

Advances in Mathematics: Scientific Journal 10 (2021), no.3, 1131-1136

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.10.3.1

SEQUENCE OF SOFT POINTS IN SOFT Δ -METRIC SPACES

P. G. Patil¹ and Nagashree N. Bhat

ABSTRACT. In this paper, we have constructed a sequence of soft points in one soft set with respect to a fixed soft point of another soft set. The convergence and boundedness of these sequences in soft Δ -metric spaces are defined and their properties are established. Further, the complete soft Δ -metric spaces are introduced by defining soft Δ -Cauchy sequences.

1. Introduction

The concept of soft sets initiated by Molodtsov [4] brought a rapid contribution to the area of mathematical modeling. Molodtsov gave the definition of soft set as, [4] a structure (\mathcal{A},Θ) is a soft set over an initial universe \mathcal{U} if \mathcal{A} is a mapping from Θ , a set of parameters, to the power set of \mathcal{U} . Maji et al. [3] continued the study on soft sets and defined null soft set, absolute soft set and complement of a soft set. Further, the ideas of subsets, supersets, equality, union and intersection of soft sets are initiated in [3]. In 2012, the notions of soft elements, soft real sets and soft real numbers were proposed by Samanta et al. [1]. The soft real set (\mathcal{F},Θ) is a mapping from a set of parameters Θ into $\mathbb{B}(\mathbb{R})$, the set of all non-empty bounded subsets of real numbers \mathbb{R} , that is $\mathcal{F}:\Theta\to\mathbb{B}(\mathbb{R})$

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 03E72, 54E35, 54E72.

Key words and phrases. Soft real numbers, soft Δ -metric spaces, soft Δ -convergence.

Submitted: 09.02.2021; Accepted: 24.02.2021; Published: 08.03.2021.

and a soft real number is a singleton set identified with the corresponding soft element, denoted by \widetilde{a} [1]. Also, in [1], the authors have depicted the ideas of positive, negative, non-negative and non-positive soft real sets and defined some arithmetic operations on soft real sets. The relations such as '<', '>', '≤' and '≥' on soft real numbers were defined by Samanta et al. [2]. A soft set (\mathcal{P},Θ) over \mathcal{U} is said to be a soft point if there is exactly one $e \in \Theta$ such that $\mathcal{P}(e) = \{a\}$ for some $a \in \mathcal{U}$ and for all $\theta \in \Theta \setminus \{e\}$, $\mathcal{P}(\theta) = \emptyset$ and is denoted by \mathcal{P}_e^a [2]. Let $SP(\mathcal{U},\Theta)$ denote the set of all soft points of (\mathcal{U},Θ) .

Patil et al. [5] introduced a new type of soft metric on two soft sets, namely, soft Δ -metric and is defined as, a mapping $\Delta: SP(\mathcal{U}_1,\Theta) \times SP(\mathcal{U}_2,\Theta) \to \mathbb{R}(\Theta)^+$, the set of all positive soft real numbers, is said to be a soft Δ -metric on soft sets (\mathcal{U}_1,Θ) and (\mathcal{U}_2,Θ) with $(\mathcal{U}_1,\Theta) \cap (\mathcal{U}_2,\Theta) = \widetilde{\emptyset}$, if for any \mathcal{P}_e^x , $\mathcal{P}_f^z \in SP(\mathcal{U}_1,\Theta)$ and $\mathcal{Q}_\sigma^y \in SP(\mathcal{U}_2,\Theta)$, Δ satisfies the following conditions:

- (i) $\Delta(\mathcal{P}_e^x, \mathcal{Q}_\sigma^y) > \widetilde{0}$,
- (ii) $\Delta(\mathcal{P}_e^x, \mathcal{Q}_\sigma^y) = \Delta(\mathcal{Q}_\sigma^y, \mathcal{P}_e^x)$,
- (iii) $d(\mathcal{P}_e^x, \mathcal{P}_f^z) \le \Delta(\mathcal{P}_e^x, \mathcal{Q}_\sigma^y) + \Delta(\mathcal{P}_f^z, \mathcal{Q}_\sigma^y).$

Then, $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$ is called a soft Δ -metric space. Further, the notions of soft Δ -open balls, soft Δ -closed balls, soft Δ -open sets and soft Δ -closed sets are introduced with their properties in [5].

