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AN EFFICIENT KEY EXCHANGE SCHEME USING SANTILLI’S ISOFIELDS
SECOND-KIND FOR SECURE COMMUNICATION

Mamta S. Dani, Akshaykumar Meshram1, Chandrashekhar Meshram, and N. M. Wazalwar

ABSTRACT. We intend to bring out a unique method for constructing key ex-
change scheme (KES) using Santilli’s isofields second kind for safe transmission.
The substantial idea of our offer KES is to utilized isopolynomials with general
isonumber coefficient. Suggested KES is an unusual advantage for afore appli-
cation as Santilli’s isofields second kind framework permutable permutation of
isocongruence and isoarirthmetic progressions.

1. INTRODUCTION, MOTIVATIONS AND ORGANIZATION

The framework for KES introduced by Diffie–Hellman, permits two users
to simultaneously build a mutual private key over an unconfident mechanism
[1]. At present, most of KES build on the number theory. The primary con-
cerns on that the public key cryptography is design are discrete logarithm prob-
lem (DLP) [2, 3] along with the elliptic curve DLP [4, 5]. The methodically
enumerable groups in which DLP structure plays are a fundamental part in
cryptosystem [6]. Various implementations of the Diffie-Hellman procedure in
matrix rings and diversity of matrices are suggested in [7, 8]. Various cryp-
tographic schemes constructed on DLP and double DLP proposed in [9–12,
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16]. Dihedral group and Suzuki-2 group based cryptosystem which are se-
cure against chosen-plaintext-attack, ciphertext-indistinguishability-attack and
adaptive-chosen-ciphertext-attack in random oracle model offered in [13–15].
Lately, Meshram A. [17] presented KES based on isonumbers.

The current work concentrate on a particular procedure for design a KES build
on the Santilli’s isofields of the second kind to make use of isounit is an element
of the original field. This paper is structured as follow. In part 3, we confer the
relevant background. In part 4, we present Santilli’s isofields of the second kind
based KES. Lastly, paper is accomplished in part 5.

2. MATHEMATICAL DEFINITIONS AND ASSOCIATED DATA

In this part, we describes mathematical definitions such as arthmatic opera-
tion in morden mathematics, arthmatic operation in Santilli’s isomathematics,
Santilli’s isofields of the second kind, Diffie-Hellman Problem (DHP), Symmet-
rical Decomposition Problem (SDP) over ring F̂ .

2.1. Modern Mathematics: Arithmetic operations with “0” an additive unity
and “1” an multiplicative unity define as:
α + 0 = 0 + α = α, α− 0 = α, 0− α = −α, α× 1 = 1× α = α,

α× β = αβ, α÷ 1 = α, 1÷ α = 1
α
, α÷ β = α

β
,

with α(0) = 1 and α(1) = α.

2.2. Santilli’s Iso - mathematics: The structure for iso - mathematics pre-
sented by Jiang [17] as follows:

• Iso-addition (+̂): α+̂β = α + 0̂ + β.
• Iso-subtraction (−̂): α−̂β = α− 0̂− β.
• Iso-multiplication (×̂): α×̂β = αΥ̂β.
• Iso-division (÷̂): α÷̂β =

(
α
β

)
~̂.

Here, 0̂ is called isozero and Υ̂ is called inverse of isounit ~̂ 6= 1 such that Υ̂~̂ = 1.

2.3. Santilli’s isofields of the second kind F̂ = F̂(α,+,×).
For all α ∈ F not lifted to α̂ = α~̂ verify all the axioms of a field if and only if

the isounit is an element of the original field, i.e. ~̂ = 1

Υ̂
∈ F . Then isoproduct

is defined as α×̂β = αΥ̂β ∈ F̂ .
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We then have the following isoproduct operations of second kind as:
•α~̂ = α, α−~̂ = α−1~̂2, α~̂ ×̂ α−~̂ = α0̂ = ~̂ = Υ̂−1 6= 1.

