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BI-INTERIOR IDEALS IN TGSR

A. Nagamalleswara Rao, L. N. P. Varma, G. Srinivasa Rao1, D. Madhusudhana Rao,
and Ch. Ramprasad

ABSTRACT. In this paper, we will discuss notation of bi-interior ideals as a gen-
eralization of quasi-ideal, bi-ideal, interior ideals and bi-interior ideals of TGSR
and study the properties of bi-interior ideals of TGSR.

1. INTRODUCTION AND PRELIMINARIES

During 1950-1980, the concept of bi-ideals, quasi-ideals and interior ideals
were studied by many mathematicians. In this paper, we introduced the notation
of prime bi-interior ideals of TG Semi rings. G. Srinivasa Rao et.al [5–9] studied
ternary semi rings. A lot of literature is available related to this work [1–4].

Let (R,+) and (Γ,+) be commutative semi groups. Then we call R a TG-semi
ring (TGS), if there is mapping R × Γ× R × Γ× R → R(imagesof(p, a, q , b, r)

will be denoted by paqbr , ∀p, q, r ∈ R,a, b,∈ Γ) 3 it satisfies the following axioms
for all p, q , r , s , t ∈ R and a, b, c, d ∈ Γ :

(1) pa(q + r)bs = paqbs+ parbs

(2) (p+ q)arbs = parbs+ qarbs
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(3) paqb(r + s) = paqbr + paqbs

(4) pa(qbrcs)dt = paqb(rcsdt) = (paqbr)csdt

A TGS R is said to be commutative TGS, if paqbr = parbq = qarbp = qapbr =

rapbq = raqbp,∀pqr ∈ R and a, b ∈ Γ . Let R be a TGS. An element e ∈ R is said
to be unity element or neutralelemnt if for each p, q ∈ R ∃ a, b ∈ Γ 3 paqbe =

paebp = eapbp = e. A TGS R is said to have zero element if there exists an
element 0 ∈ R such that 0 + p = p and 0apb0 = pa0b0 = 0a0bp = 0 ∀p ∈ R,
a, b ∈ Γ. If there exists a, b ∈ Γ 3 p = papbp, then an element pis known as
an idempotent element. R is said to be an TGS R, if each element in R is an
idempotent. A TGS R is called a division TGS if for each non-zero element of R
has inverse with respect to multiplication. An element p in TGS R is said to be
regularelement , id ∃x, y in R and a, b, c, d in Γ such that p = paxbpcydp. If every
element in TGS R is regular element, then R is called regularTGSR.

Definition 1.1. A non-empty subset S is said to be ternarysub−Γ − semi−ringR,
if S is a sub-semi-group with respect to + of R and aαbβc ∈ S ,∀a, b, c ∈ S and
α, β ∈ Γ.

Definition 1.2. A non-empty subset I of a ternary Γ-semi-ring of a ternary Γ-semi-
ring R is said to left(lateral, right) ternary Γ-ideal of R, if (1) a, b ∈ I → a + b ∈
I ; (2) a, b ∈ R, i ∈ I ,α, β ∈ Γ =⇒ aαbβi ∈ I(aαiβb ∈ I, iαaβb ∈ Γ). An ideal I
is said to be ternary Γ-ideal, if it is left, lateral and right Γ ideal of R.

Example 1. Consider the set Z = {0,±1,±2,±3, · · · } and Gamma be the set of
all even numbers. Then with respect to usual addition and ternary multiplication,
Z is ternary Gamma semi ring.

Example 2. Let Q = R be the set of all rational numbers and Γ the set of all
natural numbers. Define a mapping R × Γ × R × Γ × R → R by usual addition
and ternary multiplication defined by (p, a, q, b, r) = paqbr, ∀ p, q, r ∈ R, a, b ∈ Γ

then R is a ternary Γ semi ring.

Definition 1.3. Let φ 6= S ⊆ R, where R is a TGS. The set S is said to be a
TG-subsemi ring of R, if (S,+) is a ternary sub semi group (TSSG) of (R,+) and
SΓSΓS ⊆ S.

Definition 1.4. LetR be a TGS and φ 6= S ⊆ R. The set S is said to be a quasi-ideal
(QI) of R, if S is a TG-sub semi ring (TGSSR) of R and (SΓRΓR) ∩ (RΓSΓR +

RΓRΓSΓRΓR) ∩ (RΓRΓS) ⊆ S.
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Definition 1.5. Let R be a TGS and φ 6= S ⊆ R. The set S is said to be a bi-ideal
(BI) of R, if S is a (TGSSR) of R and SΓRΓSΓRΓS ⊆ S.

