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AN IMPROVED INITIAL VALUE METHOD FOR SINGULARLY PERTURBED
CONVECTION DIFFUSION DELAY DIFFERENTIAL EQUATIONS

L. S. Senthil Kumar and V. Subburayan1

ABSTRACT. In this article, convection diffusion type singularly perturbed delay
differential equations are considered. An asymptotic expansion approximation
of the solution is constructed. Further the asymptotic expansion approximation
is numerically approximated using the Runge Kutta methods and hybrid finite
difference methods. The error estimate is obtained and it is of almost second
order. Numerical examples are given to illustrate the present method.

1. INTRODUCTION

In many branches of applied mathematics and engineering, Singularly Per-
turbed Delay Differential Equations (SPDDEs) are commonly used. In the math-
ematical modeling of various practical phenomena, certain forms of equations
often occur, such as in the modeling of the human pupil-light reflex [1],The
mathematical model for calculating the expected time by random synaptic in-
puts in the dendrites [2] to generate action potential in nerve cells and varia-
tional problems in control theory [3]. It is well known that the classical uniform
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mesh techniques do not yield satisfactory results for these equations. There-
fore, the direction needs to be shifted towards non-classical methods. In the last
three decades, an excellent number of papers have emerged for non-classical ap-
proaches covering second order equations and higher order equations. Several
numerical methods for solving the various types of Delay Differential Equations
(DDEs) are focused in [4]. The author in [5], proposed an exponentially fit-
ted operator method for first order SPDDEs, hybrid finite difference method
in [6, 7], etc. Quite a lot of article for solving singularly perturbed small DDEs
are available in the literature, to cite some, [8,9]. For non vanishing DDEs there
are number of articles available in the literature, to cite a few [10–13].

An improved Asymptotic Expansion Approximation (AEA) is constructed in
this article. In addition, using the Runge-Kutta (R-K) method of fourth order and
hybrid finite difference method, asymptotic expansion is approximated numeri-
cally. The proposed method is shown to be almost second-order convergence.

2. STATEMENT OF THE PROBLEM

We assume throughout the article that C and C1 represent arbitrary constants
irrespective of parameters ε and N . The index set I2N = {1, 2, . . . , 2N}. To study
the convergence of the numerical solution to the exact solution of a singular
perturbation problem, the supremum norm is used: ‖w‖Ω = sup

x∈Ω
| w(x) | .

Consider the following Boundary Value Problem (BVP) [12,14]: Find y ∈ Y =

C0(Ω) ∩ C2(Ω) such that

(2.1)

−εy′′(x) + a(x)y′(x) + b(x)y(x) + c(x)y(x− 1) = f(x), x ∈ Ω,

y(x) = φ(x), x ∈ [−1, 0], y(2) = l,

where a(x) ≥ α1 > α > 0, b(x) ≥ β0 ≥ 0, γ0 ≤ c(x) ≤ γ < 0, 2α1 + 5β0 +

5γ0 ≥ η > 0, a, b, c, f, and φ are sufficiently differentiable functions on Ω,
Ω = (0, 2), Ω = [0, 2], Ω− = (0, 1), Ω+ = (1, 2), Ω∗ = Ω− ∪ Ω+.

The above problem can be written as

Py(x) : = −εy′′(x) + a(x)y′(x) + b(x)y(x)

=

f(x)− c(x)φ(x− 1), x ∈ Ω−,

f(x)− c(x)y(x− 1), x ∈ Ω+,

(2.2)

y(0) = φ(0), y(1−) = y(1+), y′(1−) = y′(1+), y(2) = l,
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where y(1−) and y(1+) denote the left and right limits of y at x = 1, respectively.
The problem (2.1) exhibits a strong boundary layer at x = 2, [12,14].

3. ANALYTICAL RESULTS

Let y0 ∈ C0(Ω) ∩ C1(Ω ∪ {2}) be the reduced problem solution of (2.1) given
by

(3.1)

a(x)y′0(x) + b(x)y0(x) + c(x)y0(x− 1) = f(x), x ∈ Ω ∪ {2},
y0(x) = φ(x), x ∈ [−1, 0].

Further, we assume that, ‖ y′′0 ‖Ω∗≤ C. Let y1 ∈ C0(Ω) ∩ C1(Ω∗ ∪ {2}) be the
solution of

(3.2)

a(x)y′1(x) + b(x)y1(x) + c(x)y1(x− 1) = y′′0(x), x ∈ Ω∗ ∪ {2},
y1(x) = 0, x ∈ [−1, 0],

the second derivative of y0 can be written as

y′′0(x) =
1

a(x)

[
f ′(x)−

(
a′(x) + b′(x) +

b2(x)

a(x)

)
y0(x)− b(x)

a(x)
f(x)(3.3)

+

(
c(x)b(x)

a(x)
− c′(x)

)
× y0(x− 1)− c(x)

a(x− 1)
[f(x− 1)

− b(x− 1)y0(x− 1)− c(x− 1)y0(x− 2)]

]
, x ∈ Ω∗,

and assume that ||y′′1 ||Ω∗ ≤ C. Let v1 and v2 be two functions satisfy the following
Terminal Value Problems (TVPs)

(3.4) εv′1(x)− a(x)v1(x) = 0, x ∈ [0, 1), v1(1) = 1

and

(3.5) εv′2(x)− a(x)v2(x) = 0, x ∈ [0, 2), v2(2) = 1.