•α2̂ = α2Υ̂, α−2̂ = α−2~̂3, α2̂ ×̂ α−2̂ = α0̂ = ~̂ = Υ̂−1 6= 1, and so on.
In general,
•αn̂ = αnΥ̂n−1, α−n̂ = α−n~̂n+1, αn̂ ×̂ α−n̂ = α0̂ = ~̂ = Υ̂−1 6= 1.

•α1̂/2 = α1/2(~̂)1/2, α−1̂/2 = α−1/2(~̂)3/2, α1̂/2 ×̂ α−1̂/2 = α0̂ = ~̂ = Υ̂−1 6= 1.

•α1̂/3 = α1/3(~̂)2/3, α−1̂/3 = α−1/3(~̂)4/3, α1̂/3 ×̂ α−1̂/3 = α0̂ = ~̂ = Υ̂−1 6= 1,

and so on.
In general,
•α1̂/n = α1/n(~̂)1− 1

n , α−1̂/n = α−1/n(~̂)1+ 1
n , α1̂/n ×̂ α−1̂/n = α0̂ = ~̂ = Υ̂−1 6= 1.

•αγ̂/β = αγ/β(~̂)1− γ
β , α−γ̂/β = α−γ/β(~̂)1+ γ

β , αγ̂/β ×̂ α−γ̂/β = α0̂ = ~̂ = Υ̂−1 6= 1.

•αβ̂ = αβ(~̂)1−β = αβ(Υ̂)1−β, α−β̂ = α−β(~̂)1+β, αβ̂ ×̂ α−β̂ = α0̂ = ~̂ = Υ̂−1 6=
1.

•α~̂ ×̂ α~̂ = αΥ̂β, α~̂ ×̂ α−~̂ = αβ−1~̂.
In the first instance, scale isomultiplication notion over F̂ define as follows:

I. (λ̂)µ̂ , (−λ̂)(−µ̂) = (−µ̂) + (−µ̂) + (−µ̂) + ...+ (−µ̂)︸ ︷︷ ︸
−λ̂ times

, λ̂ ∈ Z < 0̂.

II. (λ̂)µ̂ , {µ̂+ µ̂+ µ̂+ ...+ µ̂}︸ ︷︷ ︸
λ̂ times

, λ̂ ∈ Z < 0̂.

III. (λ̂)µ̂ = 0̂, λ̂ = 0̂.

Case-I: For isonumber q̂, √̂, t̂, ∫̂ ∈ Z, we have (q̂) µ̂t̂∗(√̂) µ̂∫̂ = (q̂ √̂) µ̂t̂+∫̂ =

(√̂)µ̂∫̂ ∗ (q̂) µ̂t̂,∀ µ̂ ∈ F̂ .

By utilizing definition of scale isomultiplication, the distributivity of isomulti-
plication with respect to isoaddition, and commutativity of isoaddition, we can
conclude the above statement.

Case-II: For distinct λ̂ and µ̂ we have (q̂) µ̂ ∗ (√̂) λ̂ 6= (√̂) λ̂ ∗ (q̂) µ̂.

Let us define for isonumber µ̂ in F̂ , we have ĥ(µ̂) =
∑∫̂
|=0(q̂|)µ̂| = (q̂0) +

(q̂1)µ̂+ ...+(q̂∫̂ )µ̂∫̂ ∈ F̂ for an isopolynomial with positive isointegral coefficient

ĥ(l̂) = q̂0 +q̂1l̂+ ...+q̂∫ l̂∫ ∈ Z+[l̂]. Furthermore, ĥ(µ̂) is an isopolynomial about
variable µ̂,∀ µ̂ ∈ F̂ then ĥ(µ̂) ∈ Z+[µ̂]. Where Z+[µ̂] is an extension of Z+ with
µ̂. Consider ĥ(µ̂) =

