ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **10** (2021), no.2, 1013–1023 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.2.30

ON RN\deltaP-OPEN SETS

J. B. Toranagatti

ABSTRACT. The aim of this paper is to introduce a new class of sets called $rn\delta p$ -open sets in nano topological spaces. we characterize these sets and study some of their fundamental properties. Also, we introduce and study the notion of $rn\delta p$ -continuity.

1. INTRODUCTION

M.L. Thivagar and C. Richard [6] initiated the study of nano topological spaces with respect to a subset Y of a universe which is defined in terms of lower approximation, upper approximation, and boundary regions. They have also defined nano-closed sets, nano-interior and nano-closure. Recently, S.Parimala et.al., introduced the class of sets, namely nano δ -open, nano δ -preopen, nano δ -semiopen, nano $\delta\alpha$ -open sets in nano topological spaces. In this paper, we introduce and study a new class of sets called rn δ p-open sets. Also, some properties of rn δ p-continuous functions are obtained.

Throughout this paper, $(U,\tau_R(X),(V,\tau_R^*(Y)))$ (or simply U,V) represent nano topological spaces on which no separation axioms are assumed unless explicitly stated and f: $(U,\tau_R(X) \rightarrow (V,\tau_R^*(Y)))$ denotes a function f of a NTS space U

²⁰²⁰ Mathematics Subject Classification. 54A05, 54C10, 54B05.

Key words and phrases. nano δ -preopen, nano δ -preclosed, rn δ p-open, rn δ p-closed, rn δ p

Submitted: 22.01.2021; Accepted: 06.02.2021; Published: 02.03.2021.

into a NTS V. Let $M \subseteq U$, then $Ncl(M) = \cap \{F: M \subseteq F \text{ and } F^c \in \tau_R(X)\}$ is the nano closure of M and $Nint(M) = \cup \{O: O \subseteq M \text{ and } O \in \tau_R(X)\}$ is the nano interior of M.

2. PRELIMINARIES

Definition 2.1. [5] Let U be a non-empty finite set of objects, called the universe, and R be an equivalence relation on U named as the indiscernibility relation. The pair (U,R) is said to be the approximation space. Let $Y \subseteq U$.

- (*i*) The lower approximation of Y with respect to R is $L_R(Y) = \bigcup_{y \in U} \{ R(y) : R(y) \subseteq Y \}$ where R(y) denotes the equivalence class determined by $y \in U$.
- (*ii*) The upper approximation of Y with respect to R is $HR(Y) = \bigcup_{y \in U} \{ R(y) : R(y) \cap Y \neq \phi \}.$
- (*iii*) The boundary region of Y with respect to R is $B_R(Y) = H_R(Y) L_R(Y)$.

Definition 2.2. [6] Let U be the universe and R be an equivalence relation on U.Let $Y \subseteq U$. Let $\tau_R(Y) = N^T = \{U, \phi, L_R(Y)\}, H_R(Y)\}$ is called the nano topology on U.The pair (U, N^T) is called nano topological space(briefly,NTS).

Elements of the nano topology N^T are known as the nano open sets and the relative complements of nano open sets are called nano closed sets.

Definition 2.3. [1, 3, 6] Let (U, N^T) be a NTS and $M_1 \subseteq U$, then M_1 is said to be:

- (*i*) nano regular open if $M_1 = Nint(Ncl(M_1));$
- (*ii*) nano δ -open if $M_1 = Nint_{\delta}(M_1)$ where $Nint_{\delta}(M_1) = \bigcup \{B:B \text{ is a nano regular open and } B \subseteq M_1\};$
- (*iii*) nano δ -preopen if $M_1 \subseteq Nint(Ncl_{\delta}(M_1))$;
- (*iv*) nano δ -semiopen if $M_1 \subseteq Nint(Ncl_{\delta}(M_1))$;
- (v) nano $\delta \alpha$ -open if $M_1 \subseteq Nint(Ncl(Nint_{\delta}(M_1)));$
- (vi) nano e-open if $M_1 \subseteq Ncl(Nint_{\delta}(M_1)) \cup Nint(Ncl_{\delta}(M_1))$.