The main aim of this work is to introduce the sequence of soft points in one soft set with respect to a fixed soft point of another soft set and hence to study the convergence property in soft Δ -metric spaces. Also, soft Δ -bounded and soft Δ -Cauchy sequences are defined and their properties are scrutinized.

2. Main results

Definition 2.1. A sequence of soft points $\{Q_{\sigma,n}^y\}_n$ of (\mathcal{U}_2, Θ) in a soft Δ -metric space $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$ called a soft Δ -sequence and is said to be soft Δ -convergent, converges to a soft point \mathcal{R}^x_λ of (\mathcal{U}_2, Θ) with respect to a soft point \mathcal{P}^a_e of (\mathcal{U}_1, Θ) , where $\Delta(\mathcal{P}^a_e, \mathcal{R}^x_\lambda) = \widetilde{s}, \ \widetilde{s} \in \mathbb{R}(\Theta)^+$ if $\Delta(\mathcal{P}^a_e, \{\mathcal{Q}^y_{\sigma,n}\}_n) \to \widetilde{s}$ (or equivalently $\Delta(\mathcal{P}^a_e, \mathcal{R}^x_\lambda) - \Delta(\mathcal{P}^a_e, \{\mathcal{Q}^y_{\sigma,n}\}_n) \to \widetilde{0}$) as $n \to \infty$.

That is, for any $\widetilde{\epsilon} > \widetilde{0}$, there exists $m \in \mathbb{N}$ such that $\{\mathcal{Q}_{\sigma,n}^y\}_n \subseteq \Delta B(\mathcal{P}_e^a, \widetilde{\epsilon})$ and $\mathcal{R}_{\lambda}^x \in \Delta B(\mathcal{P}_e^a, \widetilde{\epsilon})$, whenever $n \geq m$ and is denoted by $\Delta \lim_{n \to \infty} \mathcal{Q}_{\sigma,n}^y = \mathcal{R}_{\lambda}^x$.

Here, $\mathcal{R}_{\lambda}^{x}$ is said to be a soft Δ -limit point of $\{\mathcal{Q}_{\sigma,n}^{y}\}_{n}$ with respect to \mathcal{P}_{e}^{a} in $(\mathcal{U}_{1},\mathcal{U}_{2},\Delta,\Theta)$.

Theorem 2.1. If exist, soft Δ -limit point of a soft Δ -sequence in a soft Δ -metric space is unique.

Proof. Let $\{Q_{\sigma,n}^y\}_n$ be a soft Δ-convergent sequence in $(\mathcal{U}_1,\mathcal{U}_2,\Delta,\Theta)$. Suppose, $\{\mathcal{Q}_{\sigma,n}^y\}_n$ converges to two different soft Δ-limits \mathcal{R}_{λ}^x and \mathcal{S}_{δ}^z with respect to \mathcal{P}_e^a . Then, for any $\widetilde{\epsilon_1}$, $\widetilde{\epsilon_2} > \widetilde{0}$ there exist m_1 , $m_2 \in \mathbb{N}$ such that $\{\mathcal{Q}_{\sigma,n}^y\}_n \subseteq \Delta B(\mathcal{P}_e^a,\widetilde{\epsilon_1})$, $\mathcal{R}_{\lambda}^x \in \Delta B(\mathcal{P}_e^a,\widetilde{\epsilon_1})$ whenever $n \geq m_1$ and $\{\mathcal{Q}_{\sigma,n}^y\}_n \subseteq \Delta B(\mathcal{P}_e^a,\widetilde{\epsilon_2})$, $\mathcal{S}_{\delta}^z \in \Delta B(\mathcal{P}_e^a,\widetilde{\epsilon_2})$ whenever $n \geq m_2$. Let $\widetilde{\epsilon} = \min\{\widetilde{\epsilon_1},\widetilde{\epsilon_2}\}$ and $m = \max\{m_1,m_2\}$. Now, $\{\mathcal{Q}_{\sigma,n}^y\}_n \subseteq \Delta B(\mathcal{P}_e^a,\widetilde{\epsilon})$ and \mathcal{R}_{λ}^x , $\mathcal{S}_{\delta}^z \in \Delta B(\mathcal{P}_e^a,\widetilde{\epsilon})$ whenever $n \geq m$, which contradicts the soft Δ-Hausdorff property of soft Δ-metric spaces [5]. Therefore, $\mathcal{R}_{\lambda}^x = \mathcal{S}_{\delta}^z$.