Define an AEA of y(x)

(3.6)

yas(x) =

y0(x) + εy1(x) + k1(v1(x)− v1(0)), x ∈ [0, 1],

y0(x) + εy1(x) + k2(v2(x)− 1)− y0(2) + l − εy1(2), x ∈ [1, 2],
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where

k1 =
1

(1− v1(0))(1− v1(0)v2(1))
·
[
v2(1)(1− v1(0))(l − y0(2)− εy1(2))

+
ε2

a(1)
{(y′1(+1)− y′1(1−))(1− v1(0))(1− v2(1))}

]
k2 =

l − y0(2)− εy1(2)− ε2

a(1)
(y′1(1+)− y′1(1−))(1− v1(0))

1− v1(0)v2(1)
.

It is easy to see that k1 = O(ε2), k2 = O(1).

Theorem 3.1. If the solutions y and its AEA yas of (2.1) and (3.6), respectively.
Then, | y(x)− yas(x) |≤ Cε2, x ∈ Ω.

Proof. Using the following barrier function and adapting the procedure given
in [10, Theorem 3.1], one can prove the desired result: ϕ±(x) = C1ε

2ψ(x) ±
(y(x)− yas(x)), x ∈ Ω, where

ψ(x) =

1
8

+ x
2

+ e−
α
ε

(1−x) + (2−x)2

ε
e−

α
ε

(2−x), x ∈ [0, 1]

3
8

+ x
4

+ 1 + (2−x)2

ε
e−

α
ε

(2−x), x ∈ [1, 2].

�

4. DISCRETE PROBLEM

The mesh Ω̄2N defined in [10, Section 5.1] is used to compute the numerical
solution.

4.1. Numerical Methods for Initial Value Problems. R-K method of fourth
order with piecewise cubic Hermite interpolation is applied on the mesh Ω

2N

[4,10], then we have

Y0(x0) = φ(x0),

Y0(xi+1) = Y0(xi) +
1

6
(K1 + 2K2 + 2K3 +K4), i = 0, 1, . . . , 2N − 1,(4.1)

where



AN IMPROVED INITIAL VALUE METHOD. . . 995



K1 = hi
[
f(xi)− b(xi)Y0(xi)− c(xi)Y I

0 (xi)
]

1
a(xi)

,

K2 = hi
[
f(xi + hi

2
)− b(xi + hi

2
)(Y0(xi) + K1

2
)− c(xi + hi

2
)Y I

0 (xi + hi
2

)
]

1

a(xi+
hi
2

)
,

K3 = hi
[
f(xi + hi

2
)− b(xi + hi

2
)(Y0(xi) + K2

2
)− c(xi + hi

2
)Y I

0 (xi + hi
2

)
]

1

a(xi+
hi
2

)
,

K4 = hi
[
f(xi + hi)− b(xi + hi)(Y0(xi) +K3)− c(xi + hi)Y

I
0 (xi + hi)

]
1

a(xi+hi)
,

hi = xi − xi−1,

Y I
0 (x) =


φ(x− 1), x ∈ [xi, xi+1], i = 0, 1, 2, . . . , N − 1,

Y0(xi−N)Ai−N(x− 1) + Y0(xi−N+1)Ai+1−N(x− 1) +Bi−N(x− 1)f̃(xi−N)

+Bi+1−N(x− 1)f̃(xi−N+1),

x ∈ [xi, xi+1], i = N,N + 1, . . . , 2N − 1,

,

Ai(x) and Bi(x) are called Hermite polynomials, they are defined in [10, Section
5.2].

Theorem 4.1. [4] The solution y0(x) of (3.1) and its discrete problem solution
Y0(xi) of (4.1) satisfies ‖ y0 − Y0 ‖Ω

2N≤ CN−4.

Lemma 4.1. If y0(x) is the solution of (3.1) and its numerical solution is given by
(4.1), further its interpolant is Ỹ0(x) =

∑2N
i=0 φi(x)Y0(xi), then ‖ y0 − Ỹ0 ‖Ω̄2N≤

CN−2.

