

Advances in Mathematics: Scientific Journal 10 (2021), no.3, 1145–1152

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.10.3.3

FIXED POINT THEORY IN A CONVEX GENERALIZED b-METRIC SPACE

Virath Singh¹ and Pravin Singh

ABSTRACT. In this paper, we generalize Mann's iterative algorithm and prove fixed point results in the framework of a generalization of a b-metric space. A convex structure is imposed on the generalized space and two strong convergence results are provided for two different contraction mappings. The concept of stability is extended to the generalized b- metric space.

1. Introduction

In 1922, Banach, see [5] proved his famous fixed point theorem that every contraction mapping on a complete metric space has a unique fixed point. Since then there has been numerous extensions to his work, especially in changing the underlying structure of the metric space or introducing new contraction types. Czerwik [2] relaxed the triangular inequality and formally defined a *b*-metric space. In 1970, Takahasi [6] introduced the concept of convexity in metric spaces and proved fixed point theorems for contraction mappings in such spaces. Chen et. al. [1] discussed fixed point theorems in convex *b*-metric spaces. Here we discuss such concepts in a convex generalized *b*-metric space. Fixed point theory is important in non linear analysis and functional analysis. It finds application in systems of non linear differential, integral and algebraic equations.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. convex structure, Mann's iterative algorithm, contraction.

Submitted: 05.02.2021; Accepted: 19.02.2021; Published: 11.03.2021.

2. Preliminaries

Definition 2.1. [4] Let $X \neq \emptyset$ be a set and $\alpha, \beta \geq 1$ be real numbers. A function $\rho: X \times X \to [0, \infty)$ is called a $\alpha\beta$ b-metric if the following hold, for every $x, y, z \in X$,

- (i) $\rho(x,y) = 0 \iff x = y$;
- (*ii*) $\rho(x,y) = \rho(y,x)$;
- (iii) $\rho(x,y) \leq \alpha \rho(x,z) + \beta \rho(z,y)$.

The pair (X, ρ) is called a $\alpha\beta$ b-metric space.

Definition 2.2. [2] Let $\{x_n\}$ be a sequence in a $\alpha\beta$ b-metric space (X, ρ) . Then,

- (i) The sequence $\{x_n\}$ is said to be convergent in (X, ρ) if there exists $x^* \in X$ such that $\lim_{n\to\infty} \rho(x_n, x^*) = 0$.
- (ii) The sequence $\{x_n\}$ is said to be Cauchy in (X, ρ) . if $\lim_{m,n\to\infty} \rho(x_m, x_n) = 0$.
- (iii) (X, ρ) is called a complete $\alpha\beta$ b-metric space if every Cauchy sequence in X is convergent.

Definition 2.3. [3] Let I = [0,1). Define $\rho: X \times X \to [0,\infty)$ and a continuous function $\omega: X \times X \times I \to X$. Then ω is said to be a convex structure on X if the following holds:

$$\rho(z,\omega(x,y;\mu)) < \mu\rho(z,x) + (1-\mu)\rho(z,y),$$

for each $z \in X$ and $(x, y; \mu) \in X \times X \times I$.

Example 1. Let X = [1, 3] and define ρ by:

$$\rho(x,y) = \begin{cases} 3^{|x-y|}, & x \neq y, \\ 0, & x = y, \end{cases}$$

 (X, ρ) is a $\alpha\beta$ b-metric space since,

$$\begin{split} \rho(x,y) &\leq 3^{|x-z|+|z-y|} \\ &= 3^{\frac{1}{3}|x-z|+\frac{2}{3}|(z-y)|} 3^{\frac{2}{3}|x-z|+\frac{1}{3}|z-y|} \\ &\leq \left(\frac{1}{3}3^{|x-z|} + \frac{2}{3}3^{|z-y|}\right) \sup_{x,y,z \in X} 3^{\frac{2}{3}|x-z|+\frac{1}{3}|z-y|} \\ &= 3\rho(x,z) + 6\rho(z,y). \end{split}$$

Furthermore,

$$\rho(1,3) > \rho(1,2) + \rho(2,3),$$

thus (X, ρ) is not a metric space.