Definition 1.6. Let R be a TGS and φ 6= S ⊆ R. The set S is said to be a interior-
ideal (II) of R, if S is a (TGSSR) of R and RΓRΓSΓRΓR ⊆ S.

Definition 1.7. Let R be a TGS and φ 6= S ⊆ R. The set S is said to be a rt.
(medial, lt.) ideal of R, if S is a (TGSSR) of R and SΓRΓR ⊆ S(RΓSΓR ⊆
S,RΓRΓS ⊆ S).

Definition 1.8. Let R be a TGS and φ 6= S ⊆ R. The set S is said to be an ideal of
R, if S is a (TGSSR) of R and SΓRΓR ⊆ S,RΓSΓR ⊆ S,RΓRΓS ⊆ S.

Definition 1.9. Let R be a TGS and φ 6= S ⊆ R. The set S is said to be a k-ideal
of R, if S is a (TGSSR) of R and SΓRΓR ⊆ S,RΓSΓR ⊆ S,RΓRΓS ⊆ S and
p ∈ R, p+ q ∈ S, q ∈ S then p ∈ S.

Definition 1.10. Let R be a TGS and φ 6= S ⊆ R. The set P is said to be
a bi-interior-ideal (BII) of R, if P is a (TGSSR) of R and (RΓRΓPΓRΓR) ∩
(PΓRΓPΓRΓP ) ⊆ P .

Definition 1.11. A TGSSR R is said to be left(lateral , right)simpleTGSR, if R has
no proper left(lateral , right) ideal of R. A TGSSR R is said to be simpleTGSR, if R
has no proper ideals. A TGSSR R is said to be a bi − quasi − simple TGSSR, if R
has no proper bi-quasi-ideals of R.

Example 3. Consider the Tsemiring R= Γ=M2×2(W ) where W = 0, 1, 2, 3, ......
Then R is a TG-semi ring with PαQβS is the ordinary ternary multiplication of
matrices, ∀P, α,Q, β, S ∈ R.

U =

{(
x p

0 q

)
: p, q ∈ W

}

is a bi-ideal of R. Also

V =

{(
x 0

0 p

)
: p ∈ W

}
is a bi-ideal of R.
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2. BI IDEALS, INTERIOR IDEALS, BI INTERIOR IDEALS OF TGSR

Throughout this paper R is a commutative TGSR with unity element.

Definition 2.1. A non-empty subset P of a TGSR R is said to be bi-interior ideal of
R, if P is a ternary Γ sub semi ring of R and (RΓRΓPΓRΓR) ∩(PΓRΓPΓRΓP ) ⊆
P .

Definition 2.2. A TGSR R is called bi interior simple TGSR if R has no bi interior
ideal other than R itself.

Theorem 2.1. Let R be a TGSR. Then the following are hold:

(1) Every left (right, lateral) ideal is a BII of R.
(2) Every QI is a BII of R.
(3) If A, B and C are bi-interior ideals of R, then AΓBΓC,BΓCΓA,CΓAΓB

are BIIs of R.
(4) Every ideal is a BII of R.
(5) If P is a BII of R then PΓRΓR,RΓPΓRandRΓRΓp are BIIs of R.

Theorem 2.2. Every BI of a TGSR R is a BII of R.

Theorem 2.3. Every interior ideal of a TGSR R is a BII of R.

Theorem 2.4. Let R be a simple TGSR. Every BII of R is a BI of R.

Proof. GivenR is a simple TGSR. Suppose P be a BII of R then (RΓRΓPΓRΓR) ∩
(PΓRΓPΓRΓP ) ⊆ P . Since (RΓRΓPΓRΓR) is and R is a simple TGSR, we
have (RΓRΓPΓRΓR) = R. Since (RΓRΓPΓRΓR) ∩ (PΓRΓPΓRΓP ) ⊆ P ⇒
((PΓRΓPΓRΓP ) ∩R ⊆ P ⇒ ((PΓRΓPΓRΓP ) ⊆ P . Hence P is a BI of R. �

Theorem 2.5. Let R be a TGSR. Then R is a bi-interior simple TGSR
⇔ (RΓRΓaΓRΓRΓ) ∩ (aΓRΓaΓRΓa) = R, ∀a in R

Proof. Given R is a TGSR. Suppose R is a bi-interior simple TGSR a in R. Since
R is a BII of R, we have (RΓRΓaΓRΓR)∩(aΓRΓaΓRΓa) ⊆ R. Let a be a in R⇒
a ∈ RΓRΓaΓRΓR and a ∈ aΓRΓRΓa ⇒ a ∈ (RΓRΓaΓRΓR)∩ aΓRΓaΓRΓa.
Hence (RΓRΓaΓRΓRΓ) ∩ (aΓRΓaΓRΓa) = R.

