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ANALYSIS OF SERIES QUEUES IN FUZZY ENVIRONMENTS USING
QUADRATIC FUZZY NUMBERS AND THE DSW ALGORITHM

H. Merlyn Margaret1 and P. Thirunavukarasu

ABSTRACT. In this paper, we analyze systems consisting of a series of k service
facilities in fuzzy environments. These are a special class of queueing systems
called series queues. We use quadratic fuzzy numbers to model fuzziness in
the parameters of such systems, namely the arrival rate and the service rates of
the k servers. We propose a solution procedure that uses the DSW algorithm
to arrive at the fuzzy system characteristics of the queueing system. Finally, we
present a numerical example to illustrate the solution procedure.

1. INTRODUCTION

Zadeh in 1965 introduced fuzzy set theory to deal with imprecision and un-
certainty in data. Significant research in this field has been carried out by re-
searchers like Dubois and Prade [8], Moore [11], Dong et al. [10], Mizumoto
and Tanaka [13], etc. The theory finds wide applications in optimization, queue-
ing theory, communication, neural networks, soft computing, decision making
and so on.

Queueing theory is essentially a probabilistic approach to analyzing queue-
ing systems. System parameters, viz. the nature of arrivals, service completion
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times etc. are assumed to follow certain probability distributions based on appli-
cation. Fuzzy set theory resolves the intrinsic uncertainty associated with these
parameters.

Extensive research has been carried out in the area of fuzzy queues. Buck-
ley [2] used possibility theory to analyze queueing models with intrinsic fuzzi-
ness. Negi and Lee [17] and Li and Lee [6] analyzed several fuzzy queueing
models. Kao et al. [16] used nonlinear programming to study fuzzy queues.
Prade [5] considered possibilistic queueing models. Pardo and David [9] used
fuzzy techniques to analyze queueing models on priority discipline.

Recent studies on fuzzy queueing networks like queues connected in series
(tandem queues) find many applications in manufacturing systems, supermar-
kets, and in assembling parts. Zhang and Phillis [14] studied parallel queueing
systems in a fuzzy environment with two heterogeneous servers. Madan and
Abu-Dayyel [3] studied two server queues under vacation policy. Chen [12] an-
alyzed fuzzy tandem queues using nonlinear programming. This paper studies
the system characteristics of a fuzzy queueing model in which several service
facilities are connected in series by making use of quadratic fuzzy numbers and
the Dong-Shah-Wong (DSW) algorithm.

The summary of this article is as follows: Sec. 2 of the paper discusses basic
fuzzy set theory. Sec. 3 introduces the reader to quadratic fuzzy numbers. Sec.
4 discusses series queues in brief. Sec. 5 describes the DSW algorithm. Sec.
6 describes the proposed solution procedure, and Sec. 7 discusses a numerical
example. Sec. 8 concludes the study.

2. PRELIMINARIES

2.1. Fuzzy set theoretic definitions. A fuzzy set Ã in the (crisp) universe U ,
written (U,A), is a function A : U → [0, 1] that maps each element of the uni-
verse to a number in [0,1], interpreted as its degree of membership in U . We
say that Ã is a fuzzy subset of U , and that A is its membership function.

There are certain useful crisp sets associated with a fuzzy set, namely the weak
α-cut, the strong α-cut, the support and the core.

The weak α-cut of Ã, written Ãα, is defined by

Ãα := {u ∈ U : A(u) ≥ α}.



ANALYSIS OF SERIES QUEUES IN FUZZY ENVIRONMENTS. . . 1027

The strong α-cut of Ã, written Ãα+, is defined similarly as

Ãα+ := {u ∈ U : A(u) > α},

for each α ∈ [0, 1]. The term α-cut will be used to refer to the weak α-cut.
Observe that the α-cuts form a nested collection of crisp sets. For 0 ≤ α ≤ β ≤ 1,
the inclusion Ãβ ⊆ Ãα holds.

The support, denoted supp(Ã) and the core, denoted core(Ã) are merely spe-
cial α-cuts, given by

supp(Ã) := Ã0+ and core(Ã) := Ã1.

