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ON RNδP-OPEN SETS

J. B. Toranagatti

ABSTRACT. The aim of this paper is to introduce a new class of sets called
rnδp-open sets in nano topological spaces. we characterize these sets and study
some of their fundamental properties. Also, we introduce and study the notion
of rnδp-continuity.

1. INTRODUCTION

M.L. Thivagar and C. Richard [6] initiated the study of nano topological
spaces with respect to a subset Y of a universe which is defined in terms of lower
approximation, upper approximation, and boundary regions. They have also
defined nano-closed sets, nano-interior and nano-closure. Recently, S.Parimala
et.al., introduced the class of sets, namely nano δ-open,nano δ-preopen, nano
δ-semiopen, nano δα-open sets in nano topological spaces. In this paper, we
introduce and study a new class of sets called rnδp-open sets. Also,some prop-
erties of rnδp-continuous functions are obtained.

Throughout this paper, (U,τR(X),(V,τR∗(Y))(or simply U,V) represent nano
topological spaces on which no separation axioms are assumed unless explic-
itly stated and f:(U,τR(X)→(V,τR∗(Y)) denotes a function f of a NTS space U

2020 Mathematics Subject Classification. 54A05, 54C10, 54B05 .
Key words and phrases. nano δ-preopen,nano δ-preclosed,rnδp-open,rnδp-closed, rnδp-

continuous function.
Submitted: 22.01.2021; Accepted: 06.02.2021; Published: 02.03.2021.

1013



1014 J. B. Toranagatti

into a NTS V. Let M ⊆ U, then Ncl(M) = ∩{F: M ⊆ F and F c ∈ τR(X) } is the
nano closure of M and Nint(M) = ∪{O: O ⊆ M and O ∈ τR(X) } is the nano
interior of M.

2. PRELIMINARIES

Definition 2.1. [5] Let U be a non-empty finite set of objects, called the universe,
and R be an equivalence relation on U named as the indiscernibility relation. The
pair (U,R) is said to be the approximation space. Let Y⊆U.

(i) The lower approximation of Y with respect to R is LR(Y)=∪y∈U{ R(y):R(y)
⊆ Y } where R(y) denotes the equivalence class determined by y∈U.

(ii) The upper approximation of Y with respect to R is HR(Y)=∪y∈U{ R(y):R(y)
∩ Y 6= φ}.

(iii) The boundary region of Y with respect to R is BR(Y))=HR(Y))-LR(Y)).

Definition 2.2. [6] Let U be the universe and R be an equivalence relation on U.Let
Y ⊆ U. Let τR(Y)=NT={U,φ,LR(Y)),HR(Y)),BR(Y))} is called the nano topology
on U.The pair (U,NT ) is called nano topological space(briefly,NTS).

Elements of the nano topology NT are known as the nano open sets and the
relative complements of nano open sets are called nano closed sets.

Definition 2.3. [1,3,6] Let (U,NT ) be a NTS and M1 ⊆ U, then M1 is said to be:

(i) nano regular open if M1 = Nint(Ncl(M1));
(ii) nano δ-open if M1 = Nintδ(M1) where Nintδ(M1) = ∪{B:B is a nano regu-

lar open and B ⊆ M1};
(iii) nano δ-preopen if M1 ⊆ Nint(Nclδ(M1));
(iv) nano δ-semiopen if M1⊆ Nint(Nclδ(M1));
(v) nano δα-open if M1 ⊆ Nint(Ncl(Nintδ(M1)));

(vi) nano e-open if M1 ⊆ Ncl(Nintδ(M1))∪Nint(Nclδ(M1)).