The complements of the above respective open sets are their respective closed sets.

The class of nano δ -preopen(resp., nano δ -semiopen, nano e-open, nano δ -open) sets of (U,N^T) is denoted by $N\delta PO(U)$ (resp., $N\delta SO(U)$, NEO(U) and $N\delta O(U)$) and the class of nano δ -preclosed (resp., nano δ -semiclosed, nano e-closed, nano δ -closed) sets of (U,N^T) is denoted by $N\delta PC(U)$ (resp., $N\delta SC(U)$, NEC(U) and $N\delta C(U)$).

Definition 2.4. [1, 3] If (U,N^T) is a NTS and $M \subseteq U$, then the nano δ -pre (resp., nano δ -semi, nano δ -, nano e-) interior of M is the union of all $N\delta PO(U)$ (resp., $N\delta SO(U)$, $N\delta O(U)$ and NEO(U)) sets contained in M and denoted by $Nint_{\delta p}(M)$ (resp., $Nint_{\delta s}(M)$, $Nint_{\delta}(M)$ and $Nint_e(M)$) and the nano δ -pre(resp., nano δ -semi, nano δ -, nano e-) closure of M is the intersection of all $N\delta PC(U)$ (resp., $N\delta SC(U)$, $N\delta C(U)$ and NEC(U)) sets containing M and denoted by $Ncl_{\delta p}(M)$ (resp., $Ncl_{\delta s}(M)$, $Ncl_{\delta}(M)$ and $Ncl_e(M)$).

Lemma 2.1. [1]Let M be a subset of a NTS (U, N^T) , then:

- (i) $Ncl_{\delta p}(M) = M \cup Ncl(Nint_{\delta}(M))$ and $Nint_{\delta p}(M) = M \cup Nint(Ncl_{\delta}(M))$.
- (*ii*) $Ncl_{\delta s}(M) = M \cup Nint(Ncl_{\delta}(M))$ and $Nint_{\delta s}(M) = M \cup Ncl(Nint_{\delta}(M))$.
- (*iii*) $Nint_{\delta p}(Ncl_{\delta p}(M)) = Ncl_{\delta p}(M) \cap Nint(Ncl_{\delta}(M)).$

Lemma 2.2. Let M be a subset of a NTS (U, N^T) , then $Ncl_e(M) = Ncl_{\delta p}(M) \cap Ncl_{\delta s}(M)$.

Definition 2.5. [4] In a NTS (U,N^T) , let $M \subseteq U$. Then M is said to be a nano δ -dense set if $Ncl_{\delta}(M) = U$.

Definition 2.6. [4] A NTS (U,N^T) is said to be nano δ -submaximal if every nano δ -dense subset of U is nano δ -open.

Definition 2.7. [2] A function $f: (U, \tau_R(X) \to (V, \tau_R^*(Y))$ is called nano δ -precontinuous if $f^{-1}(K)$ is nano δ -preopen in $(U, \tau_R(X)$ for every $K \in \tau_R^*(Y)$.

3. Regular nano δ -preopen sets

Definition 3.1. Let (U,N^T) be a NTS. Then a set $H \subseteq U$ is said to be:

(1) regular nano δ -preopen(briefly,rn δ p-open) if $H = Nint_{\delta p}(Ncl_{\delta p}(H));$

(2) regular nano δ -preclosed(briefly, $rn\delta p$ -closed) if $H = Ncl_{\delta p}(Nint_{\delta p}(H))$.

The class of $rn\delta p$ -open (resp., $rn\delta p$ -closed) sets of (U,N^T) will be denoted by $RN_{\delta p}O(U)$ (resp, $RN_{\delta p}C(U)$).

Theorem 3.1. In a NTS (U,N^T) , let $M_1, M_2 \subseteq U$. If $M_1 \subseteq M_2$ then $Nint_{\delta p}(Ncl_{\delta p}(M_1) \subseteq Nint_{\delta p}(Ncl_{\delta p}(M_2))$.