An important measure associated with fuzzy sets Ã is the height, denoted h(Ã).

h(Ã) := sup
U
A.

The fuzzy set Ã is called normal if its height is equal to 1, and is called con-
vex if all of its α-cuts are convex. A useful characterization of convexity is the
following: Ã is convex iff

A(λu1 + (1− λ)u2) ≥ min{A(u1), A(u2)} ∀ u1, u2 ∈ U and ∀ λ ∈ [0, 1].

2.2. Fuzzy numbers. Special fuzzy subsets of R qualify as fuzzy numbers if the
following hold:

(i) Ã has bounded support and is normal;
(ii) α-cuts, for α ∈ (0, 1] are closed intervals.

In most applications, core(Ã) is a singleton. This element is often referred to as
the mean or the modal value of Ã.

Observe that (ii) implies fuzzy numbers are convex, since intervals are convex.
A positive fuzzy number is one whose support is a subset of the positive reals.
The collection of all positive fuzzy numbers is denoted by F(R+).

2.3. Binary interval analysis. Let I1, I2 ⊂ R be closed intervals in R of finite
length. Therefore, we can write

I1 = [p1, q1] and I2 = [p2, q2] for some reals p1, p2, q1, q2 ∈ R.

For α ∈ R, we define αI1 =

[αp1, αq1] α ≥ 0

[αq1, αp1] α < 0
.
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Also, I1 ∗ I2 for ∗ ∈ {+,−, ·,÷} is an interval in R, given by the following
equations:

I1 + I2 = [p1 + p2, q1 + q2]

I1 − I2 = I1 + (−1) · I2
I1 · I2 =

[
min{p1p2, p1q2, p2q1, q1q2},max{p1p2, p1q2, p2q1, q1q2}

]
I1 ÷ I2 = I1 · [1/q2, 1/p2] , provided 0 6∈ [p2, q2]

2.4. Operations on fuzzy numbers. Let M̃, Ñ ∈ F(R+), and let ∗ denote any
one of the operations +,−, ·,÷. Then, the fuzzy number M̃ ∗ Ñ is well defined,
and is given by

(M̃ ∗ Ñ)α = M̃α ∗ Ñα for each α ∈ [0, 1].

These α-cuts are clearly intervals of R+, and standard binary interval analysis
techniques (as described in the previous section) apply.

3. QUADRATIC FUZZY NUMBERS (QFNS)

A fuzzy number Ã is said to be a quadratic fuzzy number [4] if

A(x) =


1−

(
µ− x
βl

)2

, µ− βl ≤ x ≤ µ

1−
(
x− µ
βr

)2

, µ ≤ x ≤ µ+ βr

0, otherwise,

,

where µ ∈ R is the mean of Ã and βl, βr ∈ R+ are called the left-hand and
right-hand spreads respectively. We will write Ã = (µ, βl, βr)q for notational
brevity.

For illustration, a plot of the membership function of the quadratic fuzzy num-
ber (3, 2, 1)q is as shown in Fig. 1.

It is easy to see that supp(Ã) = (µ− βl, µ+ βr), core(Ã) = {µ}. Also, the α-cut
of Ã is given by

Ãα =
[
µ− βl

√
1− α, µ+ βr

√
1− α

]
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FIGURE 1. The quadratic fuzzy number (3, 2, 1)q

4. SERIES QUEUES

4.1. Basic description. The system in consideration is a special type of a se-
ries queue. Series queues [1] are queueing models consisting of a series of k
nodes, where each node consists of a certain number of parallel service facili-
ties. The arrivals are neither allowed to visit previously visited nodes, nor leave
the system before advancing through each of the nodes in sequence.