The complements of the above respective open sets are their respective closed sets.
The class of nano δ-preopen(resp., nano δ-semiopen, nano e-open, nano δ-open)

sets of (U,NT ) is denoted by NδPO(U) (resp., NδSO(U), NEO(U) and NδO(U))
and the class of nano δ-preclosed (resp., nano δ-semiclosed, nano e-closed, nano
δ-closed) sets of (U,NT ) is denoted by NδPC(U) (resp., NδSC(U), NEC(U) and
NδC(U)).
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Definition 2.4. [1, 3] If (U,NT ) is a NTS and M ⊆ U, then the nano δ-pre (resp.,
nano δ-semi, nano δ-, nano e-) interior of M is the union of all NδPO(U) (resp.,
NδSO(U), NδO(U) and NEO(U)) sets contained in M and denoted by Nintδp(M)
(resp., Nintδs(M), Nintδ(M) and Ninte(M)) and the nano δ-pre(resp., nano δ-semi,
nano δ-, nano e-) closure of M is the intersection of all NδPC(U) (resp., NδSC(U),
NδC(U) and NEC(U)) sets containing M and denoted by Nclδp(M) (resp., Nclδs(M),
Nclδ(M) and Ncle(M)).

Lemma 2.1. [1]Let M be a subset of a NTS (U,NT ), then:

(i) Nclδp(M)=M ∪ Ncl(Nintδ(M)) and Nintδp(M) = M ∪ Nint(Nclδ(M)).
(ii) Nclδs(M)=M ∪ Nint(Nclδ(M)) and Nintδs(M) = M ∪ Ncl(Nintδ(M)).

(iii) Nintδp(Nclδp(M))= Nclδp(M)∩Nint(Nclδ(M).

Lemma 2.2. Let M be a subset of a NTS (U,NT ), then Ncle(M)=Nclδp(M)∩
Nclδs(M).

Definition 2.5. [4] In a NTS (U,NT ), let M ⊆ U. Then M is said to be a nano
δ-dense set if Nclδ(M)=U.

Definition 2.6. [4] A NTS (U,NT ) is said to be nano δ-submaximal if every nano
δ-dense subset of U is nano δ-open.

Definition 2.7. [2] A function f:(U,τR(X)→(V,τR∗(Y)) is called nano δ-precontinu-
ous if f−1(K) is nano δ-preopen in (U,τR(X) for every K∈ τR∗(Y).

3. REGULAR NANO δ-PREOPEN SETS

Definition 3.1. Let (U,NT ) be a NTS. Then a set H ⊆ U is said to be:

(1) regular nano δ-preopen(briefly,rnδp-open) if H = Nintδp(Nclδp(H));
(2) regular nano δ-preclosed(briefly,rnδp-closed) if H = Nclδp(Nintδp(H)).

The class of rnδp-open (resp.,rnδp-closed) sets of (U,NT ) will be denoted by RNδpO(U)
(resp,RNδpC(U)).

Theorem 3.1. In a NTS (U,NT ),let M1,M2 ⊆ U. If M1 ⊆ M2 then Nintδp(Nclδp(M1)
⊆ Nintδp(Nclδp(M2)).

Proof. Obvious. �

Theorem 3.2. For a subset M1 of a NTS (U,NT ), the following properties hold:
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(i) M1 ⊆ Nintδp(Nclδp(M1) if M1 is nano δ-preopen.
(ii) Nclδp(Nintδp(M1)) ⊆ M1 if M1 is nano δ-preclosed.

(iii) Nclδp(M1) is rnδp-closed if M1 is nano δ-preopen.
(iv) Nintδp(M1) is rnδp-open if M1 is nano δ-preclosed.

Proof.
(i) As M1 ⊆Nclδp(M1) and M1 is nano δ-preopen, thenM1 ⊆Nintδp(Nclδp(M1)).
(ii) Since Nintδp(M1) ⊆M1 and M1 is nano δ-preclosed, then Nclδp(Nintδp(M1)
⊆ M1.

(iii) Suppose that M1 is nano δ-preopen.
By (i), we have Nclδp(Nintδp(Nclδp (M1)) ⊇ Nclδp(M1). On the other hand,

Nclδp(M1) ⊇ Nintδp(Nclδp(M1). So that Nclδp(M1) ⊇ Nclδp(Nintδp(Nclδp(M1)).
Therefore Nclδp(Nintδp(Ncltδp(M1)) = Nclδp(M1).