Proof. Obvious.

Theorem 3.2. For a subset M_1 of a NTS (U,N^T), the following properties hold:

(*i*) $M_1 \subseteq Nint_{\delta p}(Ncl_{\delta p}(M_1) \text{ if } M_1 \text{ is nano } \delta$ -preopen.

(*ii*) $Ncl_{\delta p}(Nint_{\delta p}(M_1)) \subseteq M_1$ if M_1 is nano δ -preclosed.

(*iii*) $Ncl_{\delta p}(M_1)$ is $rn\delta p$ -closed if M_1 is nano δ -preopen.

(*iv*) Nint_{δp}(M_1) is rn δp -open if M_1 is nano δ -preclosed.

Proof.

(i) As $M_1 \subseteq \operatorname{Ncl}_{\delta p}(M_1)$ and M_1 is nano δ -preopen, then $M_1 \subseteq \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1))$.

(ii) Since $\operatorname{Nint}_{\delta p}(M_1) \subseteq M_1$ and M_1 is nano δ -preclosed, then $\operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(M_1) \subseteq M_1$.

(iii) Suppose that M_1 is nano δ -preopen.

By (i), we have $\operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1)) \supseteq \operatorname{Ncl}_{\delta p}(M_1)$. On the other hand, $\operatorname{Ncl}_{\delta p}(M_1) \supseteq \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1))$. So that $\operatorname{Ncl}_{\delta p}(M_1) \supseteq \operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1)))$. Therefore $\operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1)) = \operatorname{Ncl}_{\delta p}(M_1)$.

(iv) Suppose that M_1 is nano δ -preclosed.

By (ii), we have $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(M_1)) \subseteq \operatorname{Nint}_{\delta p}(M_1)$. On the other hand, we have $\operatorname{Nint}_{\delta p}(M_1) \subseteq \operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(M_1))$. So that $\operatorname{Nint}_{\delta p}(M_1) \subseteq \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(M_1)) = \operatorname{Nint}_{\delta p}(M_1)$. Therefore $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1)) = \operatorname{Nint}_{\delta p}(M_1)$. Thus $\operatorname{Nint}_{\delta p}(M_1)$ is $\operatorname{rn}\delta p$ -open.

Theorem 3.3. *In a NTS* (U,N^T) *and let* $M \subseteq U$ *. Then:*

- (*i*) $Nint_{\delta p}(Ncl_{\delta p}(M))$ is $rn\delta p$ -open.
- (*ii*) $Ncl_{\delta p}(Nint_{\delta p}(M))$ is $rn\delta p$ -closed.

Proof. (i) We have $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{M})) \subseteq \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{M})) = \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{M}))$ and $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{M})) \supseteq \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{M}))$ = $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{M}))$. Therefore $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{M})) = \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{M}))$.

Theorem 3.4. Let (U,N^T) be a NTS, then the following properties hold:

- (*i*) Every $rn\delta p$ -open set is nano δ -preopen.
- (*ii*) Every $rn\delta p$ -open set is nano e-open.
- (*iii*) Every $rn\delta p$ -open set is nano e-closed.

Proof.

(i) Let M_1 be $rn\delta p$ -open, then

 $M_1 = \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1) = \operatorname{Ncl}_{\delta p}(M_1) \cap \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M_1)) \subseteq \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M_1)).$

Hence M_1 is nano δ -preopen.

(ii) Let M_1 be $rn\delta p$ -open, then

 $M_1 = \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1) = \operatorname{Ncl}_{\delta p}(M_1) \cap \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M_1))$

 \subseteq Nint(Ncl_{δ}(M₁)) \subseteq Nint(Ncl_{δ}(M₁)) \cup Ncl(Nint_{δ}(M₁)).

Hence M_1 is nano e-open.