Conversely suppose that (RΓRΓaΓRΓRΓ)∩(aΓRΓaΓRΓa) = R, ∀a in R. Let P
be a BII of the TGSR R and a ∈ P . ThenR = (RΓRΓaΓRΓRΓ)∩(aΓRΓaΓRΓa) ⊆
(RΓRΓPΓRΓR)∩ PΓRΓPΓRΓP⊆P . Therefore R = P . Thus R is a bi-interior
simple TGSR. �
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Theorem 2.6. If D is a minimal left ideal, A is a minimal right ideal and C is a
lateral ideal of a TGSR R, then P = AΓCΓD is a minimal BII of R.

Proof. Clearly P = AΓCΓD is a BII of S. It is enough if we show P is a minimal
BII of R. Let E be a BII of the TGSR S such that E ⊆ P .
RΓRΓE ⊆ RΓRΓP = RΓRΓ(AΓCΓD) ⊆ D, since D is a right ideal of R.

Similarly it is easy to prove that EΓRΓR ⊆ A and RΓCΓR ⊆ C. There-
fore EΓRΓR = A, RΓCΓR = C and RΓRΓE = D. Hence P = AΓCΓD =

(EΓRΓR)Γ(RΓCΓR)Γ(RΓRΓE) ⊆ AΓRΓRΓA ⊆ RΓRΓA = RΓRΓEΓRΓR

and P = AΓCΓD ⊆ AΓCΓ(RΓRΓE) ⊆ RΓRΓE ⊆ EΓRΓRΓE. Hence P ⊆
(EΓRΓRΓE) ∩ (RΓRΓEΓRΓRΓ) ⊆ E. Thus P = E. Therefore P is a minimal
BII of R. �

Theorem 2.7. The intersection of a BII P of a TGSR R and a TGSSR Q of R is a BII
of R.

Theorem 2.8. Let A, C and D be TGSSRs of a TGSR R and P = AΓDΓC. If A is a
left ideal, then P is BII of R.

Proof. Suppose A, C and D be TGSSRs of a TGSR R, P = AΓDΓC and A is a left
ideal of TGSR R.

Consider PΓRΓPΓRΓP = (AΓDΓC)ΓRΓ (AΓDΓC)ΓRΓ(AΓDΓC)

⊆ (AΓDΓC)Γ(AΓDΓC)Γ(AΓDΓC) ⊆ AΓDΓC = PΓ (PΓRΓPΓRΓP ) ∩
RΓRΓPΓRΓR ⊆ PΓRΓPΓRΓP ⊆ P . Hence P is a BII of R. �

Remark 2.1. Let A, C and D be TGSSRs of a TGSR R and P = AΓDΓC. If C is a
right ideal, then P is a BII ideal of R.

Remark 2.2. Let A, C and D be TGSSRs of a TGSR R and P = AΓDΓC. If D is a
lateral ideal, then P is a BII of R.

Theorem 2.9. Let R be a TGSSR and T be a TGSSR of R. Every TGSSR of T
containing (TΓRΓTΓRΓT ) ∪ (RΓRΓTΓRΓR) is a BII of R.

Proof. Let P be a TGSSR of T containing (TΓRΓTΓRΓT )∪(RΓRΓTΓRΓR). Now
we show that P is a BII of R. Consider (PΓRΓPΓRΓP ) ⊆ (TΓRΓTΓRΓT ) ⊆
(TΓRΓTΓRΓT ) ∪ (RΓRΓTΓRΓR) ⊆ P .

Hence (TΓRΓTΓRΓT ) ∪ (RΓRΓTΓRΓR) ⊆ P . Thus P is a BII of R. �
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Definition 2.3. Let R be a TGS. An element p ∈ R is said to be an regularelement

if there exists x, y ∈ Randa, b, c ∈ Γ such that p = paxbpcydp. Every element in
TGS is an regular element then R is a known as a Regular TGS.

Theorem 2.10. Let R be a regular TGSR. Then every BII of R is an ideal of R.