(iv) Suppose that M1 is nano δ-preclosed.
By (ii), we have Nintδp(Nclδp(Nintδp(M1))⊆ Nintδp(M1). On the other hand,

we have Nintδp(M1) ⊆ Nclδp(Nintδp(M1). So that Nintδp(M1) ⊆ Nintδp(Nclδp
(Nintδp(M1)). Therefore Nintδp(Nclδp(Nintδp(M1))=Nintδp(M1). Thus Nintδp(M1)
is rnδp-open. �

Theorem 3.3. In a NTS (U,NT ) and let M ⊆ U. Then:

(i) Nintδp(Nclδp(M)) is rnδp-open.
(ii) Nclδp(Nintδp(M)) is rnδp-closed.

Proof. (i) We have Nintδp(Nclδp(Nintδp(Nclδp(M)) ⊆ Nintδp(Nclδp(Nclδp(M)) =
Nintδp(Nclδp(M)) and Nintδp(Nclδp(Nintδp(Nclδp(M)) ⊇ Nintδp(Nintδp(Nclδp(M))
= Nintδp(Nclδp(M)). Therefore Nintδp(Nclδp(Nintδp(Nclδp(M)) = Nintδp(Nclδp(M)).

�

Theorem 3.4. Let (U,NT ) be a NTS,then the following properties hold:

(i) Every rnδp-open set is nano δ-preopen.
(ii) Every rnδp-open set is nano e-open.

(iii) Every rnδp-open set is nano e-closed.

Proof.
(i) Let M1 be rnδp-open, then

M1 = Nintδp(Nclδp(M1) = Nclδp(M1) ∩ Nint(Nclδ(M1)) ⊆ Nint(Nclδ(M1)).
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Hence M1 is nano δ-preopen.
(ii) Let M1 be rnδp-open, then

M1 = Nintδp(Nclδp(M1) = Nclδp(M1) ∩ Nint(Nclδ(M1))
⊆ Nint(Nclδ(M1)) ⊆ Nint(Nclδ(M1)) ∪ Ncl(Nintδ(M1)).

Hence M1 is nano e-open.
(iii) Suppose that M1 is rnδp-open, then

M1= Nintδp(Nclδp(M1)
= Nclδp(M1) ∩ Nint(Nclδ(M1))
= [M1∪Ncl(Nintδ(M1)] ∩ Nint(Nclδ(M1)
= [M1∩Nint(Nclδ(M1)] ∪ [Ncl(Nintδ(M1)∩Nint(Ncl(M1)]

As M1 is nano δ-preopen, then
M1 = M1 ∪ [Ncl(Nintδ(M1) ∩ Nint(Nclδ(M1)] = Ncle(M1).

Hence M1 is nano e-closed.
The converse inclusions in Theorem 3.4 may not hold as shown by the follow-

ing example. �

Example 1. Let U = {b1, b2, b3, b4, b5} with U\R= {{b1, b3}, {b2}, {b4}, {b5}}
and let X = {b1, b4, b5}, NT ={U, φ, {b4, b5}, {b1, b3, b4, b5}, {b1, b3}}. Then
{b1b3, b4, b5} is nano δ-preopen(hence nano e-open) but not rnδp-open and {b2}
is nano e-closed but not rnδp-open.

Lemma 3.1. In a NTS (U,NT ) and let M ⊆ U be nano regular open. Then M =
Nint(Ncl(M))=Nint(Nclδ(M).

Theorem 3.5. In a NTS (U,NT ), every nano regular open set is rnδp-open.

Proof. Let M1 be a nano regular open set, then by Lemmas 2.1 and 2.2, we have
Nintδp(Nclδp(M1) = Nclδp(M1) ∩ Nint(Nclδ(M1))=Nclδp(M1) ∩ M1=M1. Hence
M1 is rnδp-open.

Converse of the above theorem need not be true as shown by the following
example. �

Example 2. In Example 1,the set {b1} is rnδp-open but it is not nano regular open.

Theorem 3.6. Let M1 be a nano δ-preclosed subset of a NTS (U,NT ). Then follow-
ing statements are equivalent:

(1) M1 is nano δ-preopen;
(2) M1 is rnδp-open.
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Proof.
(1)→(2): By (1), M1 = Nintδp(M1) and, by hypothesis, M = Nclδp(M1). There-

fore, Nintδp(Nclδp(M1))=Nintδp(M1)= M1.
(2)→(1): Obvious from Theorem 3.4(i). �

Remark 3.1. The class of rnδp-open sets is not closed under finite union as well as
finite intersection. It will be shown in the following example.