(iii) Suppose that M_1 is rn δ p-open, then

 $M_1 = Nint_{\delta p}(Ncl_{\delta p}(M_1))$

 $= \operatorname{Ncl}_{\delta p}(M_1) \cap \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M_1))$

- $= [M_1 \cup Ncl(Nint_{\delta}(M_1)] \cap Nint(Ncl_{\delta}(M_1))]$
- $= [M_1 \cap Nint(Ncl_{\delta}(M_1)] \cup [Ncl(Nint_{\delta}(M_1) \cap Nint(Ncl(M_1))]$

As M_1 is nano δ -preopen, then

 $M_1 = M_1 \cup [Ncl(Nint_{\delta}(M_1) \cap Nint(Ncl_{\delta}(M_1))] = Ncl_e(M_1).$

Hence M_1 is nano e-closed.

The converse inclusions in Theorem 3.4 may not hold as shown by the following example. $\hfill \Box$

Example 1. Let $U = \{b_1, b_2, b_3, b_4, b_5\}$ with $U \setminus R = \{\{b_1, b_3\}, \{b_2\}, \{b_4\}, \{b_5\}\}$ and let $X = \{b_1, b_4, b_5\}, N^T = \{U, \phi, \{b_4, b_5\}, \{b_1, b_3, b_4, b_5\}, \{b_1, b_3\}\}$. Then $\{b_1b_3, b_4, b_5\}$ is nano δ -preopen(hence nano e-open) but not $rn\delta p$ -open and $\{b_2\}$ is nano e-closed but not $rn\delta p$ -open.

Lemma 3.1. In a NTS (U,N^T) and let $M \subseteq U$ be nano regular open. Then $M = Nint(Ncl(M)) = Nint(Ncl_{\delta}(M))$.

Theorem 3.5. In a NTS (U, N^T) , every nano regular open set is $rn\delta p$ -open.

Proof. Let M_1 be a nano regular open set, then by Lemmas 2.1 and 2.2, we have $Nint_{\delta p}(Ncl_{\delta p}(M_1) = Ncl_{\delta p}(M_1) \cap Nint(Ncl_{\delta}(M_1)) = Ncl_{\delta p}(M_1) \cap M_1 = M_1$. Hence M_1 is $rn\delta p$ -open.

Converse of the above theorem need not be true as shown by the following example. $\hfill \Box$

Example 2. In Example 1, the set $\{b_1\}$ is $rn\delta p$ -open but it is not nano regular open.

Theorem 3.6. Let M_1 be a nano δ -preclosed subset of a NTS (U, N^T). Then following statements are equivalent:

- (1) M_1 is nano δ -preopen;
- (2) M_1 is $rn\delta p$ -open.

Proof.

(1) \rightarrow (2): By (1), M₁ = Nint_{δp}(M₁) and, by hypothesis, M = Ncl_{δp}(M₁). Therefore, Nint_{δp}(Ncl_{δp}(M₁))=Nint_{δp}(M₁)= M₁.

(2) \rightarrow (1): Obvious from Theorem 3.4(i).

Remark 3.1. The class of $rn\delta p$ -open sets is not closed under finite union as well as finite intersection. It will be shown in the following example.

Example 3. In Example 1, $\{b_1, b_3\}$ and $\{b_4, b_5\}$ are $rn\delta p$ -open sets but $\{b_1, b_3\} \cup \{b_4, b_5\} = \{b_1, b_3, b_4, b_5\} \notin RN\delta P(U)$. Moreover, $\{b_1, b_2, b_4\}$ and $\{b_1, b_2, b_5\}$ are $rn\delta p$ -open sets but $\{b_1, b_2, b_4\} \cap \{b_1, b_2, b_5\} = \{b_1, b_2\} \notin RN\delta P(U)$.

Theorem 3.7. In a nano δ -partition space (U, N^T) , let $M \subseteq U$. Then the following are equivalent:

- (1) *M* is nano δ -preopen;
- (2) *M* is $rn\delta p$ -open.

Remark 3.2. In a nano δ -partition space (U,N^T) , the class of $rn\delta p$ -open sets is closed under arbitrary union.

