
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 10 (2021), no.2, 971–979
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.10.2.26

NEW OSCILLATION CRITERION OF FIRST ORDER DIFFERENCE
EQUATIONS WITH ADVANCED ARGUMENT

G. E. Chatzarakis1 and E. Thandapani

ABSTRACT. In this paper, we obtain a new sufficient oscillation condition of the
first-order linear advanced difference equation of the form

∆u(n)− p(n)u(σ(n)) = 0, n ≥ n0 > 0,

where {p(n)} is a sequence of positive real numbers and {σ(n)} is a nonde-
creasing sequence of integers with σ(n) ≥ n + 2. An example is provided to
show the significance of our main result.

1. INTRODUCTION

In this paper, we present a new sufficient condition for the oscillation of all
solutions of the advanced type difference equation

(1.1) ∆u(n)− p(n)u(σ(n)) = 0, n ≥ n0 > 0,

where {p(n)} is a sequence of positive real numbers and {σ(n)} is a nondecreas-
ing sequence of integers such that σ(n) ≥ n+ 2, for all n ≥ n0.

By a solution of (1.1), we mean a real sequence {u(n)} defined and satisfies
(1.1) for all n ≥ n0. A nontrivial solution {u(n)} of (1.1) is called oscillatory
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if the terms u(n) of the sequence are neither eventually positive nor eventually
negative. Otherwise, the solution is called nonoscillatory.

The oscillatory and asymptotic behavior of difference equations with advanced
arguments received great interest in recent years because of the fact that such
equations arise in many fields such as population dynamics, economics problems
or mechanical control engineering, see for example [3,4,7].

The oscillatory behavior of (1.1) with σ(n) = n + k, k ≥ 2 is studied in [6]
and prove that if

lim
n→∞

inf
n+k−1∑
s=n+1

p(s) >

(
k − 1

k

)k
,

then all solutions of (1.1) are oscillatory.
In 2012, Chatzarakis and Stavroulakis [1, 2], investigated the oscillatory be-

havior of (1.1) and proved that if

lim sup
n→∞

σ(n)−1∑
s=n

p(s) > 1,

or

lim sup
n→∞

σ(n)−1∑
s=n

p(s) > 1−
(
1−
√

1− α
)2

,

where

α := lim inf
n→∞

σ(n)−1∑
s=n+1

p (s) ,

then all solutions of (1.1) are oscillatory.
For further results concerning oscillation of first-order advanced type differ-

ence equations one can see [8–10] and the references cited there in.
The equation (1.1) can be looked upon as a discrete analogue of the first-order

advanced differential equation

(1.2) u′(t)− p(t)u(σ(t)) = 0, t ≥ t0 > 0,

where p(t) ∈ C([t0,∞),R+) and σ(t) > t.

In 1990, Hang and Driver [7], proved that if

(1.3) lim
t→∞

inf

∫ σ(t)

t

p(s)ds >
1

e

then all solutions of (1.2) are oscillatory.
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An interesting question then arises whether there exists the discrete analogue
of condition (1.3) for (1.1). In the present paper a positive answer to the above
question is given.

2. OSCILLATION RESULTS

Here we present an oscillation result which is a discrete analogue of condition
(1.3).

Theorem 2.1. If

(2.1) lim
n→∞

inf

σ(n)−1∑
n+1

p(s) >
1

e
,

then all solutions of (1.1) are oscillatory.

Proof. Assume to the contrary that {u(n)} is a positive solution of (E) for all
n ≥ n0. Then u(n) > 0 and u(σ(n)) > 0 for all n ≥ n0. Hence, from (1.1) we
have

(2.2) ∆u(n) = p(n)u(σ(n)) > 0, n ≥ n0,

which means that {u(n)} is an increasing sequence.
Inequality (2.2) can be rewritten as

u(n+ 1)− u(n) ≥ p(n)u(n+ 1) > 0

or

p(n) ≤ 1− u(n)

u(n+ 1)
.