$$\rho(z, \omega(x, y; \mu)) = \rho(z, \mu x + (1 - \mu)y)$$

$$= 3^{|z - \mu x - (1 - \mu)y|}$$

$$= 3^{|\mu(z - x) + (1 - \mu)(z - y)|}$$

$$< 3^{\mu|(z - x)| + (1 - \mu)|(z - y)|}$$

Define $\omega(x, y; \mu) = \mu x + (1 - \mu)y$ for $u \in I$, then

$$\leq \mu 3^{|z-x|} + (1-\mu)3^{|z-y|}$$
$$= \mu \rho(z,x) + (1-\mu)\rho(z,y)$$

3. Main results

Theorem 3.1. Let (X, ρ, ω) be a complete convex α, β b-metric space and $T: X \to X$ be a contraction mapping, that is there exists $\lambda \in [0,1)$ such that $\rho(Tx,Ty) \le \lambda \rho(x,y)$, for all $x,y \in X$. Choose $x_0 \in X$ such that $\rho(x_0,Tx_0) < \infty$ and define $x_n = \omega(x_{n-1},Tx_{n-1};\mu_{n-1})$, where

$$0 < \mu_{n-1} < \frac{\frac{1}{\beta^3} - \lambda}{\frac{\alpha}{\beta} - \lambda} \quad , \lambda < \frac{1}{\beta^3},$$

for each $n \in \mathbb{N}$, then T has a unique fixed point in X.

Proof.

$$\rho(x_{n}, x_{n+1}) = \rho(x_{n}, \omega(n, Tx_{n}; \mu_{n})) \leq (1 - \mu_{n})\rho(x_{n}, Tx_{n})$$

$$\rho(x_{n}, Tx_{n}) \leq \alpha \rho(x_{n}, Tx_{n-1}) + \beta \rho(Tx_{n-1}, Tx_{n})$$

$$\leq \alpha \rho(\omega(x_{n-1}, Tx_{n-1}; \mu_{n-1}), Tx_{n-1}) + \beta \lambda \rho(x_{n-1}, x_{n})$$

$$\leq \alpha \mu_{n-1}\rho(x_{n-1}, Tx_{n-1}) + \beta \lambda(1 - \mu_{n-1})\rho(x_{n-1}, Tx_{n-1})$$

$$= \left[\alpha \mu_{n-1} + \beta \lambda(1 - \mu_{n-1})\right] \rho(x_{n-1}, Tx_{n-1})$$

$$\leq \frac{1}{\beta^{2}}\rho(x_{n-1}, Tx_{n-1})$$

$$\leq \rho(x_{n-1}, Tx_{n-1})$$
(3.2)

Hence $\{\rho(x_n,Tx_n)\}$ is a decreasing sequence of non-negative reals for sequence $\{x_n\}$. Hence, there exists $\gamma \geq 0$ such that $\lim_{n \to \infty} \rho(x_n,Tx_n) = \gamma$. If $\gamma > 0$ then letting $n \to \infty$ in (3.2) we have $\gamma < \gamma$, a contraction. Hence $\gamma = 0$ and from (3.1) it follows that $\lim_{n \to \infty} \rho(x_n,Tx_n) = 0$. We now show that $\{x_n\}$ is a Cauchy sequence. Let m > n then

$$\rho(x_{m}, x_{n}) \leq \alpha \rho(x_{n}, x_{n+1}) + \beta \rho(x_{n+1}, x_{m})
\leq \alpha \rho(x_{n}, x_{n+1}) + \beta \left[\alpha \rho(x_{n+1}, x_{n+2}) + \beta \rho(x_{n+2}, x_{m})\right]
\leq \alpha \rho(x_{n}, x_{n+1}) + \beta \alpha \rho(x_{n+1}, x_{n+2}) + \beta^{2} \rho(x_{n+2}, x_{m})
\leq \alpha \rho(x_{n}, x_{n+1}) + \beta \alpha \rho(x_{n+1}, x_{n+2}) + \beta^{2} \rho(x_{n+2}, x_{m})
+ \dots + \beta^{m-n-1} \rho(x_{m-1}, x_{m})
< \alpha \sum_{k=0}^{m-n-1} \beta^{k} \rho(x_{n+k}, x_{n+k+1})$$
(3.3)