∑∫̂
|=0(q̂|)µ̂| ∈ Z+[µ̂], f̂(µ̂) =

∑t̂
‖=0(√̂|)µ̂| ∈ Z+[µ̂] and ∫̂ ≥ t̂,
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then
(∑∫̂

|=0(q̂|)µ̂|
)

+
(∑t̂

‖=0(√̂‖)µ̂‖
)

=
(∑t̂

|=0(q̂|+ √̂|)µ̂|
)

+
(∑∫̂

|=t̂+1
(q̂|)µ̂|

)
, by

utilizing case-I along with isodistributivity and ŵ| =
∑|̂
‖=0 q̂|√̂|−‖ =

∑
‖+λ=| q̂|√̂λ,

we get (
∑t+1
|=0 ŵ|µ̂|) = (

∑∫
|=0(}̂|)µ̂|)∗ (

∑t
‖=0(√̂‖)µ̂|) Consequently, we accomplish

the successive case-III conferring to case-I.

Case-III: We have ĥ(µ̂) ∗ f̂(µ̂) = f̂(µ̂) ∗ ĥ(µ̂), ∀ ĥ(µ̂), f̂(µ̂) ∈ Z+[µ̂].

As usual, ĥ(µ̂) ∗ f̂(λ̂) 6= f̂(λ̂) ∗ ĥ(µ̂) for µ̂ 6= λ̂. Assume ring isopolynomial with
isonumber coefficient (F̂ ,+, ∗), for each conjecturally select isonumber †̂ ∈ F̂ ,
we define a set D̂†̂ ⊆ F̂ by D̂†̂ , {̂h(†̂) : ĥ(µ̂) ∈ Z+[µ̂]}

2.4. SDP over Ring F̂ with isopolynomial : Numerate ξ̂ ∈ D̂†̂ such that l̂ =

ξ̂t̂ µ̂ ξ̂ ∫̂ for t̂, ∫̂ ∈ Z, (t̂, µ̂, l̂) ∈ F̂3.

2.5. DHP over Ring F̂ with isopolynomial : For given µ̂, µ̂ξ̂1 and µ̂ξ̂2, numerate
µ̂ξ̂1ξ̂2 (or µ̂ξ̂2ξ̂1), µ̂ ∈ F̂ , ξ̂1, ξ̂2 ∈ D̂†̂.

3. KES USING SANTILLI’S ISOFIELDS SECOND - KIND

Promptly, We contemplate the ring isopolynomial with the isonumber coeffi-
cient as an fundamental structure to set up a KES where two clients, say Hirabai
and Aakansha, who come to an agree to share a classified session key over the
unsecured unstable channel.

The algorithm is stated as follow:

(i) Hirabai specify pair of two random positive isointegers t̂, ∫̂ ∈ Z+ and
pair of two random elements q̂, √̂ ∈ F̂ to Aakansha.

(ii) Hirabai prefer a conjecturally isopolynomial ĥ(µ̂) ∈ Z+[µ̂] such that ĥ(q̂) 6=
0̂ and then proceed ĥ(q̂) as her classified key.

(iii) Aakansha prefer a conjecturally isopolynomial f̂(µ̂) ∈ Z+[µ̂] such that
f̂(q̂) 6= 0̂ and then proceed f̂(t̂) as her classified key.

(iv) Hirabai numerate H = ĥ(q̂)t̂ ∗ q̂ ∗ ĥ(q̂)∫̂ and refers H to Aakansha.
(v) Aakansha numerate A = f̂(q̂)t̂ ∗ √̂ ∗ f̂(q̂)∫̂ and refers A to Hirabai.

(vi) Hirabai numerate K̂Hirabai = ĥ(q̂)t̂ ∗ A ∗ ĥ(q̂)∫̂ as the shared session key.
(vii) Aakansha numerate K̂Aakansha = f̂(q̂)t̂ ∗ H ∗ f̂(q̂)∫̂ as the shared session

key.
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The interpretation of the scheme is demonstrate in the following table.