Definition 2.2. A soft Δ -sequence $\{Q_{\sigma,n}^y\}_n \subseteq SP(\mathcal{U}_2,\Theta)$ in a soft Δ -metric space $(\mathcal{U}_1,\mathcal{U}_2,\Delta,\Theta)$ is said to be soft Δ -bounded if the set $\{\Delta(\mathcal{P}_e^a,\{\mathcal{Q}_{\sigma,n}^y\}_n): \mathcal{P}_e^a \in SP(\mathcal{U}_1,\Theta), n \in \mathbb{N}\}$ of soft real numbers is bounded.

That is, there exists $\widetilde{k} > \widetilde{0}$ such that $\Delta(\mathcal{P}_e^a, \{\mathcal{Q}_{\sigma,n}^y\}_n) \leq \widetilde{k}$ for all $n \in \mathbb{N}$.

Definition 2.3. A soft Δ -sequence $\{Q_{\sigma,n}^y\}_n \subseteq SP(\mathcal{U}_2,\Theta)$ in a soft Δ -metric space $(\mathcal{U}_1,\mathcal{U}_2,\Delta,\Theta)$ is said to be a soft Δ -Cauchy sequence if for any $i,j\in\mathbb{N}$ there exists $m\in\mathbb{N}$ such that $\Delta(\mathcal{P}_e^a,\{\mathcal{Q}_{\sigma,i}^y\})-\Delta(\mathcal{P}_e^a,\{\mathcal{Q}_{\sigma,i}^y\})\to\widetilde{0}$, whenever $i,j\geq m$.

That is, for sufficiently large values of i and j (or equivalently as $i, j \to \infty$), we have, $\Delta(\mathcal{P}_e^a, \{\mathcal{Q}_{\sigma,i}^y\}) - \Delta(\mathcal{P}_e^a, \{\mathcal{Q}_{\sigma,j}^y\}) \to \widetilde{0}$ or $\Delta(\mathcal{P}_e^a, \{\mathcal{Q}_{\sigma,i}^y\}) \to \Delta(\mathcal{P}_e^a, \{\mathcal{Q}_{\sigma,j}^y\})$.

Theorem 2.2. In a soft Δ -metric space $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$, a soft point \mathcal{R}^x_{λ} of (\mathcal{U}_2, Θ) is a soft Δ -limit point of $(\mathcal{B}, \Theta) \subseteq (\mathcal{U}_2, \Theta)$ with respect to $\mathcal{P}^a_e \in SP(\mathcal{U}_1, \Theta)$ if and only if there exists a soft Δ -sequence in (\mathcal{B}, Θ) which converges to \mathcal{R}^x_{λ} with respect to \mathcal{P}^a_e .

Proof. Let \mathcal{R}^x_{λ} be a soft Δ -limit point of (\mathcal{B},Θ) with respect to \mathcal{P}^a_e . Then, we have the following cases: Case (i) If $\mathcal{R}^x_{\lambda} \in SP(\mathcal{B},\Theta)$, then the constant soft Δ -sequence $\{\mathcal{R}^x_{\lambda},\mathcal{R}^x_{\lambda},\ldots\}$ in (\mathcal{B},Θ) converges to \mathcal{R}^x_{λ} with respect to \mathcal{P}^a_e . Case (ii) If $\mathcal{R}^x_{\lambda} \notin SP(\mathcal{B},\Theta)$, then for every soft Δ -open ball $\Delta B(\mathcal{P}^a_e,\widetilde{r})$ containing \mathcal{R}^x_{λ} , we have, $[\Delta B(\mathcal{P}^a_e,\widetilde{r})\cap SP(\mathcal{B},\Theta)]\setminus \{\mathcal{R}^x_{\lambda}\} \neq \widetilde{\emptyset}$. Therefore, for some $\mathcal{S}^z_{\delta} \in SP(\mathcal{B},\Theta)$, $\{\mathcal{S}^z_{\delta,n}\}_n$ is a soft Δ -sequence in (\mathcal{B},Θ) that converges to \mathcal{R}^x_{λ} with respect to \mathcal{P}^a_e .