Now from (3.1) and (3.2) it follows that

$$\rho(x_n, x_{n+1}) = \rho(x_n, \omega(x_n, Tx_n; \mu_n)) \le (1 - \mu_n)\rho(x_n, Tx_n)
< \rho(x_n, Tx_n)
< \frac{1}{\beta^2} \rho(x_{n-1}, Tx_{n-1})
< \frac{1}{\beta^4} \rho(x_{n-2}, Tx_{n-2})
< \frac{1}{\beta^{2k}} \rho(x_{n-k}, Tx_{n-k}).$$

Hence

(3.4)
$$\rho(x_{n+k}, x_{n+k+1}) < \frac{1}{\beta^{2k}} \rho(x_n, Tx_n).$$

Substituting (3.4) in (3.3), we obtain

$$\rho(x_m, x_n) < \alpha \sum_{k=0}^{m-n-1} \frac{1}{\beta^k} \rho(x_n, Tx_n)$$
$$< \alpha \rho(x_n, Tx_n) \sum_{k=0}^{\infty} \left(\frac{1}{\beta}\right)^k$$
$$= \frac{\alpha \beta}{\beta - 1} \rho(x_n, Tx_n).$$

Hence $\lim_{m,n\to\infty} \rho(x_m,x_n)=0$, which implies that $\{x_n\}$ is a Cauchy sequence. By the completeness of X there exists $x^*\in X$ such that $\lim_{n\to\infty} \rho(x_n,x^*)=0$. We now verify that x^* is a fixed point of T:

$$\rho(x^*, Tx^*) \leq \alpha \rho(x^*, x_n) + \beta \rho(x_n, Tx^*)$$

$$\leq \alpha \rho(x^*, x_n) + \beta \left[\alpha \rho(x_n, Tx_n) + \beta \rho(Tx_n, Tx^*)\right]$$

$$\leq \alpha \rho(x^*, x_n) + \beta \alpha \rho(x_n, Tx_n) + \beta^2 \lambda \rho(x_n, x^*)$$

$$= (\alpha + \beta^2 \lambda) \rho(x^*, x_n) + \beta \alpha \rho(x_n, Tx_n).$$
(3.5)

Let $n \to \infty$ in (3.5), we conclude that $\rho(x^*, Tx^*) \to 0$, hence $Tx^* = x^*$. If x^{**} is another fixed point of T, then

$$\rho(x^{\star}, x^{\star \star}) \le \rho(Tx^{\star}, Tx^{\star \star}) \le \lambda \rho(x^{\star}, x^{\star \star}).$$

Hence $\rho(x^*, x^{**}) = 0$, otherwise $\lambda \geq 1$, is a contradiction and the fixed point is unique.

Theorem 3.2. Let (X, ρ, ω) be a complete convex α, β b-metric space and $T: X \to X$ be defined by $\rho(Tx, Ty) \leq \lambda \left[\rho(x, Tx) + \rho(y, Ty)\right]$, for all $x, y \in X$ and for $0 < \lambda < \frac{1}{\beta^4}$. Choose $x_0 \in X$ such that $\rho(x_0, Tx_0) < \infty$ and define $x_n = \omega(x_{n-1}, Tx_{n-1}; \mu_{n-1})$, where

$$0 < \mu_{n-1} < \frac{1}{\alpha} \left(\frac{1}{\beta^2} - \frac{1}{\beta^3} - \frac{1}{\beta^5} \right), \quad 1 + \beta^2 < \beta^3,$$

for each $n \in \mathbb{N}$, then T has a unique fixed point in X.

Proof.

$$\rho(x_{n}, x_{n+1}) = \rho(x_{n}, \omega(n, Tx_{n}; \mu_{n})) \leq (1 - \mu_{n})\rho(x_{n}, Tx_{n})$$

$$\rho(x_{n}, Tx_{n}) \leq \alpha\rho(x_{n}, Tx_{n-1}) + \beta\rho(Tx_{n-1}, Tx_{n})$$

$$\leq \alpha\rho(x_{n}, Tx_{n-1}) + \beta\lambda\left[\rho(x_{n-1}, Tx_{n-1}) + \rho(x_{n}, Tx_{n})\right]$$

$$= \alpha\rho(\omega(x_{n-1}, Tx_{n-1}; \mu_{n-1}), Tx_{n-1}) + \beta\lambda\rho(x_{n-1}, Tx_{n-1})$$

$$+ \beta\lambda\rho(x_{n}, Tx_{n})$$

$$= \alpha\mu_{n-1}\rho(x_{n-1}, Tx_{n-1}) + \beta\lambda\rho(x_{n-1}, Tx_{n-1}) + \beta\lambda\rho(x_{n}, Tx_{n}).$$

