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ON THE DYNAMICS OF THE SINGULARLY PERTURBED RICCATI
DIFFERENCE EQUATION WITH CONTINUOUS ARGUMENT

A. M. A. EL-Sayed, S. M. Salman, and S. Ramadan1

ABSTRACT. In this paper, we study the dynamic properties of the singularly
perturbation of the Riccati difference equation with continuous arguments.

1. INTRODUCTION

The difference equation with continuous argument

(1.1) x(t) = f(x(t− 1)), t ∈ [0, T ].

is one of the principal mathematical instruments of modern nonlinear dynamics.
Let ε ∈ (0, 1], the equation

ε
dx

dt
+ x(t) = f(x(t− 1)), t ∈ I = [0, T ]

is the singular perturbation of the difference equation with continuous argument
(1.1). Here we study the dynamic properties of the Riccati difference equation
with continuous argument

(1.2) x(t) = 1− ρx2(t− 1), t ∈ I, x(t) = x0, t ≤ 0.

1corresponding author
2020 Mathematics Subject Classification. 37E10, 37C75, 34C28.
Key words and phrases. Riccati delay, Time delay, Fixed points, Local stability, Bifurcation,

Chaos, singularly perturbed.
Submitted: 24.01.2021; Accepted: 08.02.2021; Published: 11.03.2021.

1161



1162 A. M. A. EL-Sayed, S. M. Salman, and S. Ramadan

and its singularly perturbation

(1.3) ε
dx

dt
+ x(t) = 1− ρx2(t− 1), t ∈ I, x(t) = x0, t ≤ 0

and compare the results when ε → 1 with the Riccati differential difference
equation

dx

dt
+ x(t) = 1− ρx2(t− 1), x(t) = x0, t ≤ 0.

2. THE SINGULAR PERTURBED EQUATION

Now, for the equation (1.2) we have the results (see [1,2]).

Theorem 2.1. The system (1.2) has two fixed points namely, x∗1,2 =
−1±

√
1+4ρ

2ρ
such

that⇒ x∗1,2 =
−1±

√
1+4ρ

2ρ
is stable if |(1±

√
1 + 4ρ)| < 1.

Theorem 2.2. When −(1 ±
√
1 + 4ρ) passes through the critical value −(1 ±√

1 + 4ρ) =
√

1 + ξ2, there is a Hopf bifurcation from the equilibrium (x1,2)
∗ =

(−1
2ρ
)(1±

√
1 + 4ρ) to a periodic orbit.

Theorem 2.3. The fixed points (x1,2)
∗ = (−1

2ρ
)(1 ±

√
1 + 4ρ) are stable if −1 <

−(1±
√
1 + 4ρ) <

√
1 + ξ2 and unstable if−1 > −(1±

√
1 + 4ρ),−(1±

√
1 + 4ρ) >√

1 + ξ2.

2.1. Local stability and existence of bifurcation.
In this section, we will consider the local stability of fixed points of the delay

equation (1.3). The system has two fixed points which are the solution of the
follow equation x+ 1− ρx2 = 0 which has two fixed points, namely,

x∗1,2 =
−1
2ρ

(−1±
√
1 + 4ρ).

The linearized equation is
dy

dt
=
−1
ε
y(t) +

−1
ε
(1±

√
1 + 4ρ)y(t− 1),

where,

y(t) = x(t)− (
−1
2ρ

)(1±
√

1 + 4ρ).

The characteristic equation is of the form

(2.1) λ+
1

ε
− 1

ε
(1±

√
1 + 4ρ)e−λ = 0.
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Lemma 2.1. All roots of the characteristic equation λ+ c+ be−λ = 0, where c and
b are real, have negative real parts if and only if

c > −1, c+ b > 0, b <
√
c2 + ξ2,

where ξ is the root of

ξ = −c tan ξ, 0 < ξ < π. If c 6= 0, ξ =
π

2
, ifc = 0.

Applying lemma 2.1 to to equation (2.1) with c = 1
ε
, and b = −1

ε
(1±
√
1 + 4ρ).

We have the following theorem.

Theorem 2.4. The fixed points (x1,2)
∗ = (−1

2ρ
)(1±

√
1 + 4ρ) are stable if

−1
ε
<
−1
ε
(1±

√
1 + 4ρ) <

√
1

ε2
+ ξ2,

and unstable if

−1
ε
>
−1
ε
(1±

√
1 + 4ρ),

−1
ε
(1±

√
1 + 4ρ) >

√
1

ε2
+ ξ2.

2.2. Hopf bifurcation.
Here we discuss the Hopf bifurcation. We have the following theorem.

Theorem 2.5. When −(1 ±
√
1 + 4ρ) passes through the critical value −(1 ±

√
1 + 4ρ) =

√
1
ε2
+ ξ2, there is a Hopf bifurcation from the equilibrium (x1,2)

∗ =

(−1
2ρ
)(1±

√
1 + 4ρ) to a periodic orbit.