Conversely, let $\{\mathcal{S}^z_{\delta,n}\}_n$ be a soft Δ -sequence in (\mathcal{B},Θ) converges to \mathcal{R}^x_{λ} with respect to \mathcal{P}^a_e . Then, for any $\widetilde{\epsilon}>\widetilde{0}$ there exists $m\in\mathbb{N}$ such that $\{\mathcal{S}^z_{\delta,n}\}_n\subseteq\Delta B(\mathcal{P}^a_e,\widetilde{\epsilon})$ and $\mathcal{R}^x_{\lambda}\in\Delta B(\mathcal{P}^a_e,\widetilde{\epsilon})$, whenever $n\geq m$. Therefore, $[\Delta B(\mathcal{P}^a_e,\widetilde{\epsilon})\cap SP(\mathcal{B},\Theta)]\setminus\{\mathcal{R}^x_{\lambda}\}\neq\widetilde{\emptyset}$ and hence, \mathcal{R}^x_{λ} is a soft Δ -limit point of (\mathcal{B},Θ) with respect to \mathcal{P}^a_e .

Definition 2.4. A soft Δ -subsequence of a soft Δ -sequence is a sequence of soft points of (\mathcal{U}_2, Θ) in a soft Δ -metric space $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$ obtained by deleting some or no soft points of soft Δ -sequence without altering the positions of remaining soft points.

Theorem 2.3. A soft Δ -sequence $\{Q_{\sigma,n}^y\}_n$ in a soft Δ -metric space $(\mathcal{U}_1,\mathcal{U}_2,\Delta,\Theta)$ converges to $\mathcal{R}^x_{\lambda} \in SP(\mathcal{U}_2,\Theta)$ with respect to $\mathcal{P}^a_e \in SP(\mathcal{U}_1,\Theta)$ if and only if every soft Δ -subsequence $\{Q_{\sigma,n_k}^y\}_{n_k}$ of $\{Q_{\sigma,n}^y\}_n$ converges to \mathcal{R}^x_{λ} with respect to \mathcal{P}^a_e .

Proof. Since $\{\mathcal{Q}_{\sigma,n}^y\}_n$ converges to \mathcal{R}_λ^x with respect to \mathcal{P}_e^a , there exists $m \in \mathbb{N}$ for any $\widetilde{\epsilon} > \widetilde{0}$ such that $\{\mathcal{Q}_{\sigma,n}^y\}_n \subseteq \Delta B(\mathcal{P}_e^a, \widetilde{\epsilon})$ and $\mathcal{R}_\lambda^x \in \Delta B(\mathcal{P}_e^a, \widetilde{\epsilon})$, whenever $n \geq m$. Now, for an arbitrary soft Δ -subsequence $\{\mathcal{Q}_{\sigma,n_k}^y\}_{n_k}$ of $\{\mathcal{Q}_{\sigma,n}^y\}_{n_k}$ we have, $\{\mathcal{Q}_{\sigma,n_k}^y\}_{n_k} \subseteq \Delta B(\mathcal{P}_e^a, \widetilde{\epsilon})$ for all $k \geq m$. Thus, $\{\mathcal{Q}_{\sigma,n_k}^y\}_{n_k}$ converges to \mathcal{R}_λ^x with respect to \mathcal{P}_e^a . The converse part is obvious because, $\{\mathcal{Q}_{\sigma,n}^y\}_n$ itself is a soft Δ -subsequence of $\{\mathcal{Q}_{\sigma,n}^y\}_n$.

Corollary 2.1. A soft Δ -sequence $\{Q_{\sigma,n}^y\}_n$ in a soft Δ -metric space $(\mathcal{U}_1,\mathcal{U}_2,\Delta,\Theta)$ converges to $\mathcal{R}^x_{\lambda} \in SP(\mathcal{U}_2,\Theta)$ with respect to $\mathcal{P}^a_e \in SP(\mathcal{U}_1,\Theta)$ if and only if every soft Δ -subsequence of $\{Q_{\sigma,n}^y\}_n$ has a soft Δ -convergent subsequence that converges to \mathcal{R}^x_{λ} with respect to \mathcal{P}^a_e .