Example 3. In Example 1, {b1, b3} and {b4, b5} are rnδp-open sets but {b1, b3} ∪
{b4, b5} = {b1, b3, b4, b5} /∈ RNδP(U). Moreover, {b1, b2, b4} and {b1, b2, b5}are
rnδp-open sets but {b1, b2, b4} ∩ {b1, b2, b5} = {b1, b2} /∈ RNδP(U).

Theorem 3.7. In a nano δ-partition space (U,NT ), let M⊆U. Then the following
are equivalent:

(1) M is nano δ-preopen;
(2) M is rnδp-open.

Remark 3.2. In a nano δ-partition space (U,NT ), the class of rnδp-open sets is
closed under arbitrary union.

Lemma 3.2. Let M1 be a subset of a NTS (U,NT ), then

Nintδp(Nclδp(M1))=Nintδp(Ncle(M1)).

Proof. By Lemma 2.1, we have
Nintδp(Nclδp(M1)) = Nclδp(M1) ∩ Nint(Nclδ(M1))

⊆ Nclδp(M1) ∩ (M1 ∪ Nint(Nclδ(M1))
= Nclδp(M1) ∩ Nclδs(M1)
= Ncle(M1), by Lemma 2.2.

Therefore, Nintδp(Nclδp(M1)) ⊆ Nintδp(Ncle(M1)).
The reverse inclusion is obvious. �

Theorem 3.8. Let (U,NT ) be a NTS and M1 ⊆ U,the following statements are
equivalent:

(1) M1 is rnδp-open;
(2) M1 is nano e-closed and nano δ-preopen.

Proof.
(1)→(2): Obvious from Theorem 3.4 [(i),(iii)].
(2)→(1): By (2),M1=Ncle(M1) and M1= Nintδp(M1). By Lemma ??,
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Nintδp(Nclδp(M1)) = Nintδp(Ncle(M1)) = Nintδp(M1) = M1.

Hence M1 is rnδp-open. �

Lemma 3.3. Let (U,NT ) be a NTS, then the following are equivalent:

(1) (U,NT ) nano δ-submaximal.
(2) Every nano δ-preopen set is nano δ-open.

Theorem 3.9. Let (U,NT ) be a nano δ-submaximal, then any finite intersection of
nano δ-preopen sets is nano δ-preopen.

Proof. Obvious since NδO(X) is closed under finite intersection. �

Theorem 3.10. If a NTS (U,NT ) is nano δ-submaximal, then any finite intersection
of rnδp sets is rnδp-open.

Proof. Let {Gi:i=1,2,. . . ,n} be a finite family of rnδp-open sets. Since the space

(U,NT ) is nano δ-submaximal, then by Theorem 3.9, we have
n⋂
i=n

Gi∈δPO(U). By

Theorem 3.2(i),
n⋂
i=n

Gi⊆Nintδp(Nclδp(
n⋂
i=n

Gi).

On the other hand,for each i, we have
n⋂
i=n

Gi⊆Gi and thus Nintδp(Nclδp(
n⋂
i=n

Gi)⊆

Nintδp(Nclδp(Gi)=Ai as Nintδp(Nclδp(Gi)=Gi. Therefore Nintδp(Nclδp(
n⋂
i=n

Gi) ⊆
n⋂
i=n

Gi. In consequence,
n⋂
i=n

Gi is rnδp-open in U. �

Definition 3.2. In a NTS (U,NT ), let M ⊆ U. Then M is called nano η-open if
Nint(Nclδ(M)) ⊆ Ncl(Nintδ(M)).

Theorem 3.11. In a NTS (U,NT ),

(i) Every nano δ-semiopen set is nano η-set.
(ii) Every nano δ-semiclosed set is nano η-set.

Proof.
(i) Let M be nano δ-semiopen, then M ⊆ Ncl(Nintδ(M)) which implies,

Nint(Nclδ(M)) ⊆ Ncl(Nintδ(M)).