Proof. Given R is a regular element. Let us suppose P be BII of R. Now we
show that P is an ideal of R. Since P is an II of R, we have (TΓRΓTΓRΓT ) ∪
(RΓRΓTΓRΓR) ⊆ P . Consider PΓRΓR ⊆ PΓRΓPΓRΓP and PΓRΓR

⊆ RΓRΓPΓRΓR⇒ PΓRΓR ⊆ TΓRΓTΓRΓT )∪(RΓRΓTΓRΓR) ⊆ P . Similarly,
it is easy prove that RΓRΓP ⊆ PΓRΓR ⊆ TΓRΓTΓRΓT )∪(RΓRΓTΓRΓR) ⊆ P

and RΓPΓR ⊆ PΓRΓR ⊆ TΓRΓTΓRΓT ) ∪ (RΓRΓTΓRΓR) ⊆ P . Hence P is
an ideal of R. �

Theorem 2.11. Let R be a TGSR. Prove that the following statements are equiva-
lent:

(1) R is a bi-interior simple TGSR.
(2) RΓRΓa = R, ∀a ∈ R.
(3) < a >= R, ∀a ∈ R and where < a > is the smallest bi-interior ideal

generated by a.

Proof. Given R is a TGSR. To show (1) ⇒ (2): Suppose R is a bi-interior simple
TGSR and a ∈ R and P = RΓRΓa ⇒ P is a left ideal of R. By theorem 3.4, P
is a BII of R. Clearly P ⊆ R and let x ∈ R ⇒ x = xαxβa ∈ RΓRΓa ⇒ R ⊆ P

therefore P = R. Hence RΓRΓa = R, ∀a ∈ R. To show (2) ⇒ (3) : Suppose
RΓRΓa = R, ∀a ∈ R. Consider RΓRΓa ⊆< a >⊆ R and R ⊆< a >⊆ R.
Therefore < a >= R. To show (3) ⇒ (1) : Suppose < a > is the smallest BII
generated by a, < a >= R, ∀a ∈ R. Let P be a BII and a ∈ P then < a >⊆ P ⊆
R⇒ R ⊆ P ⊆ R. Therefore, P = R. Hence R is a bi-interior simple TGSR. �

Theorem 2.12. If P is a BII of a TGSSR R, T is a TGSSR of R and T ⊆ P such that
PΓTΓT is a ternary sub-semi-group of the ternary semi-group (R, .), then PΓTΓT

is a BII of R.

Proof. Let P be a BII of TGSR R, T be a TGSSR of R and T ⊆ such that
PΓTΓT is a ternary sub-semigroup of the ternary semi-group (R, ·). Now we
show that PΓTΓT is a BII of R. Clearly (PΓTΓT )ΓP ⊆ RΓPΓR ⊆ PΓRΓR ⊆
TΓRΓTΓRΓT ) ∪ (RΓRΓTΓRΓR) ⊆ P ⇒ PΓTΓTΓPΓTΓT ⊆ PΓTΓT .
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Hence PΓTΓT is a TGSSR of R.
Also, RΓRΓPΓTΓTΓRΓR ⊆ RΓRΓTΓRΓR and (PΓTΓT )ΓRΓRΓ(PΓTΓT ) ⊆

PΓRΓRΓRΓP ⇒ (RΓRΓPΓTΓTΓRΓR)∩ (PΓRΓPΓRΓP ) ⊆ (RΓRΓP ) ∩
(PΓRΓR) ⊆ P .

Hence PΓTΓT is a BII of the TGSR of R. �

Theorem 2.13. Let P be a BI of a TGSR R and Q be an interior ideal of R. Then
P ∩Q is a BII of R.

Proof. Suppose P be a BI of a TGSSR R and Q be an interior ideal of R. Now we
show that P∩Q is a BII ofR. By the known theorem, P∩Q is a TGSSR ofR. Also,
(P∩Q)ΓRΓ(P∩Q)ΓRΓ(P∩Q) ⊆ PΓRΓPΓRΓP ⊆ P and RΓRΓ(P∩Q)ΓRΓR ⊆
RΓRΓQΓRΓR ⊆ Q.

Here (P ∩Q)ΓRΓ(P ∩Q)ΓRΓ(P ∩Q)(RΓRΓ(P ∩Q)ΓRΓR) ⊆ (P ∩Q).
Hence P ∩Q is a BII of R. �

Theorem 2.14. Let R be a TGSR. If R = RΓRΓa,∀a ∈ R. Then every BII of R is
a QI of R.