Summing up the above inequality from n+ 1 to σ(n)− 1, we get

(2.3)
σ(n)−1∑
s=n+1

p(s) ≤
σ(n)−1∑
s=n+1

(
1− u(s)

u(s+ 1)

)
.

On the other hand, in view of (2.1), we can choose a positive constant β such
that

σ(n)−1∑
s=n+1

p(s) ≥ β >
1

e
, n ≥ n1,
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for some integer n1 ≥ n0. From (2.3) and the last inequality, we obtain

(2.4) β ≤
σ(n)−1∑
s=n+1

(
1− u(s)

u(s+ 1)

)
, n ≥ n1.

The right side of (2.4) can be written as

σ(n)−1∑
s=n+1

(
1− u(s)

u(s+ 1)

)
=

σ(n)−1∑
s=n+1

{
1− exp

(
ln

(
u(s)

u(s+ 1)

))}
.

Since u(n)
u(n+1)

< 1 and e−z ≥ 1− z(z > 0), we have

σ(n)−1∑
s=n+1

(
1− u(s)

u(s+ 1)

)
≤

σ(n)−1∑
s=n+1

{
1−

(
1− ln

(
u(s)

u(s+ 1)

))}

=

σ(n)−1∑
s=n+1

ln

(
u(s+ 1)

u(s)

)
= ln

(
u(σ(n))

u(n+ 1)

)
.(2.5)

Combining (2.4) with (2.5) yields

β ≤ ln

(
u(σ(n))

u(n+ 1)

)
,

which implies that

(2.6) u(σ(n)) ≥ eβu(n+ 1).

Using (2.6) in (1.1) yields

∆u(n)− p(n)eβu(n+ 1) ≥ 0.

By repeating the above arguments m times, there exists an integer nm such that

(2.7)
u(σ(n))

u(n+ 1)
≥ emβ,

for n ≥ nm, m = 1, 2, . . ..
Now in view of (2.1), we can choose an integer N > n0 such that

(2.8)
σ(n)−1∑
s=n+1

p(s) ≥ β,



NEW OSCILLATION CRITERION OF FIRST ORDER . . . 975

for all n ≥ N . Next, we will show that for each n ≥ N, there exists an integer
n∗ with N ≤ n∗ ≤ n such that σ(n∗) ≥ n+ 2, and

(2.9)
n∑

s=n∗+1

p(s) <
β

2
and

n∑
s=n∗

p(s) ≥ β

2
.

Indeed, (2.6) guarantees that

∞∑
s=N

p(s) =∞.

In particular, it holds
∞∑

s=n∗

p(s) =∞.

If p(n) < β
2
, there always exists an integer n with N ≤ n∗ < n so that (2.9) is

satisfied. If p(n) ≥ β
2
, then n∗ = n ≥ N so that

n∑
s=n∗+1

p(s) =
n∑

s=n+1

p(s)(empty sum) = 0 <
β

2

and
n∑

s=n∗

p(s) =
n∑
s=n

p(s) = p(n) ≥ β

2
.

Thus, in both cases (2.9) is satisfied.
Now, we will show that σ(n∗) ≥ n + 2. Indeed, in the case where p(n) ≥ β

2
,

since n∗ = n, we have σ(n∗) = σ(n) ≥ n + 2. In the case when p(n) < β
2
,

then n∗ < n. Assume for the sake of contradiction that σ(n∗) < n + 2. Then
σ(n∗) ≤ n+ 1, and therefore

(2.10)
σ(n∗)−1∑
s=n∗+1

p(s) ≤
n∑

s=n∗+1

p(s) <
β

2
.

On the other hand, in view of (2.8), we have

σ(n∗)−1∑
s=n∗+1

p(s) ≥ β >
β

2
,
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which contradicts (2.10). Thus, in both cases, we have σ(n∗) ≥ n + 2. Further,
combining inequalities (2.8) and (2.9), we get

(2.11)
σ(n∗)−1∑
s=n+1

p(s) =

σ(n∗)−1∑
s=n∗+1

p(s)−
n∑

s=n∗+1

p(s) ≥ β − β

2
=
β

2
.