Proof. Suppose, $\{\mathcal{Q}_{\sigma,n}^y\}_n$ does not converge to \mathcal{R}_{λ}^x with respect to \mathcal{P}_e^a . Then, for any $m \in \mathbb{N}$ there exists $\widetilde{\epsilon} > \widetilde{0}$ such that $\{\mathcal{Q}_{\sigma,n}^y\}_n$ is not contained in $\Delta B(\mathcal{P}_e^a, \widetilde{\epsilon})$ and $\mathcal{R}_{\lambda}^x \in \Delta B(\mathcal{P}_e^a, \widetilde{\epsilon})$ for any $n \geq m$. This implies, there should be a soft Δ -subsequence of $\{\mathcal{Q}_{\sigma,n}^y\}_n$ which has no soft Δ -subsequence that converges to \mathcal{R}_{λ}^x with respect to \mathcal{P}_e^a , which is a contradiction. Hence, $\{\mathcal{Q}_{\sigma,n}^y\}_n$ converges to \mathcal{R}_{λ}^x . By the Theorem 2.3 and the fact that every soft Δ -subsequence of a soft Δ -subsequence of $\{\mathcal{Q}_{\sigma,n}^y\}_n$ is also a soft Δ -subsequence of $\{\mathcal{Q}_{\sigma,n}^y\}_n$, the converse follows.

Theorem 2.4. A soft Δ -sequence $\{Q_{\sigma,n}^y\}_n$ of soft points in a soft Δ -metric space $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$ converges to $\mathcal{R}^x_{\lambda} \in SP(\mathcal{U}_2, \Theta)$ with respect to $\mathcal{P}^a_e \in SP(\mathcal{U}_1, \Theta)$ if and

only if for every soft Δ -neighbourhood $N(\mathcal{R}^x_{\lambda})$ of \mathcal{R}^x_{λ} , there exists $k \in \mathbb{N}$ such that $\{\mathcal{Q}^y_{\sigma,n}\}_n \subseteq N(\mathcal{R}^x_{\lambda})$ for all $n \geq k$.

Theorem 2.5. A soft subset (\mathcal{B}, Θ) of (\mathcal{U}_2, Θ) in a soft Δ -metric space $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$ is soft Δ -closed if and only if every soft Δ -convergent sequence of soft points in (\mathcal{B}, Θ) does not converge to a soft point of $(\mathcal{B}, \Theta)'$.

Proof. Let $\{Q_{\sigma,n}^y\}_n$ be a soft Δ -convergent sequence of soft points in (\mathcal{B},Θ) and converges to $\mathcal{R}^x_\lambda \in (\mathcal{B},\Theta)'$. By Theorem 2.2, \mathcal{R}^x_λ is a soft Δ -limit point of (\mathcal{B},Θ) , which is a contradiction to (\mathcal{B},Θ) is soft Δ -closed. Converse follows from the Theorem 2.2 and from [5].

Theorem 2.6. Every soft Δ -convergent sequence in a soft Δ -metric space is a soft Δ -Cauchy sequence.

Proof. Let $\{Q_{\sigma,n}^y\}_n \subseteq SP(\mathcal{U}_2,\Theta)$ be a soft Δ -convergent sequence in $(\mathcal{U}_1,\mathcal{U}_2,\Delta,\Theta)$ and converges to $\mathcal{R}_{\lambda}^x \in SP(\mathcal{U}_2,\Theta)$ with respect to $\mathcal{P}_e^a \in SP(\mathcal{U}_1,\Theta)$. Let $\Delta(\mathcal{P}_e^a,\mathcal{R}_{\lambda}^x)$ = \widetilde{s} . Therefore, $\Delta(\mathcal{P}_e^a,\mathcal{Q}_{\sigma,i}^y) \to \widetilde{s}$ as $i \to \infty$ and $\Delta(\mathcal{P}_e^a,\mathcal{Q}_{\sigma,j}^y) \to \widetilde{s}$ as $j \to \infty$. Now, $\Delta(\mathcal{P}_e^a,\mathcal{Q}_{\sigma,i}^y) - \Delta(\mathcal{P}_e^a,\mathcal{Q}_{\sigma,j}^y) \to \widetilde{0}$ as $i,j \to \infty$. Hence, $\{\mathcal{Q}_{\sigma,n}^y\}_n$ is a soft Δ -Cauchy sequence.

