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ANALYTICAL SOLUTIONS OF COUPLED NONLINEAR SCHRODINGER
EQUATIONS FOR TWO NON LINEARLY INTERACTING STOKES WAVE

TRAINS OVER INFINITE DEPTH

Shibam Manna1 and Asoke Kumar Dhar

ABSTRACT. An attempt to find the exact analytical solutions of the two coupled
nonlinear Schrodinger equations of 3rd order occurring from the oblique inter-
action of two capillary gravity wave trains in the case of crossing sea states in
deep water is the main premise of the present paper. The solutions obtained
here are due to the nonlinear interaction of two Stokes wave trains in one
spatial dimension. Graphs have been plotted to investigate the influence of
capillarity on the amplitudes of such wave trains. From 3D figures it has been
observed that the capillarity has diminishing influence on the amplitudes of the
either wave packet.

1. INTRODUCTION

There has been much of an interest shown towards the nonlinear Schrodinger
equation by the scientific community in the past few decades. The experimental
validation of the analytical soliton like solutions of the nonlinear Schrodinger
equation has triggered the academicians to investigate various aspects as well
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as the nature of analytical, breather like or rogue wave type solutions of the
nonlinear evolution equations.

In the discussions of nonlinear evolution of water waves, nonlinear Schrodin-
ger equations are generally applied due to its proper reflection of modulational
instability. Roskes [1] first derived the coupled nonlinear evolution equations of
third order for two surface gravity waves in deep water and then performed a
stability analysis based on these equations. This analysis was then extended by
Dhar and Das [2] starting from the nonlinear evolution equation of the fourth
order for surface gravity waves in the water of infinite depth. They further
extended this paper to include the effect of capillarity [3]. Later on Onorato et
al. [4] derived the coupled 3rd order nonlinear evolution equations for two wave
systems in infinite depth of water with two different propagation directions and
performed stability analysis by considering one perturbation wave number only.
Beginning from this two coupled nonlinear Schrodinger equations Shukla et
al. [5] derived a nonlinear dispersion relation and performed stability analysis
in the two dimensional perturbation plane. The consideration of two nonlinearly
interacting wave trains gained much importance due to the fact that it properly
reflects the characteristic of rate of growth of modulational instability than the
case of a single wave.

In all of the studies mentioned earlier the exact analytical solution of the
problem was not covered, which is the motivation of our present study to find
exact analytical solutions of the problem. Though there are studies available
by means of classical inverse scattering due to Zakharov [6] along with the
general case of periodic solutions [7], as well as the breather type solutions
due to Peregrine [8] and Akhmediev et al. [9], [10] with the help of Darboux
transform methods for the case of a single wave. Chowdury et al. [11] also
derived breather type solution for a nonlinear evolution equation of fourth order
in the rogue wave limit. Recently, Degasperis et al. [12] derived rogue wave
type solutions for the Manakov model of two weakly resonant monochromatic
waves employing the same Darboux-Dressing method. In the present paper we
have found exact analytical solutions for two Stokes wave systems in one spatial
dimension of the nonlinear Schrodinger equation of 3rd order.
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2. BASIC ASSUMPTION AND COUPLED NONLINEAR SCHRODINGER EQUATIONS

Let us consider oxyz, the Cartesian co-ordinate system, where oxy plane co-
incides with the free surface of the water whose equation at any time t is
z = ν(x, y, t) and z axis directing vertically upwards. Now we consider two
surface capillary gravity wave trains propagating in the (x, y) plane with basic
wave numbers k1 = (k1, k2) and k2 = (k1,−k2). By a standard procedure [13],
we obtain the following two coupled (2+1) dimensional nonlinear Schrodinger
equations for two non linearly interacting capillary gravity wave trains under
the circumstance of crossing seas under infinite depth of water. For the 1st wave
packet with basic wave number k1 = (k1, k2) the evolution equation is given as,

i
∂ν10
∂t1

+ iε1
∂ν10
∂x1

+ iε2
∂ν10
∂y1

+ ε3
∂2ν10
∂x21

+ ε4
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∂y21
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2
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∗
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∗
01,

(2.1)

where ∗ denotes the conjugate complex.
For the 2nd wave packet with carrier wave number k2 = (k1,−k2), we have

obtained the evolution equation as,

i
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∗
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(2.2)

The coefficients of these two evolution equations, which are in the third or-
der, are available in the Appendix. For T = 0, the above coefficients of equa-
tions (2.1) and (2.2) are in agreement with the corresponding coefficients of the
equations made by Onorato et al. [4]. Furthermore in the absence of capillarity,
those coefficients of equations (2.1) and (2.2) coincide with the corresponding
coefficients of Senapati et al. [13] for U = 0 and r = 0.

These evolution equations (2.1) and (2.2) have been made non dimensional
by employing the following transformations with dropping the tildes:

(x̃1, ỹ1, t̃1) = (k0x1, k0y1,
√
gk0t1), (k̃1, k̃2) = (

k1
k0
,
k2
k0

)

Ω̃ =
Ω√
gk0

, T̃ =
Tk20
g
, (ν̃10, ν̃01) = (k0ν10, k0ν01).