Summing up (E) from n∗ to n and taking into account the fact that {u(n)} is
increasing, we get

u(n+ 1)− u(n∗) =
n∑

s=n∗

p(s)u(σ(s))

≥

(
n∑

s=n∗

p(s)

)
u(σ(n∗)) ≥ β

2
u(σ(n∗)),

i.e.,

(2.12)
β

2
u(σ(n∗)) ≤ u(n+ 1).

Summing up (1.1) from n+ 1 to σ(n∗)− 1 and using (2.11) yields

u(σ(n∗))− u(n+ 1) =

σ(n∗)−1∑
s=n+1

p(s)u(σ(s))

≥

σ(n∗)−1∑
s=n+1

p(s)

u(σ(n+ 1)) ≥ β

2
u(σ(n)),

i.e.,

(2.13)
β

2
u(σ(n)) ≤ u(σ(n∗)).

Combining (2.12) and (2.13), we obtain(
β

2

)2

u(σ(n)) ≤ u(n+ 1),

or
u(σ(n))

u(n+ 1)
≤ 4

β2
.

In view of (2.7), the above inequality takes the form

emβ ≤ u(σ(n))

u(n+ 1)
≤ 4

β2
, m = 1, 2, . . .

which is a contradiction as m→∞ . The proof of the theorem is complete. �



NEW OSCILLATION CRITERION OF FIRST ORDER . . . 977

Example 1. Consider the first-order advanced difference equation

(2.14) ∆u(n)− 1

n
u(2n+ 1) = 0, n ≥ 2.

Clearly, (2.14) is of type (1.1) with p(n) = 1
n

and σ(n) = 2n+ 1.

Since 1
n

is decreasing, and taking into account the fact that∫ b

b−1
f(x)dx ≥ f(b) ≥

∫ b+1

b

f(x)dx,

where f(x) is a decreasing positive function, we have

2n∑
s=n+1

1

s
≥

2n∑
s=n+1

∫ s+1

s

dx

x

=
2n∑

s=n+1

ln

(
s+ 1

s

)
= ln

(
2n+ 1

n+ 1

)

and
2n∑

s=n+1

1

s
≤

2n∑
s=n+1

∫ s

s−1

dx

x

=
2n∑

s=n+1

ln

(
s

s− 1

)
= ln

(
2n

n

)
.

Thus

ln

(
2n+ 1

n+ 1

)
≤

2n∑
s=n+1

1

s
≤ ln

(
2n

n

)
,

which means that

lim
n→∞

2n∑
s=n+1

1

s
= ln 2.

Therefore

α := lim inf
n→∞

2n∑
s=n+1

1

s
= ln 2 >

1

e
,

that is condition (2.1) of Theorem 2.1 is satisfied, and therefore all solutions of
(2.14) are oscillatory.
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Observe, however, that
2n∑
s=n

1

s
≥

2n∑
s=n

∫ s+1

s

dx

x

=
2n∑
s=n

ln

(
s+ 1

s

)
= ln

(
2n+ 1

n

)
and

2n∑
s=n

1

s
≤

2n∑
s=n

∫ s

s−1

dx

x

=
2n∑
s=n

ln

(
s

s− 1

)
= ln

(
2n

n− 1

)
.

Thus

ln

(
2n+ 1

n

)
≤

2n∑
s=n

1

s
≤ ln

(
2n

n− 1

)
,

which means that

lim
n→∞

2n∑
s=n

1

s
= ln 2.

Therefore

lim sup
n→∞

2n∑
s=n

1

s
= ln 2 ≤ 1

and

lim sup
n→∞

2n∑
s=n

1

s
= ln 2 < 1−

(
1−
√

1− α
)2

= 1−
(

1−
√

1− ln 2
)2
' 0.801.

That is, none of the conditions (2.1) and (2.2) is satisfied.

3. CONCLUSION

In this paper, we have obtained a new condition for the oscillation of advanced
difference equation (1.1). Our result is different from the existing oscillation
criteria in the sense that it is easy to apply than the one already obtained in
[1,2,9].
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