Suppose that node i consists of si service facilities in parallel. In our analysis,
we assume that si = 1 for all 1 ≤ i ≤ k. Thus, the system in consideration
is essentially a series of k service facilities, where facility i functions with a
prescribed service rate. Furthermore, arrivals to the system are assumed to be
Poisson, with mean λ, and the service times are assumed to be exponentially
distributed. We also assume that facility i functions with service rate µi. Equiv-
alently, the time taken by facility i to process a unit is exponentially distributed
with mean 1/µi. The service stations are also assumed to have infinite capacity,
meaning that there is no restriction on the size of the queue formed between
two consecutive service facilities.

The analysis of such systems is greatly simplified due to a result attributed
to Burke [15]. Informally, it states that the inter-departure times from an
M/M/c/∞ service facility are distributed in a fashion identical to that of the
inter-arrival times. We state the result here without proof.

Theorem 4.1. (Burke, 1956) If the arrivals to an M/M/c/∞ service facility are
Poisson with mean λ and the service times are exponentially distributed with mean
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1/µ with (λ/cµ) < 1, then the departures out of the queue are Poisson with mean
λ.

Put differently, the output distribution is identical to the input distribution,
and is unaffected by the exponential service mechanism. In effect, this allows us
to treat the k queues in series as k completely independent M/M/1/∞ queues.

In our analysis, we also take fuzziness in the parameters of the system into
account, viz. the arrival and service rates. We shall assume that the rates are
fuzzy numbers λ̃, µ̃1, . . . , µ̃k. Our objective is to arrive at the fuzzy system char-
acteristics of the system in discussion.

4.2. Relevant results. Burke’s theorem allows one to use the results that are
known for the FM/FM/1/∞ model and extend them. Immediately, it follows
that in steady state, we must have

(1) The average number in the system, denoted Ñ , is given by

Ñ =
λ̃

µ̃1 − λ̃
+

λ̃

µ̃2 − λ̃
+ · · ·+ λ̃

µ̃k − λ̃
=

k∑
i=1

λ̃

µ̃i − λ̃
.

(2) The average time spent by the customer in the system, denoted W̃ , is
given by

W̃ =
1

µ̃1 − λ̃
+

1

µ̃2 − λ̃
+ · · ·+ 1

µ̃k − λ̃
=

k∑
i=1

1

µ̃i − λ̃
.

These are the system characteristics that we shall be interested in. Also, one
must keep in mind that a steady state solution exists only if λ̃ < min{µ̃1, . . . , µ̃k}.

5. THE DONG-SHAH-WONG ALGORITHM

In fuzzy analysis of systems, in principle, one can use Zadeh’s extension prin-
ciple to arrive at the fuzzy solution to the problem. In practice, it is not uncom-
mon to discretize the continuous support of the fuzzy input parameters (usually
a continuum of reals) into a finite set of points to arrive at an approximate fuzzy
solution. The reason for doing so is that, oftentimes, an analytic solution cannot
be determined, and thus one solves the problem on a computer, numerically –
computers handle discrete data very well.
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Using the extension principle (following discretization of the input parame-
ters) to propagate fuzziness in the input parameters to the output gives erro-
neous results – these errors do not arise due to inherent problems in the ex-
tension principle itself; they are due to the discretization that was done for
numerical convenience.

To get around this, one employs the Dong-Shah-Wong (often abbreviated to
DSW) algorithm, which uses α-cuts to arrive at reasonable estimates. The DSW
algorithm [7] is as described below:

(1) Fix a value of α in [0, 1].
(2) Evaluate the α-cuts of the fuzzy input parameters for this value of α –

these are intervals in R.
(3) Use binary interval analysis as described in Sec. 2.3 to arrive at an

interval for the output – this is the α-cut of the output.
(4) Repeat the first three steps for different values of α (equispaced values

in [0, 1] are usually chosen for convenience) to arrive at an approximate
plot of the membership function of the output.

6. SOLUTION PROCEDURE

We first model the fuzziness in the parameters of the system in discussion
(here, these are the rate parameters) using quadratic membership functions. Put
differently, we assume that the rate parameters are quadratic fuzzy numbers.