Here x1 = δx, y1 = δy, t1 = δt, δ being slow ordering parameter, T is the surface
tension, g being the gravitational acceleration, Ω is the frequency. The linear
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dispersion relation reads as

f(Ω, k1, k2) ≡ Ω2 − gk0 − Tk03 = 0,

as well as that of the group velocity

c̃g =
dΩ

dk0
=
g + 3Tk20

2Ω
,

where k1 = k0 cosα and k2 = k0 sinα, 2α being the angle of separation of the
two wave trains.

3. SOLUTIONS OF COUPLED NONLINEAR SCHRODINGER EQUATIONS

In spatially one dimension the evolution equations (2.1) and (2.2) reduce to,

i
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+ iε1
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i
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∗
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∗
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The coefficients of these two equations are in agreement with the corresponding
coefficients of the third order terms of Dhar and Das [3].

Setting ξ = x1 − γ1t1, (ξ > 0) and τ = t1, the aforesaid equations transform
into,

(3.1) i
∂ν10
∂τ

+ ε3
∂2ν10
∂ξ2

= λ1ν
2
10ν

∗
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∗
01,

(3.2) i
∂ν01
∂τ

+ ε3
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= λ1ν
2
01ν

∗
01 + λ2ν01ν10ν

∗
10.

To solve these equations (3.1) and (3.2), under the assumption of (ξ > 0, ε3 >

0), let us employ, ν10 = u(ξ)ei(c1τ+c2) and ν01 = v(ξ)ei(c3τ+c4), where u, v are
real functions of ξ and c1, c2, c3, c4 are +ve real parameters. Employing these
transformations in the aforesaid equations (3.1) and (3.2) we arrive at,

(3.3) ε3
∂2u

∂ξ2
− c1u = (λ1u

2 + λ2v
2)u,

ε3
∂2v

∂ξ2
− c3v = (λ1v

2 + λ2u
2)v,
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which a system of second order nonlinear differential equations. Now, to solve
these system of nonlinear ODE we employ v = ku (k 6= 0, a real constant) [14]
and consequently, we obtain from (3.3),

(3.4)
d2u

dξ2
= λ3u

3 +
c1
ε3
u,

where λ3 = (λ1+k2λ2)
ε3

. On solving equation (3.4) we arrive at

u = − 2c1
ε3λ3

1

sinh(
√

c1
ε3
ξ +

√
2c1
ε3λ3

c5)
, clearly ξ 6= −

√
2

λ3
c5,

and consequently

v = −2c1k

ε3λ3

1

sinh(
√

c1
ε3
ξ +

√
2c1
ε3λ3

c5)
, clearly ξ 6= −

√
2

λ3
c5,

c5 > 0 being the integration constant and k can be obtained from the real root
of

k2 =
−λ1(λ2 − c1)±

√
λ21(λ2 − c1)2 + λ22(2c1ε3λ2 − λ21)

λ22
.

Figures 1 and 2 exhibit that as α increases |ν10| decreases and for a settled
value of α, a decrease in |ν10| has been observed due to the effect of surface
tension (T=0.035).
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FIGURE 1. |ν10| as a function of x1 and t1, taking α = 36◦, c1 = 9.2,
c5 = 1.5, T=0.035 (left) and T=0 (right).

As in Figures 1 and 2, similar types of characteristics have been observed in
case of |ν10| in the Figures 3 and 4 due to the effect of surface tension.
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FIGURE 2. |ν10| as a function of x1 and t1, taking α = 40◦, c1 = 9.2,
c5 = 1.5, T=0.035 (left) and T=0 (right).
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FIGURE 3. |ν01| as a function of x1 and t1, taking α = 36◦, c1 = 9.2,
c5 = 1.5, T=0.035 (left) and T=0 (right).
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FIGURE 4. |ν01| as a function of x1 and t1, taking α = 40◦, c1 = 9.2,
c5 = 1.5, T=0.035 (left) and T=0 (right).
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4. CONCLUSION

In this paper, under certain conditions, we have found exact analytical so-
lutions of the two coupled third order nonlinear evolution equations occurring
due to the nonlinear interaction of two capillarity gravity Stokes wave trains in
case of the cross sea for water of infinite depth. The solutions obtained here are
applicable in the case of ε3 > 0, which is dependent on α. So there is certain
restriction on α. For T = 0 and T = 0.035, we found that the present solution is
valid when α > 26.43◦ and α > 35.26◦ respectively, with the additional condition
that ξ > 0, the right half of the transformed plane. From the figures it has been
observed that the capillarity has a diminishing influence on the amplitudes of
both the wave trains. Furthermore, the amplitudes of the wave trains decrease
as the angle of separation 2α increases.

APPENDIX

ε1 =
k1(3T + 1)

2Ω
, ε2 =

k2(3T + 1)

2Ω
, ε3 = − k21

8Ω3
+
k22 + 3T (2k21 + k22)

4Ω
,

ε4 = − k22
8Ω3

+
k21 + 3T (2k21 + k22)

4Ω
, ε5 = −k1k2

4Ω3
− k1k2(3T + 1)

2Ω
,

λ1 =
Ω(3Ω2 − 3− 12T )

2Ω2 − 1− 4T
+ 2Ω− T

2ω

{
3k22k

2
1 −

3

2
(k41 + k42)

}
,

λ2 =
T

2Ω
{2k22k21 + 3(k41 + k42)}+ Ω(k21 − k22) + 2Ωk21 −

Ω3k22(k21 − k22 − 2)

2(1 + 4k22T )

− Ωk1(k
2
1 + k22 − 2k1)

2

k1 + 4Tk21 − 2Ω2
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