Hence M is nano η-set.
(ii) Let K be nano δ-semiclosed, then Nint(Nclδ(K)) ⊆ K. Therefore
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Nint(Nclδ(K)) ⊆ Ncl(Nintδ(K)).

Hence K is nano η-set.
Converse of the above Theorem need not be true as shown by the following

example. �

Example 4. In Example 1,the set {b2} is η-set but it is not nano δ-semiopen. and
the set {b1, b3, b4, b5} is nano η-set but it is not nano δ-semiclosed.

Remark 3.3. DIAGRAM
nano regular open→ nano δα-open→ nano δ-semiopen→ nano η-set
↓ ↓ ↓

rnδp-open −→ nano δ-preopen −→ nano e-open

Remark 3.4. The notions of nano η-sets and rnδp-open(hence nano δ-preopen,
nano e-open)sets are independent of each other.

Example 5. Let (U,NT ) be a space as in Example 1. Then {b2} is nano η-set but
not a nano e-open set and the set {b1, b2, b4, b5} is rnδp-open but it is not a η-set.

Theorem 3.12. In a NTS (U,NT ), let M ⊆ U,the following are equivalent:

(i) M is nano δ-semiopen;
(ii) M is both nano e-open and nano η-set.

Proof.
(i)→(ii): Obvious.
(ii)→(i): Let M be both nano e-open and nano η-set. Then, Nint(Nclδ(M))∩

Ncl(Nintδ(M)) ⊆ M and Nint(Nclδ(M)) ⊆ Ncl(Nintδ(M)), and Nint(Nclδ(M)) ⊆
M. Hence M is nano δ-semiopen. �

Theorem 3.13. For a subset M of a NTS (U,NT ), the following are equivalent:

(i) M is nano regular open;
(ii) M is rnδp-open and η-set.

Proof.
(i)→(ii): It follows from Remark 3.3.
(ii)→(i): Let M be rnδp-open and η-set. Then, by Lemma 2.1, we obtain

M = Nintδp(Nclδp(M))
=(M ∪ Ncl(Nintδ(M))∩Nint(Nclδ(M))
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=(M∩Nint(Nclδ(M))∪(Ncl(Nintδ(M))∩Nint(Nclδ(M)))
=(M∩Nint(Nclδ(M))∪Nint(Nclδ(M))
=Nint(Nclδ(M))

Therefore M = Nint(Nclδ(M)) = Nint(Ncl(M)). Hence M is nano regular open.
�

Definition 3.3. In (U,NT ), let M ⊆ U.

(1) The rnδp-interior of M, denoted by Nintrδp(M) is defined as

Nintrδp(M)=
⋃
{K:K⊆M and M∈RNδPO(U)};

(2) The rnδp-closure of M, denoted by Nclrδp(M) is defined as

Nclrδp(M)=
⋂
{F:M⊆F and F∈RNδPC(U)}.

Theorem 3.14. In (U,NT ),let M ⊆ U. Then the following hold:

(a) Nintrδp(M)⊆M ⊆Nclrδp(M).
(b) If M is rnδp-open(rnδp-closed), then Nintrδp(M) =M(resp,Nclrδp(M) = M).

Remark 3.5. The converse of Theorem 3.14 (b) is true only when (U,NT ) is nano
δ-partition.

4. RNδP-CONTINUOUS FUNCTIONS:

Definition 4.1. A function f:(U,τR(X)→(V,τR∗(Y)) is said to be rnδp-continuous if
f−1(H) is rnδp-open in (U,τR(X)) for each H ∈ τR∗(Y).

Example 6. Let U = {b1, b2, b3, b4, b5} with U\R= {{b1, b3}, {b2}, {b4}, {b5}}
and let X = {b1, b4, b5}, τR(X) ={U, φ, {b4, b5}, {b1, b3, b4, b5}, {b1, b3}}. Let
V = {a, b, c, d} with V\R= { {a, c}, {b}, {d}} and let Y = {a, b}, τR∗(Y) ={V,
φ, {b}, {a, b, c}, {a, c}}. Define f:(U, τR(X)→(V, τR∗(Y)) as f(b1) = a, f(b2) =
c = f(b4) and f(b3) = b = f(b5).Then f−1({b})={b3, b5} f−1({a, b, c})=V and
f−1({a, c})= {b1, b2, b4}.