Proof. Let (1 +
√
1 + 4ρ) = K, then, assume that λ = iω0, ω0 ∈ R+ is a pure

imaginary solution of equation (2.1) for some parameter value K = K∗. This
leads to the following equation

iω0 +
1

ε
− K∗

ε
e−iω0 = 0,

1

ε
=
K∗
ε

cos(ω0), ω0 =
K∗
ε

sin(ω0),

ω2
0 +

1

ε2
=
K2
∗
ε2

[cos(ω0)
2 + sin(ω0)

2] =
K2
∗
ε2

and

K∗ = ±ε
√

1

ε2
+ ω2

0, ω0 =
−1
ε

tan(ω0).

Next, we have

K∗ = −ε

√
1

ε2 + ω2
0

, is the critical value of K,
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where, ω0 is the root of ω0 =
−1
ε
tan(ω0), 0 < ω0 < π.

The condition d(Re(λ))
dK
|K=K∗ is the last condition for occurrence of a Hopf bi-

furcation. To show that this condition is satisfied, let λ = Z(K) + iω(K) and
using (2.1), we obtain Z + iω + 1

ε
− K

ε
e−z−iω = 0,

(2.2) Z +
1

ε
− K

ε
e−z cos(ω) = 0,

(2.3) ω +
K

ε
e−z sin(ω) = 0.

Differentiate (2.2) and (2.3) with respect to K, we obtain

(2.4) ε
dZ

dK
− e−z cos(ω) +Ke−z cos(ω)

dz

dk
+Ke−z sin(ω)

dω

dK
= 0,

(2.5) ε
dω

dK
+ e−z sin(ω) +Ke−z cos(ω)

dω

dK
−Ke−z sin(ω) dZ

dK
= 0.

Solving equation (2.4) and equation (2.5) for dZ
dK

, we obtain

d(Re(λ))

dK
|k=k∗ =

d(Re(λ))

dK
|z=0,ω=ω0,k=k∗

=
ε cos(ω0 +K∗

(ε+K∗ cos(ω0))2 + (K∗ sin(ω0))2

=
εK∗ cos(ω0) +K2

∗
K2
∗ [(ε+K∗ cos(ω0))2 + (K∗ sin(ω0))2]

=
ε+K2

∗
K∗[(ε+K∗ cos(ω0))2 + (K∗ sin(ω0))2]

6= 0.

Similarly, we can prove that there is a Hopf bifurcation from the equilibrium
(x2)

∗ = (−1
2ρ
)(1−

√
1 + 4ρ) to a periodic orbit. �

2.3. The discretized system.
In this section, the discretized analogue of the system is obtained via the

method of steps as follows . By applying the method of steps then the equation

ε
dx

dt
= −x(t) + (1− ρx2(t− 1)),

has the solution

xn+1(t) = e
−(t−n)

ε xn + (1− ρx2n)(1− e
−(t−n)

ε ), t ∈ (n, n+ 1].
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Let t→ n+ 1, then

(2.6) xn+1 = xne
−1
ε + (1− ρx2n)(1− e

−1
ε ).

2.4. Stability and bifurcation of the discretized system.
The system (2.6) has two fixed points namely, x∗1,2 =

−1±
√
1+4ρ

2ρ
. Now

f ′(x) = e
−1
ε − 2ρx(1− e

−1
ε ),

then x∗1,2 =
−1±

√
1+4ρ

2ρ
is stable if

|e
−1
ε + (1±

√
1 + 4ρ)(1− e

−1
ε )| < 1.

We have two cases for the perturbation parameter ε. 1-As ε → 0, x∗1,2 =
−1±

√
1+4ρ

2ρ
is stable if |(1±

√
1 + 4ρ)| < 1.

This is the same results of (1.2). 2-As ε→ 1, x∗1,2 =
−1±

√
1+4ρ

2ρ
is stable if |e−1 +

(1− e−1)(1±
√
1 + 4ρ)| < 1.

This is the same results of (2.5).

3. NUMERICAL SIMULATIONS

We confirm all the previous analytical findings with the help of numerical sim-
ulations performed via Matlab. In all numerical simulations the initial condition
is taken as (x0, y0) = (0.4, 0.4) and the bifurcation parameter is taken as ρ.

We have the following examples

FIGURE 1. Bifurcation diagram as a function of ρ and correspond-
ing Lyapunov exponent of system (1.3).
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4. CONCLUSION

In this work, we discussed stability, bifurcation and chaos of the singularly
perturbed differential difference Riccati equation. Local stability and bifurcation
analysis of the discretized system. We find that the singularly perturbed Riccati
differential difference equation behaves as the Riccati difference equation with
continuous argument when the perturbation parameter ε → 0 and behaves as
the Riccati differential difference equation when the perturbation parameter
ε→ 1.
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