Lemma 3.2. Let M_1 be a subset of a NTS (U,N^T) , then $Nint_{\delta p}(Ncl_{\delta p}(M_1)) = Nint_{\delta p}(Ncl_e(M_1)).$

Proof. By Lemma 2.1, we have $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1)) = \operatorname{Ncl}_{\delta p}(M_1) \cap \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M_1))$ $\subseteq \operatorname{Ncl}_{\delta p}(M_1) \cap (M_1 \cup \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M_1)))$ $= \operatorname{Ncl}_{\delta p}(M_1) \cap \operatorname{Ncl}_{\delta s}(M_1)$ $= \operatorname{Ncl}_e(M_1), \text{ by Lemma 2.2.}$ Therefore, $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(M_1)) \subseteq \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_e(M_1)).$

The reverse inclusion is obvious.

Theorem 3.8. Let (U,N^T) be a NTS and $M_1 \subseteq U$, the following statements are equivalent:

(1) M_1 is $rn\delta p$ -open;

(2) M_1 is nano e-closed and nano δ -preopen.

Proof.

(1) \rightarrow (2): Obvious from Theorem 3.4 [(i),(iii)].

(2) \rightarrow (1): By (2),M₁=Ncl_e(M₁) and M₁=Nint_{δp}(M₁). By Lemma ??,

$$\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\operatorname{M}_{1})) = \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{e}(\operatorname{M}_{1})) = \operatorname{Nint}_{\delta p}(\operatorname{M}_{1}) = \operatorname{M}_{1}$$

Hence M_1 is $rn\delta p$ -open.

Lemma 3.3. Let
$$(U,N^T)$$
 be a NTS, then the following are equivalent:

- (1) (U,N^T) nano δ -submaximal.
- (2) Every nano δ -preopen set is nano δ -open.

Theorem 3.9. Let (U,N^T) be a nano δ -submaximal, then any finite intersection of nano δ -preopen sets is nano δ -preopen.

Proof. Obvious since $N\delta O(X)$ is closed under finite intersection.

Theorem 3.10. If a NTS (U, N^T) is nano δ -submaximal, then any finite intersection of $rn\delta p$ sets is $rn\delta p$ -open.

Proof. Let $\{G_i: i=1,2,...,n\}$ be a finite family of $rn\delta p$ -open sets. Since the space (U,N^T) is nano δ -submaximal, then by Theorem 3.9, we have $\bigcap_{i=0}^{n} G_i \in \delta$ PO(U). By

Theorem 3.2(i), $\bigcap_{i=n}^{n} G_i \subseteq \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\bigcap_{i=n}^{n} G_i))$. On the other hand, for each i, we have $\bigcap_{i=n}^{n} G_i \subseteq G_i$ and thus $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\bigcap_{i=n}^{n} G_i)) \subseteq \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(G_i)) = A_i$ as $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(G_i)) = G_i$. Therefore $\operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\bigcap_{i=n}^{n} G_i)) \subseteq \operatorname{Nint}_{\delta p}(\operatorname{Ncl}_{\delta p}(\bigcap_{i=n}^{n} G_i))$ $\bigcap_{i=n}^{n} G_{i}$. In consequence, $\bigcap_{i=n}^{n} G_{i}$ is rn δ p-open in U.

Definition 3.2. In a NTS (U,N^T) , let $M \subseteq U$. Then M is called nano η -open if $Nint(Ncl_{\delta}(M)) \subseteq Ncl(Nint_{\delta}(M)).$

Theorem 3.11. In a NTS (U,N^T) ,

- (*i*) Every nano δ -semiopen set is nano η -set.
- (*ii*) Every nano δ -semiclosed set is nano η -set.

Proof.

(i) Let M be nano δ -semiopen, then M \subset Ncl(Nint $_{\delta}$ (M)) which implies,

 $Nint(Ncl_{\delta}(M)) \subseteq Ncl(Nint_{\delta}(M)).$

Hence M is nano η -set.

(ii) Let K be nano δ -semiclosed, then Nint(Ncl_{δ}(K)) \subseteq K. Therefore

1019

 $Nint(Ncl_{\delta}(K)) \subseteq Ncl(Nint_{\delta}(K)).$

Hence K is nano η -set.