That is, the inverse image of every nano open set is rnδp-open in U.Therefore, f
is rnδp-continuous

Theorem 4.1. A function f:(U,τR(X)→(V,τR∗(Y)) is rnδp-continuous, if, and only
if, f−1(D) is rnδp-closed in (U,τR(X)) for every nano closed set D of (V,τR∗(Y)).
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Proof. Let D be a nano closed set in V. Then V-D is a nano open set in V. Since
f is rnδp-continuous, f−1(V\D)=U\f−1(D) is rnδp-open in U. Therefore, f−1(D)
is rnδp-closed.

Conversely, let F be a nano open set in (V,τR∗(Y)),then V\F is a nano closed
set in V. By assumtion, f−1(V\F) = U\f−1(F) is rnδp-closed in U. This implies
f−1(F) is rnδp-open in U. �

Theorem 4.2. Every rnδp-contninuous function is nano δ-precontinuous.

Example 7. Consider (U,τR(X) and (V,τR∗(Y)) as in Example 6. Define f:(U,τR(X)
→ (V,τR∗(Y)) as f(b1) = a, f(b2) = b = f(b5) and f(b3) = c = f(b4). Then
f−1({b})={b2, b5} f−1({a, b, c})=V and f−1({a, c})= {b1, b3, b4}. Therefore, f
is nano δ-precontinuous but there exists {a, c}∈τR∗(Y) such that f−1({a, c})= {b1,
b3, b4} /∈ RNδPO(U). Hence f is not rnδp-continuous.

Theorem 4.3. Let f:(U,τR(X)→(V,τR∗(Y)) be a function where (U,τR(X) is nano
δ-partition.Then the following are equivalent:

(1) f is rnδp-continuous;
(2) For each subset B of V,Nclrδp(f

−1(B)) ⊆ f−1(Ncl(B));
(3) For each subset A of U,f(Nclrδp(A)) ⊆ Ncl(f(A));
(4) For each subset B of V, f−1(Nint(B)) ⊆ Nintrδp(f

−1(B)).

Proof.
(1)→(2). Let f be rnδp-continuous and B⊆ V. Then f−1(Ncl(B)) is rnδp-closed

in U. Then clNrp((f−1(B)) ⊆ Nclrδp((f−1(Ncl(B))=f−1(Ncl(B).
(2)→(1). Let B ⊆ V be a nano closed set. Then by (2), Nclrδp(f

−1(B)) ⊆
f−1(Ncl(B))=f−1(B) =⇒ Nclrδp(f

−1(B))=f−1(B) since (U,τR(X) is nano δ-parti-
tion. Therefore, f−1(B) is rnδp-closed in (U,τR(X)).

(2)→(3). Let A ⊆ U. Then f(A) ⊆ V. By (2), we get

f−1(cl(f(A))) ⊇ clNrp(f
−1(f(A))) ⊇ Nclrδp(A).

Therefore, f(Nclrδp(A)) ⊆ f(f−1(Ncl(f(A))) ⊆ Ncl(f(A).
(3)→(2). Let B ⊆ V and A = f−1(B) ⊆ U.Then by(3), f(Nclrδp(f

−1(B))) ⊆
Ncl(f(f−1(B)) ⊆ Ncl(B).⇒ Nclrδp(f

−1(B)) ⊆ f−1(Ncl(B)).
(2)→(4). Replace B by V \ B in (2), we get Nclrδp(f

−1(V\B)) ⊆ f−1(Ncl(V\B)).
⇒Nclrδp(X\f−1(B))⊆ f−1(V\Nint(B)). Therefore, f−1(Nint(B))⊆Nintrδp(f

−1(B))
for each B ⊆ V.
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(4)→(1). Let H ⊆ V be nano open. Then

f−1(H)=f−1(Nint(H)) ⊆ Nintrδp(f
−1(H)

⇒ Nintrδp(f
−1(H)=f−1(H) since(U,τR(X)) is nano δ-partition. Hence, f−1(H) is

rnδp-open in U. �
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