Then, we employ the DSW algorithm. For each α ∈ {0.0, 0.1, 0.2, . . . , 1.0}, we
compute the α-cuts of the fuzzy quadratic rate parameters (see Sec. 3) and use
binary interval analysis to determine the α-cuts of the system characteristics of
the queueing system, using the formulae in Sec. 4.2. We end up with intervals
for the system characteristics at each confidence level. This then allows us to
obtain an approximate plot of the membership functions associated with the
fuzzy system characteristics by means of interpolation.

We remark that this procedure works for any kind of membership, since no
properties specific to quadratic fuzzy numbers have been exploited. We now
present a numerical example to illustrate the solution procedure.
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7. NUMERICAL EXAMPLE

We consider a series queueing model with k = 3, λ̃ = (20, 2, 2)q, µ̃1 =

(25, 2, 2)q, µ̃2 = (40, 5, 5)q and µ̃3 = (30, 3, 3)q, where all rates are in units per
hour. We have modelled the fuzziness in the rate parameters of the system us-
ing quadratic memberships as stated before. With the above assumptions, our
objective is to arrive at the fuzzy performance measures of the system.

We find the intervals for λ̃ and the µ̃i corresponding to each α in {0, 0.1, . . . , 1};
that is, we find λ̃α and (µ̃i)α for each α. We use these intervals to compute
intervals for the system characteristics. We demonstrate the procedure for α =

0.1 and compute Ñ0.1.
The 0.1-cuts of the rates are λ̃0.1 = [18.10, 21.90], (µ̃1)0.1 = [23.10, 26.90],

(µ̃2)0.1 = [35.26, 44.74], (µ̃3)0.1 = [27.15, 32.85]. Now, we use the formula for
Ñ and arrive at

Ñ0.1 =
[18.10, 21.90]

[23.10, 26.90]− [18.10, 21.90]
+

[18.10, 21.90]

[35.26, 44.74]− [18.10, 21.90]

+
[18.10, 21.90]

[27.15, 32.85]− [18.10, 21.90]
.

This gives Ñ0.1 = [3.96, 23.97]. Other computations are carried out similarly. The
results are tabulated below in Table 1.

TABLE 1. Intervals associated with the system characteristics of
the system for α ∈ {0, 0.1, . . . , 1}

Ñα W̃α

α = 0.0 [3.86, 28.09] [0.21, 1.27]

α = 0.1 [3.96, 23.97] [0.21, 1.09]

α = 0.2 [4.07, 20.84] [0.22, 0.95]

α = 0.3 [4.19, 18.36] [0.22, 0.84]

α = 0.4 [4.33, 16.32] [0.23, 0.75]

α = 0.5 [4.49, 14.59] [0.24, 0.68]

α = 0.6 [4.67, 13.08] [0.24, 0.61]

α = 0.7 [4.90, 11.71] [0.25, 0.55]

α = 0.8 [5.20, 10.43] [0.27, 0.49]

α = 0.9 [5.63, 9.13] [0.29, 0.44]

α = 1.0 [7.00, 7.00] [0.35, 0.35]
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Now, using a graphing utility like MATLAB, one can arrive at approximate
plots of the membership functions associated with the system characteristics.
The plots of the membership functions are as shown in Figures 2 and 3.

FIGURE 2. Membership function of Ñ

FIGURE 3. Membership function of W̃

From the above results, one can draw the following meaningful conclusions
in steady state:

(1) The average number in the system lies between 4 and 28, with mean 7;
(2) The average time spent by a customer in the system lies between 12.6

min to 76.2 min, with mean 21 min.
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8. CONCLUSION

By incorporating fuzziness in queueing models, all inherent uncertainty and
imprecision that occur in real-life situations are taken into account, and thereby
accuracy is improved. Various measures that help one to analyze fuzzy queue-
ing systems, viz. (fuzzy) mean time spent for getting service, (fuzzy) mean
number of customers in the queue, etc. can be calculated using the procedure
outlined in this paper. Also, this study applies to a plethora of queueing mod-
els that incorporate various other schemes – for instance, optimizing the fuzzy
cost associated with an additional service facility and balancing the cost associ-
ated with waiting. These data prove useful in the design of efficient queueing
systems.
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