We observe that $0 < 1 - \beta \lambda$, and hence

$$\rho(x_n, Tx_n) \le \frac{\alpha \mu_{n-1} + \beta \lambda}{1 - \beta \lambda} \rho(x_{n-1}, Tx_{n-1})$$
$$\le \frac{\rho(x_{n-1}, Tx_{n-1})}{\beta^2},$$

as proved in Theorem 3.1. Hence $\rho(x_n, Tx_n)$ is a decreasing sequence that converges to zero and hence is a Cauchy sequence. If $\lim_{n\to\infty} \rho(x_n, x^*) = 0$, then

$$\rho(x^*, Tx^*) \leq \alpha \rho(x^*, x_n) + \beta \rho(x_n, Tx^*)$$

$$\leq \alpha \rho(x^*, x_n) + \beta [\alpha \rho(x_n, Tx_n) + \beta \rho(Tx_n, Tx^*)]$$

$$\leq \alpha \rho(x^*, x_n) + \alpha \beta \rho(x_n, Tx_n) + \beta^2 \lambda [\rho(x_n, Tx_n) + \rho(x^*, Tx^*)].$$

Then it follows that

$$(1 - \beta^2 \lambda) \rho(x^*, Tx^*) \le \alpha \rho(x^*, x_n) + (\alpha \beta^2 \lambda) \rho(x_n, Tx_n)$$

$$\le \alpha \rho(x^*, x_n) + (\alpha \beta^2 \lambda) \frac{\rho(x_0, Tx_0)}{\beta^{2n}}.$$

Letting $n \to \infty$, we obtain $\rho(x^*, Tx^*) = 0$, so x^* is a fixed point of T. If x^{**} is another fixed point of T, then

$$\rho(x^\star, x^{\star\star}) = \rho(Tx^\star, Tx^{\star\star}) \leq \lambda[\rho(x^\star, Tx^\star) + \rho(x^{\star\star}, Tx^{\star\star})] = 0,$$

proving that the fixed point is unique.

Lemma 3.1. Let $\{y_n\}, \{z_n\}$ be non-negative sequences satisfying $y_{n+1} \leq z_n + hy_n$ for all $n \in \mathbb{N}$, $0 \leq h < 1$, $\lim_{n \to \infty} z_n = 0$, then $\lim_{n \to \infty} y_n = 0$.

Definition 3.1. Let T be a self map on a complete $\alpha\beta$ b-metric space (X, ρ) . The iterative procedure $x_{n+1} = f(T, x_n)$ is weakly T-stable if $\{x_n\}$ converges to a fixed point x^* of T and if $\{y_n\}$ is a sequence in X such that $\lim_{n\to\infty} \rho(y_{n+1}, f(T, y_n)) = 0$ and $\{\rho(y_n, Ty_n)\}$ is bounded then $\lim_{n\to\infty} y_n = x^*$.

Theorem 3.3. Under the assumptions of Theorem 3.1, if in addition $\lim_{n\to\infty} \mu_n = 0$, then Mann's iteration is weakly T-stable.

Proof. From Theorem 3.1, x^* is a fixed point of T in X. If $\{y_n\}$ is a sequence such that $\lim_{n\to\infty} \rho(y_{n+1},\omega(y_n,Ty_n;\mu_n))=0$ and $\{\rho(y_n,Ty_n)\}$ is bounded, then

$$\rho(y_{n+1}, x^*) \leq \alpha \rho(y_{n+1}, \omega(y_n, Ty_n; \mu_n)) + \beta \rho(\omega(y_n, Ty_n; \mu_n), x^*)$$

$$\leq \alpha \rho(y_{n+1}, \omega(y_n, Ty_n; \mu_n)) + \beta [\alpha \rho(\omega(y_n, Ty_n; \mu_n), Ty_n)$$

$$+ \beta \rho(Ty_n, Tx^*)]$$

$$\leq \alpha \rho(y_{n+1}, \omega(y_n, Ty_n; \mu_n)) + \beta \alpha \mu_n \rho(y_n, Ty_n) + \beta^2 \lambda \rho(y_n, x^*)$$

$$= z_n + \beta^2 \lambda \rho(y_n, x^*).$$

Since $\beta^2 \lambda < 1$ and $\{\rho(y_n, Ty_n)\}$ is bounded, $\lim_{n \to \infty} z_n = 0$ and hence by Lemma 3.1, $\lim_{n \to \infty} \rho(y_n, x^*) = 0$.