Proof. By the triangle inequality |y0(x) − Ỹ0(x)| ≤ |y0(x) − ỹ0(x)| + |ỹ0(x) −
Ỹ0(x)|, Theorem 4.1 and by [10, 15] we have the desired result. Here ỹ0(x) =∑2N

i=0 φi(x)y0(xi) and φi(x) is usual hat function,

φi(x) =


x−xi−1

hi
, x ∈ [xi−1, xi],

xi+1−x
hi+1

, x ∈ [xi, xi+1],

0, otherwise.

�

Using (3.3) the y′′0(x) can be approximated as p(x) = 1
a(x)

[
f ′(x)−

(
a′(x) + b′(x) + b2(x)

a(x)

)
Ỹ0(x)− b(x)

a(x)
f(x) +

(
c(x)b(x)
a(x)

− c′(x)
)
Ỹ0(x− 1)− c(x)Ỹ ′0(x− 1)

]
, x ∈ Ω∗. Then, the
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problem (3.2 )can be written as,

a(x)y∗
′

1 (x) + b(x)y∗1(x) + c(x)y∗1(x− 1)

=
1

a(x)

[
−
(
a′(x) + b′(x) +

b2(x)

a(x)

)
Ỹ0(x) + f ′(x)− b(x)

a(x)
f(x)

+

(
c(x)b(x)

a(x)
− c′(x)

)
Ỹ0(x− 1)− c(x)

a(x− 1)
[f(x− 1)

− b(x− 1)Ỹ0(x− 1)− c(x− 1)Ỹ0(x− 2)]

]
,(4.2)

x ∈ Ω∗, y∗1(x) = 0, x ∈ [−1, 0].

Lemma 4.2. Let y1 and y∗1 be the solutions of (3.2) and (4.2), respectively, then
|y1(xi)− y∗1(xi)| ≤ CN−2, ∀ xi.

Proof. From the equations (3.2) and (4.2), Lemma 4.1 and by [6] we have, the
desired result. �

The R-K method of fourth order with piecewise cubic Hermite interpolation is
applied on Shishkin mesh Ω

2N
.

Y ∗1 (x0) = 0,

Y ∗1 (xi+1) = Y ∗1 (xi) +
1

6
(K1 + 2K2 + 2K3 +K4), i = 0, . . . , 2N − 1,(4.3)

where

K1 = hi

[
p(xi)− b(xi)Y ∗1 (xi)− c(xi)Y I

1 (xi)

]
/a(xi),

K2 = hi

[
p(xi + hi

2
)− b(xi + hi

2
)(Y ∗1 (xi) + K1

2
)− c(xi + hi

2
)Y I

1 (xi + hi
2

)

]
/a(xi + hi

2
),

K3 = hi

[
p(xi + hi

2
)− b(xi + hi

2
)(Y ∗1 (xi) + K2

2
)− c(xi + hi

2
)Y I

1 (xi + hi
2

)

]
/a(xi + hi

2
),

K4 = hi

[
p(xi + hi)− b(xi + hi)(Y

∗
1 (xi) +K3)− c(xi + hi)Y

I
1 (xi + hi)

]
/a(xi + hi),

Y I
1 (x) =


0, x ∈ [xi, xi+1], i = 0, 1, . . . , N − 1,

Y1(xi−N)Ai−N(x− 1) + Y1(xi−N+1)Ai+1−N(x− 1) +Bi−N(x− 1)p̃(xi−N)

+Bi+1−N(x− 1)p̃(xi−N+1), x ∈ [xi, xi+1], i = N,N + 1, . . . , 2N − 1,

p̃(xi−N) and p̃(xi−N+1) are defined like f̃(xi−N) and f̃(xi−N).
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Lemma 4.3. [4] Let y∗1(x) and Y ∗1 (xi) be the solutions of the problem (4.2) and
(4.3). Then, ‖ y∗1 − Y ∗1 ‖Ω

2N≤ CN−4.

Theorem 4.2. If the solution y1 of (3.2) and its discrete problem solution Y ∗1 (xi)

of (4.3), then |y1(xi)− Y ∗1 (xi)| ≤ CN−2, i ∈ I2N .

Proof. By the triangle inequality, |y1(xi)− Y ∗1 (xi)| ≤ |y1(xi)− y∗1(xi)| + |y∗1(xi)−
Y ∗1 (xi)| ≤ CN−2 + CN−4 ≤ CN−2. Hence the proof. �

4.2. Numerical Methods for Terminal Value Problems (TVPs). The numeri-
cal solutions of v1 and v2 are defined in the following equations:

(4.4)



V1(xi)− V1(xi−1)

hi
− a(xi)V1(xi) = 0,

i = 1, . . . , N
2
, V1(xN) = 1,

V1(xi)− V1(xi−1)

hi
− a(

xi + xi−1

2
)
V1(xi) + V1(xi−1)

2
= 0,

i = N
2

+ 1, . . . , N − 1

and

(4.5)



V2(xi)− V2(xi−1)

hi
− a(xi)V2(xi) = 0, i = 1, . . . , 3N

2
,

V2(x2N) = 1,

V2(xi)− V2(xi−1)

hi
− a(

xi + xi−1

2
)
V2(xi) + V2(xi−1)

2
= 0,

i = 3N
2

+ 1 . . . , 2N − 1

Theorem 4.3. [6] Let v1 and v2 be the solutions of (3.4) and (3.5) and its discrete
problem solutions defined by (4.4) and (4.5) respectively, then |vk(xi)− Vk(xi)| ≤
CN−2 ln2N, i ∈ I2N , k = 1, 2.