Converse of the above Theorem need not be true as shown by the following example. $\hfill \Box$

Example 4. In Example 1, the set $\{b_2\}$ is η -set but it is not nano δ -semiopen. and the set $\{b_1, b_3, b_4, b_5\}$ is nano η -set but it is not nano δ -semiclosed.

```
Remark 3.3. DIAGRAM
```

nano regular open \rightarrow nano $\delta \alpha$ -open \rightarrow nano δ -semiopen \rightarrow nano η -set $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $rn\delta p$ -open \longrightarrow nano δ -preopen \longrightarrow nano e-open

Remark 3.4. The notions of nano η -sets and $rn\delta p$ -open(hence nano δ -preopen, nano e-open)sets are independent of each other.

Example 5. Let (U,N^T) be a space as in Example 1. Then $\{b_2\}$ is nano η -set but not a nano e-open set and the set $\{b_1, b_2, b_4, b_5\}$ is $rn\delta p$ -open but it is not a η -set.

Theorem 3.12. In a NTS (U,N^T) , let $M \subseteq U$, the following are equivalent:

(i) M is nano δ -semiopen;

(*ii*) *M* is both nano e-open and nano η -set.

Proof.

(i) \rightarrow (ii): Obvious.

(ii) \rightarrow (i): Let M be both nano e-open and nano η -set. Then, Nint(Ncl_{δ}(M)) \cap Ncl(Nint_{δ}(M)) \subseteq M and Nint(Ncl_{δ}(M)) \subseteq Ncl(Nint_{δ}(M)), and Nint(Ncl_{δ}(M)) \subseteq M. Hence M is nano δ -semiopen.

Theorem 3.13. For a subset M of a NTS (U, N^T) , the following are equivalent:

(i) M is nano regular open;

(*ii*) *M* is $rn\delta p$ -open and η -set.

Proof.

(i) \rightarrow (ii): It follows from Remark 3.3.

(ii) \rightarrow (i): Let M be rn δ p-open and η -set. Then, by Lemma 2.1, we obtain M = Nint_{δp}(Ncl_{δp}(M))

 $= (\mathsf{M} \cup \mathsf{Ncl}(\mathsf{Nint}_{\delta}(\mathsf{M})) \cap \mathsf{Nint}(\mathsf{Ncl}_{\delta}(\mathsf{M}))$

$$= (M \cap \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M)) \cup (\operatorname{Ncl}(\operatorname{Nint}_{\delta}(M)) \cap \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M)))$$
$$= (M \cap \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M)) \cup \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M))$$
$$= \operatorname{Nint}(\operatorname{Ncl}_{\delta}(M))$$
Therefore M = Nint(Ncl_{\delta}(M)) = Nint(Ncl(M)). Hence M is nano regular open.

Definition 3.3. *In* (U,N^T) *, let* $M \subseteq U$ *.*

 p_{p}

 $Ncl^r_{\delta p}(M) = \bigcap \{F: M \subseteq F \text{ and } F \in RN \delta PC(U) \}.$

Theorem 3.14. In (U,N^T) , let $M \subseteq U$. Then the following hold:

(a) $Nint^r_{\delta p}(M) \subseteq M \subseteq Ncl^r_{\delta p}(M)$.

(b) If M is $rn\delta p$ -open($rn\delta p$ -closed), then $Nint^r_{\delta p}(M) = M(resp, Ncl^r_{\delta p}(M) = M)$.

Remark 3.5. The converse of Theorem 3.14 (b) is true only when (U,N^T) is nano δ -partition.

4. $RN\delta P$ -CONTINUOUS FUNCTIONS:

Definition 4.1. A function $f:(U, \tau_R(X) \to (V, \tau_R^*(Y))$ is said to be $rn\delta p$ -continuous if $f^{-1}(H)$ is $rn\delta p$ -open in $(U, \tau_R(X))$ for each $H \in \tau_R^*(Y)$.