Theorem 3.4. Under the assumptions of Theorem 3.2, if in addition $\lim_{n\to\infty} \mu_n = 0$, and if α, β, λ satisfy additionally $\frac{\alpha\beta^2}{1-\lambda\beta} < 1$ then Mann's iteration is weakly T-stable.

Proof. From Theorem 3.2 x^* is a fixed point of T in X. If $\{y_n\}$ is a sequence such that $\lim_{n\to\infty} \rho(y_{n+1},\omega(y_n,Ty_n;\mu_n))=0$ and $\{\rho(y_n,Ty_n)\}$ is bounded, then

$$\rho(y_{n+1}, x^*) \leq \alpha \rho(y_{n+1}, \omega(y_n, Ty_n; \mu_n)) + \beta \rho(\omega(y_n, Ty_n; \mu_n), x^*)$$

$$\leq \alpha \rho(y_{n+1}, \omega(y_n, Ty_n; \mu_n)) + \beta \alpha \rho(\omega(y_n, Ty_n; \mu_n), Ty_n)$$

$$+ \beta^2 \rho(Ty_n, x^*).$$

Now,

$$\rho(Ty_n, x^*) = \rho(Ty_n, Tx^*) \le \lambda \rho(y_n, Ty_n)$$

$$\le \lambda \alpha \rho(y_n, x^*) + \lambda \beta \rho(x^*, Ty_n).$$

From which we get

$$\rho(Ty_n, x^*) \leq \frac{\lambda \alpha}{1 - \lambda \beta} \rho(y_n, x^*),$$

$$\rho(y_{n+1}, x^*) \leq \alpha \rho(y_{n+1}, \omega(y_n, Ty_n; \mu_n)) + \beta \alpha \mu_n \rho(y_n, Ty_n) + \frac{\lambda \alpha \beta^2}{1 - \lambda \beta} \rho(y_n, x^*)$$

$$= z_n + \frac{\lambda \alpha \beta^2}{1 - \lambda \beta} \rho(y_n, x^*).$$

Since $\frac{\lambda \alpha \beta^2}{1-\lambda \beta} < 1$ and $\{\rho(y_n, Ty_n)\}$ is bounded, $\lim_{n\to\infty} z_n = 0$ and hence by Lemma 3.1, $\lim_{n\to\infty} \rho(y_n, x^*) = 0$.

REFERENCES

- [1] L. CHEN, C. LI, R. KACZMAREK, Y. ZHAO: Several Fixed Point Theorems in Convex b-Metric Spaces and Applications, Mathematics, 8(2) (2020), art.id. 242.
- [2] S. CZERWIK: Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11.
- [3] X. P. DING: Iteration processes for nonlinear mappings in convex metric spaces, J. Math. Anal. Appl., **132** (1988), 114–122.
- [4] P. SINGH, V. SINGH, T. JELE: A new relaxed b-metric type and fixed point results, Aust. J. Math. Anal. Appl., **18**(1) (2021), Art 7,8.
- [5] P. V. SUBRAHMANYAM: Elementary Fixed Point Theorems, Springer Singapore, 2018.
- [6] W. TAKAHASHI: *A convexity in metric space and nonexpansive mappings*, I. Kodai Math. Sem. Rep. **22**(2) (1970), 142–149.

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE

UNIVERSITY OF KWAZULU-NATAL

PRIVATE BAG X54001, DURBAN

SOUTH AFRICA

Email address: singhv@ukzn.ac.za

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE

UNIVERSITY OF KWAZULU-NATAL

PRIVATE BAG X54001, DURBAN

SOUTH AFRICA

Email address: singhp@ukzn.ac.za