3.1. Example: KES using Santilli’s Isofields Second - Kind.

Select an integer N = 17 ∗ 19, isounit ~̂ =

1 7 5

8 6 2

3 5 9

 and its inverse of

isounit Υ̂ =

−1
7

19
154

4
77

3
14

3
154

−19
154

−1
14

−4
77

25
154

. Presume that Hirabai prefer t̂ = ∈̂, ∫̂ = 3̂,

q̂ =

5 6 3

2 5 9

7 1 8

 , √̂ =

1 6 9

7 9 5

2 4 3

 and ĥ(µ̂) = 3̂µ̂3 + 2̂µ̂2 + µ̂ + 2̂. She numer-

ate: ĥ(q̂) = 3̂

5 6 3

2 5 9

7 1 8


3̂

+ 2̂

1 6 9

7 9 5

2 4 3


2̂

+

5 6 3

2 5 9

7 1 8

 + 2̂

5 6 3

2 5 9

7 1 8

 ĥ(q̂) =

36578 61046 63334

41198 71962 73626

41428 68656 68428

 mod 323, ĥ(q̂) =

 79 322 26

177 256 305

84 180 275

 and H = ĥ(q̂)t̂ ∗

√̂ ∗ ĥ(q̂)∫̂ ,
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H =

 79 322 26

177 256 305

84 180 275


2̂

∗

1 6 9

7 9 5

2 4 3

 ∗
 79 322 26

177 256 305

84 180 275


3̂

=

165 38 279

304 194 67

159 249 218

.

Then, she indicate t̂, ∫̂ , q̂, √̂ and H to Aakansha. Now, assume that Aakan-

sha, after getting t̂, ∫̂ , q̂, √̂ and H from Hirabai, select a another isopolynomial

f̂(µ̂) = 2̂µ̂2 + µ̂+ 2̂ and numerate

f̂(q̂) = 2̂

5 6 3

2 5 9

7 1 8


2̂

+

5 6 3

2 5 9

7 1 8

+ 2̂

5 6 3

2 5 9

7 1 8

 , f̂(q̂) =

275 173 27

286 309 189

94 175 16

 .

Further,

A = f̂(q̂)t̂ ∗ √̂ ∗ f̂(q̂)∫̂ =

275 173 27

286 309 189

94 175 16


2̂

∗

1 6 9

7 9 5

2 4 3

 ∗
275 173 27

286 309 189

94 175 16


3̂

A =

 53 267 173

264 187 27

37 251 82

.

Then, she indicate A to Hirabai. At the end, Hirabai numerate the session key
as

K̂Hirabai = ĥ(q̂)t̂ ∗ A ∗ ĥ(q̂)∫̂

K̂Hirabai =

 79 322 26

177 256 305

84 180 275


2̂

∗

 53 267 173

264 187 27

37 251 82

 ∗
 79 322 26

177 256 305

84 180 275


3̂

=

138 218 167

294 127 282

317 29 153

 ,
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while Aakansha numerate the session key as

K̂Aakansha = f̂(q̂)t̂ ∗ H ∗ f̂(q̂)∫̂

K̂Aakansha =

275 173 27

286 309 189

94 175 16


2̂

∗

165 38 279

304 194 67

159 249 218

 ∗
275 173 27

286 309 189

94 175 16


3̂

=

138 218 167

294 127 282

317 29 153

 .
Allegedly, K̂Hirabai = K̂Aakansha holds.

4. CONCLUSION

In recent times few promising KES have been design on braid groups, Thomp-
son’s groups, etc. In this artical, we have proposed the unique KES which is
based on Santilli’s isofields of the second - kind is to utilized isopolynomials
with general isonumber coefficient. It benefit ahead perusal in view of San-
tilli’s isofields of the second - kind framework like permutable permutation of
isonumber.
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