′)2 + (x′′)2 + 1

]
x′

=
1

1 + t2 + x2 + x′2 + x′′2
,

(2.7)

comparing it with equation (2.4), it is clear that

ψ(x, y, z) =
x

1 + x2
+ y3 + (2 + z)2,

φ(x, y, z) =
ln(x+ 2)

1 + x2
+ y2 + z2 + 1

and

p(t, x, y, z) =
1

1 + t2 + x2 + y2 + z2
.

It is easy to check that the hypothesis in Theorem 2.1 are satisfied since

ψ(x, y, z) ≥ 4 = a,

φ(x, y, z) ≥ 1.7 = b,

φ(x, 0, 0) =
ln(x+ 2)

1 + x2
+ 1 ≥ 0.7 = δo,

φ′z(x, 0, 0) ≤ 0,

φ′x(x, 0, 0) =
1

(1 + x2)
.

1

(x+ 2)
− 2x ln(x+ 2)

(1 + x2)2
≤ 1

2
= c < 1.

From inequality (2.3), we have

0.25 < µ2 < 3.4.

We pick µ2 = 2, so that

µ1 < min{1.7, 5, 0.72, 0.69},

we choose µ1 = 0.4.
Further,

|p(t)| ≤ 1

1 + t2
≤ 1.

Hence, this shows that all the conditions of Theorem 2.1 are satisfied. Thus, we
conclude that all the solutions (x(t), x′(t), x′′(t)) or (x(t), y(t), z(t)) equivalently
of equation (2.7) are ultimately bounded.
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2.2. Ultimate boundedness analysis of solutions of nonlinear system (2.7).

(1) In Figure 1, is a graph showing the solutions x(t) in (blue), y(t) in
(green) and z(t) in (red) of (2.7) satisfying all the conditions of The-
orem 2.1 for p 6= 0 as t→∞.

(2) In Figure 2, Figure 3 and Figure 4, the ultimate boundedness behavior of
solutions x(t) in (blue) and y(t) in (red) and z(t) in (yellow) respectively
in equation (2.7) for p 6= 0 where x(t), y(t), z(t) are bounded for all t ≥ 0.

5 10 15 20
t

1

2

3

FIGURE 1. the solutions x(t) in (blue), y(t) in (green) and z(t) in
(red) of (2.7) satisfying all the conditions of Theorem 2.1 for p 6= 0

as t→∞.

x(t) 5 10 15 20
t

2.2

2.4

2.6

2.8

3.0

3.2

x(t)

FIGURE 2. The graph of solution x(t) of (2.7) satisfying the con-
ditions of Theorem 2.1 for p 6= 0 is ultimately bounded as t→∞.
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y(t)

5 10 15 20
t

0.1

0.2

0.3

0.4

y(t)

y(

FIGURE 3. The graph of solution y(t) of (2.7) satisfying the con-
ditions of Theorem 2.1 for p 6= 0 is ultimately bounded as t→∞.

z(t)

5 10 15 20
t

-0.15

-0.10

-0.05

0.05

0.10

z(t)

FIGURE 4. The graph of solution z(t) of (2.7) satisfying the condi-
tions of Theorem 2.1 for p 6= 0 is ultimately bounded as t→∞.
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