Theorem 2.7. If a soft Δ -Cauchy sequence in a soft Δ -metric space has a soft Δ -convergent subsequence, then it is a soft Δ -convergent sequence.

Proof. Let $\{Q_{\sigma,n_k}^y\}_{n_k}$ be a soft Δ-convergent subsequence of a soft Δ-Cauchy sequence $\{Q_{\sigma,n}^y\}_n$ and converges to $\mathcal{R}_{\lambda}^x \in SP(\mathcal{U}_2,\Theta)$ with respect to $\mathcal{P}_e^a \in SP(\mathcal{U}_1,\Theta)$. By Theorem 2.6, $\{Q_{\sigma,n_k}^y\}_{n_k}$ is a soft Δ-Cauchy sequence. Therefore, $\Delta(\mathcal{P}_e^a, \{Q_{\sigma,n_k}^y\}) - \Delta(\mathcal{P}_e^a, \{Q_{\sigma,n}^y\}) \to \widetilde{0}$ as $k, n \to \infty$. Since n_k is an increasing sequence of positive integers and $n \to \infty$, we have, $\Delta(\mathcal{P}_e^a, \mathcal{R}_{\lambda}^x) - \Delta(\mathcal{P}_e^a, \{Q_{\sigma,n}^y\}) \to \widetilde{0}$, implies $\{Q_{\sigma,n}^y\}_n$ is a soft Δ-convergent sequence. □

Theorem 2.8. Every soft Δ -Cauchy sequence in a soft Δ -metric space is soft Δ -bounded.

Definition 2.5. A soft Δ -metric space $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$ is said to be soft Δ -complete, if every soft Δ -Cauchy sequence in $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$ is soft Δ -convergent and converges to some soft point of (\mathcal{U}_2, Θ) .

Theorem 2.9. A soft Δ -metric subspace $(\mathcal{A}, \mathcal{B}, \Delta_{sub}, \Theta)$ of a soft Δ -metric space $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$ is soft Δ -complete if and only if (\mathcal{B}, Θ) is soft Δ -closed in $(\mathcal{U}_1, \mathcal{U}_2, \Delta, \Theta)$.

Proof. Let $(\mathcal{A}, \mathcal{B}, \Delta_{sub}, \Theta)$ be soft Δ -complete. Then, every soft Δ -Cauchy sequence in $(\mathcal{A}, \mathcal{B}, \Delta_{sub}, \Theta)$ is soft Δ -convergent and converges to some soft point of (\mathcal{B}, Θ) . Also, every soft Δ -convergent sequence is soft Δ -Cauchy. Thus, every soft Δ -convergent sequence in $(\mathcal{A}, \mathcal{B}, \Delta_{sub}, \Theta)$ converges to a soft point of (\mathcal{B}, Θ) and hence (\mathcal{B}, Θ) is soft Δ -closed. Conversely, let (\mathcal{B}, Θ) be soft Δ -closed. Then, by Theorem 2.5 and Theorem 2.6, $(\mathcal{A}, \mathcal{B}, \Delta_{sub}, \Theta)$ is soft Δ -complete. \Box

REFERENCES

- [1] S. DAS, S. K. SAMANTA: Soft real sets, soft real numbers and their properties, J. Fuzzy Math., **20** (2012), 551–576.
- [2] S. DAS, S. K. SAMANTA: On soft metric spaces, Ann. Fuzzy Math. Inform., 21 (2013), 707–734.
- [3] P. K. Maji, R. Biswas, A. R. Roy: *Soft set theory*, Comput. Math. Appl., **45** (2003), 555–562.
- [4] D. MOLODTSOV: Soft set theory first results, Comput. Math. Appl., 37 (1999), 19–31.
- [5] P. G. PATIL, N. N. BHAT: Soft Δ -metric spaces and applications, (Communicated).

DEPARTMENT OF MATHEMATICS
KARNATAK UNIVERSITY, DHARWAD-580003
KARNATAKA, INDIA
Email address: pgpatil@kud.ac.in

DEPARTMENT OF MATHEMATICS

KARNATAK UNIVERSITY DHARWAD-580003

KARNATAKA, INDIA

Email address: pagashroo bhat k@gmail a

 ${\it Email address:} \verb| nagashree.bhat.k@gmail.com|\\$