Example 6. Let $U = \{b_1, b_2, b_3, b_4, b_5\}$ with $U \setminus R = \{\{b_1, b_3\}, \{b_2\}, \{b_4\}, \{b_5\}\}$ and let $X = \{b_1, b_4, b_5\}, \tau_R(X) = \{U, \phi, \{b_4, b_5\}, \{b_1, b_3, b_4, b_5\}, \{b_1, b_3\}\}$. Let $V = \{a, b, c, d\}$ with $V \setminus R = \{\{a, c\}, \{b\}, \{d\}\}$ and let $Y = \{a, b\}, \tau_R^*(Y) = \{V, \phi, \{b\}, \{a, b, c\}, \{a, c\}\}$. Define $f:(U, \tau_R(X) \to (V, \tau_R^*(Y))$ as $f(b_1) = a, f(b_2) = c = f(b_4)$ and $f(b_3) = b = f(b_5)$. Then $f^{-1}(\{b\}) = \{b_3, b_5\}, f^{-1}(\{a, b, c\}) = V$ and $f^{-1}(\{a, c\}) = \{b_1, b_2, b_4\}$.

That is, the inverse image of every nano open set is $rn\delta p$ -open in U.Therefore, f is $rn\delta p$ -continuous

Theorem 4.1. A function $f:(U,\tau_R(X) \to (V,\tau_R^*(Y))$ is $rn\delta p$ -continuous, if, and only if, $f^{-1}(D)$ is $rn\delta p$ -closed in $(U,\tau_R(X))$ for every nano closed set D of $(V,\tau_R^*(Y))$.

Proof. Let D be a nano closed set in V. Then V-D is a nano open set in V. Since f is $rn\delta p$ -continuous, $f^{-1}(V \setminus D) = U \setminus f^{-1}(D)$ is $rn\delta p$ -open in U. Therefore, $f^{-1}(D)$ is $rn\delta p$ -closed.

Conversely, let F be a nano open set in $(V,\tau_R^*(Y))$, then V\F is a nano closed set in V. By assumtion, $f^{-1}(V\setminus F) = U\setminus f^{-1}(F)$ is $rn\delta p$ -closed in U. This implies $f^{-1}(F)$ is $rn\delta p$ -open in U.

Theorem 4.2. Every $rn\delta p$ -continuous function is nano δ -precontinuous.

Example 7. Consider $(U, \tau_R(X) \text{ and } (V, \tau_R^*(Y)) \text{ as in Example 6. Define } f:(U, \tau_R(X) \rightarrow (V, \tau_R^*(Y)) \text{ as } f(b_1) = a, f(b_2) = b = f(b_5) \text{ and } f(b_3) = c = f(b_4).$ Then $f^{-1}(\{b\}) = \{b_2, b_5\} f^{-1}(\{a, b, c\}) = V \text{ and } f^{-1}(\{a, c\}) = \{b_1, b_3, b_4\}.$ Therefore, f is nano δ -precontinuous but there exists $\{a, c\} \in \tau_R^*(Y)$ such that $f^{-1}(\{a, c\}) = \{b_1, b_3, b_4\} \notin RN\delta PO(U)$. Hence f is not $rn\delta p$ -continuous.

Theorem 4.3. Let $f:(U,\tau_R(X) \rightarrow (V,\tau_R^*(Y)))$ be a function where $(U,\tau_R(X))$ is nano δ -partition. Then the following are equivalent:

- (1) f is $rn\delta p$ -continuous;
- (2) For each subset B of V,Ncl^r_{δp} $(f^{-1}(B)) \subseteq f^{-1}(Ncl(B));$
- (3) For each subset A of $U_{,f}(Ncl^r_{\delta n}(A)) \subseteq Ncl(f(A));$
- (4) For each subset B of V, $f^{-1}(Nint(B)) \subseteq Nint^r_{\delta p}(f^{-1}(B))$.

Proof.