5. NUMERICAL SOLUTION OF (2.2) AND ERROR ANALYSIS

A discrete problem solution of (2.2) is defined as follows
(5.1)

Yas(xi) =


Y0(xi) + εY ∗1 (xi) + k1[V1(xi)− v1(x0)], i ≤ N

Y0(xi) + εY ∗1 (xi) + k2[V2(xi)− 1] + l − Y0(x2N)− εY ∗1 (x2N),

i ≥ N + 1.
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Theorem 5.1. If the solution y of (2.2) and discrete problem solution Yas defined
by (5.1) and if ε ≤ CN−1, then |y(xi)− Yas(xi)| ≤ CN−2 ln2N.

Proof. |y(xi)−Yas(xi)| ≤ |y(xi)−yas(xi)|+|yas(xi)−Yas(xi)| ≤ Cε2+CN−2 ln2N ≤
CN−2 ln2N. Hence the proof. �

6. NUMERICAL ILLUSTRATION

In this section, using the two mesh principle given in [10], the maximum
error DM = maxεD

M
ε , D

M
ε = max0≤i≤M | Y M

i − Y 2M
2i | and pM = log2

(
DM

D2M

)
are calculated.

Example 1. Consider the BVP (2.2) with a(x) = 5 + x; b(x) = 2; c(x) = −x
2
;

f(x) = ex; φ(x) = 1 + x; l = 2. Table 1 presents the values of DM and pM .
Figure 1 represents the numerical solution, Figure 2 presents the LogLog plot for
this example.

TABLE 1. Numerical results of y for the Example 1

N (Number of grid points)

ε ↓ 24 25 26 27 28 29 210

2−4 1.9829e-02 8.0161e-03 2.7182e-03 9.8252e-04 3.1607e-04 9.4653e-05 2.8835e-05
2−5 1.9942e-02 8.0574e-03 2.7302e-03 9.8462e-04 3.1648e-04 9.4696e-05 2.8752e-05
2−6 1.9998e-02 8.0778e-03 2.7360e-03 9.8540e-04 3.1654e-04 9.4661e-05 2.8678e-05
2−7 2.0027e-02 8.0879e-03 2.7388e-03 9.8573e-04 3.1655e-04 9.4630e-05 2.8633e-05
2−8 2.0041e-02 8.0929e-03 2.7402e-03 9.8587e-04 3.1654e-04 9.4611e-05 2.8609e-05
2−9 2.0048e-02 8.0954e-03 2.7409e-03 9.8594e-04 3.1653e-04 9.4601e-05 2.8596e-05
2−10 2.0055e-02 8.0979e-03 2.7416e-03 9.8601e-04 3.1653e-04 9.4590e-05 2.8583e-05

...
...

...
...

...
...

...
...

2−23 2.0055e-02 8.0979e-03 2.7416e-03 9.8601e-04 3.1653e-04 9.4590e-05 2.8583e-05

DM 2.0055e-2 8.0979e-3 2.7416e-3 9.8601e-4 3.1655e-4 9.4696e-05 2.8835e-5

pM 1.3083 1.5626 1.4753 1.6392 1.7410 1.7155 -
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FIGURE 1. Numerical solution of Example 1.
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FIGURE 2. Loglog plot for problem stated in Example 1

7. CONCLUDING REMARKS

In this article we considered a class of singularly perturbed convection diffu-
sion type second order delay differential equations. An asyptotic expansion ap-
proximation of the solution is constructed by the perturbation technique using
the zeroth order and the first order asymptotics. Further the zeroth order and
the first order asymptotics are approximated numerically by the Runge-Kutta
methods with Hermite interpolation technique. The TVPs are approximated by
the hybrid finite difference methods. The present initial value method is almost
second order convergent provided ε ≤ CN−1. In [10] the authors presented
zeroth order asymptotic approximation and applied initial value method. They
obtained (ε+N−2 ln2N) order of convergence. Here, it has been improved to the
first order asymptotic expansion and the order of convergence is (ε2+N−2 ln2N).
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Table 1 presents the numerical error for the Example 1. Further, it shows that
the maximum error and order of convergence is two. The Figure 1 represents
the numerical solution of the Example 1 and loglog plot is drawn in Figure 2.
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