(1) \rightarrow (2). Let f be rn δ p-continuous and B \subseteq V. Then $f^{-1}(Ncl(B))$ is rn δ p-closed in U. Then $cl_{rp}^{N}((f^{-1}(B)) \subseteq Ncl_{\delta p}^{r}((f^{-1}(Ncl(B)) = f^{-1}(Ncl(B))))$

(2) \rightarrow (1). Let B \subseteq V be a nano closed set. Then by (2), Ncl^{*r*}_{δp}(f^{-1} (B)) \subseteq f^{-1} (Ncl(B))= f^{-1} (B) \Longrightarrow Ncl^{*r*}_{δp}(f^{-1} (B))= f^{-1} (B) since (U, τ_R (X) is nano δ -partition. Therefore, f^{-1} (B) is rn δ p-closed in (U, τ_R (X)).

(2) \rightarrow (3). Let A \subseteq U. Then f(A) \subseteq V. By (2), we get

$$f^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A}))) \supseteq \mathrm{cl}_{rp}^{N}(f^{-1}(\mathrm{f}(\mathrm{A}))) \supseteq \mathrm{Ncl}_{\delta p}^{r}(\mathrm{A}).$$

Therefore, $f(\operatorname{Ncl}_{\delta p}^{r}(A)) \subseteq f(f^{-1}(\operatorname{Ncl}(f(A))) \subseteq \operatorname{Ncl}(f(A))$.

(3) \rightarrow (2). Let B \subseteq V and A = $f^{-1}(B) \subseteq$ U.Then by(3), f(Ncl^{*r*}_{δp}($f^{-1}(B)$)) \subseteq Ncl(f($f^{-1}(B)$) \subseteq Ncl(B). \Rightarrow Ncl^{*r*}_{δp}($f^{-1}(B)$) \subseteq $f^{-1}(Ncl(B))$.

(2) \rightarrow (4). Replace B by V \ B in (2), we get Ncl^{*r*}_{δp}(f^{-1} (V\B)) \subseteq f^{-1} (Ncl(V\B)). \Rightarrow Ncl^{*r*}_{δp}(X\ f^{-1} (B)) \subseteq f^{-1} (V\Nint(B)). Therefore, f^{-1} (Nint(B)) \subseteq Nint^{*r*}_{δp}(f^{-1} (B)) for each B \subseteq V.

(4)
$$\rightarrow$$
(1). Let H \subseteq V be nano open. Then

$$f^{-1}(\mathbf{H}) = f^{-1}(\operatorname{Nint}(\mathbf{H})) \subseteq \operatorname{Nint}_{\delta p}^{r}(f^{-1}(\mathbf{H}))$$

⇒ Nint^{*r*}_{δp}($f^{-1}(H) = f^{-1}(H)$ since(U, $\tau_R(X)$) is nano δ -partition. Hence, $f^{-1}(H)$ is rn δ p-open in U.

REFERENCES

- [1] A. PADMA, M. SARASWATHI, A. VADIVEL, G. SARAVANAKUMAR: New notions of nano *M*-open sets, Malaya Journal of Matematik, **1** (2019), 656–660.
- [2] V. PANKAJAM, K. KAVITHA: δ-open sets and δ-nano continuity in δ-nano topological space, Int. J. Innov. Sci. and Res. Technology, 2 (2017), 110–118.
- [3] S. PARIMALA, J. SATHIYARAJ, V. CHANDRASEKAR: New notions via δ-open sets with an application in diagnosis of type-II diabetics, Adv. Math. Sci. J., 9 (2020), 1247–1253.
- [4] S. PARIMALA, J. SATHIYARAJ, V. CHANDRASEKAR: Nano δ open sets and their notions, Malaya Journal of Matematik, 1 (2019), 664–672.
- [5] Z. PAWLAK: Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356.
- [6] M. L. THIVAGAR, C. RICLORD: On nano forms of weakly open sets, Int. J. Math. Stat. Inven., 1 (2013), 31–37.

DEPARTMENT OF MATHEMATICS KARNATAK UNIVERSITY'S, KARNATAK COLLEGE DHARWAD-580001, INDIA *Email address*: jagadeeshbt2000@gmail.com