Theorem 2.15. If P is a minimal BII of a TGSSR R, then any two non-zero ele-
ments of P generate the same right (left, lateral) ideal of R.

Theorem 2.16. LetR be a regular TGSR. Then P is a BII of R⇔ (PΓRΓPΓRΓP )∩
(RΓRΓPΓRΓR) = P, ∀BIIsPofR.

Proof. GivenR is a regular TGSR. Suppose P be a BII of TGSRR and a ∈ P . Now
we show that (PΓRΓPΓRΓP ) ∩ (RΓRΓPΓRΓR) = P . Since P is a BII of TGSR
R, we have (PΓRΓPΓRΓP ) ∩ (RΓRΓPΓRΓR) ⊆ P . Also, RΓRΓa ⊆ RΓRΓP .
Let a ∈ P then a is a regular element, because R is a regular TGSR ⇒ ∃x , y ∈
R, α, β, γ ∈ Γ 3 a = aαxβyγa ∈ PΓRΓPΓRΓP ⇒ a ∈ PΓRΓPΓRΓP) ∩
(RΓRΓPΓRΓR)⇒ P ⊆ PΓRΓPΓRΓP)∩(RΓRΓPΓRΓR). Hence PΓRΓPΓRΓP )∩
(RΓRΓPΓRΓR) = P .

Conversely, assume that PΓRΓPΓRΓP ) ∩ (RΓRΓPΓRΓR) = P, for all
BIIsPofR. Clearly PΓRΓPΓRΓP ) ∩ (RΓRΓPΓRΓR) ⊆ P , we have P is a
BII of R. �

Theorem 2.17. Let R be a TGSR. If P is a BII of R and P is a regular TGSSR of
R, then any BII of P is a BII of R.
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Proof. Given R is a TGSR. Let P be a BII of R and it is a regular TGSSR of R.
Suppose Q be a BII of P . Now we show that Q is a BII of R. By the theorem
3.21, (QΓPΓQΓPΓQ) ∩ (PΓPΓQΓPΓP ) = Q. Since Q ⊆ P and P ⊆ R, we
have (PΓRΓPΓRΓP )∩ (RΓRΓPΓRΓR) ⊆ (QΓPΓQΓPΓQ)∩ (PΓPΓQΓPΓP ) =

Q ⊆ P ⇒ (PΓRΓPΓRΓP ) ∩ (RΓRΓPΓRΓR) ⊆ P . ⇒ (QΓPΓQΓPΓQ) ∩
(PΓPΓQΓPΓP ) = Q ⊆ P and (QΓPΓQΓPΓQ) ∩ (PΓPΓQΓPΓP ) ⊆ P ⇒
{(QΓRΓQΓRΓQ) ∩ (PΓPΓQΓPΓP )} ∩ {(PΓRΓPΓRΓP ) ∩ (RΓRΓPΓRΓR)} ⊆
(Q ∩ P ) ⇒ (QΓRΓQΓRΓQ) ∩ (PΓPΓQΓPΓP ) ⊆ (Q ∩ P ) ⊆ Q ⇒ Q is a BII of
R. Hence the theorem. �

Theorem 2.18. Let R be a TGSR. Then R is a bi-interior simple TGSR, if, and only
if,

(RΓRΓaΓRΓRΓ) (aΓRΓaΓRΓa) = R, ∀a ∈ R.

Theorem 2.19. Let R be a TGSR and P be a BII of R. Then P is a minimal BII of
R⇔ P is a bi-interior simple TGSr of R.

Proof. Given R is a TGSR and P is a BII of R. Let Q be a BII of P . Now we
show that P is a bi-interior simple TGSR of R. Since Q is a BIs of P , we have
(QΓPΓQΓPΓQ) ∩ (PΓPΓQΓPΓP ) ⊆ Q⇒ (QΓPΓQΓPΓQ) ∩ (PΓPΓQΓPΓP )

is a BII of R. Since P is a minimal BII of R, we have (QΓPΓQΓPΓQ) ∩
(PΓPΓQΓPΓP ) = P ⇒ P = (QΓPΓQΓPΓQ) ∩(PΓPΓQΓPΓP ) ⊆ Q⇒ P = Q.
Hence P is a minimal BII of R.

Conversely suppose that P is a bi-interior simple TGSR of R. Now we show
that P is a minimal BII of R. Let Q be a BII of R and Q ⊆ P . It is enough
to show P = Q. Here (QΓPΓQΓPΓQ) ∩ (PΓPΓQΓPΓP ) ⊆ (QΓRΓQΓRΓQ) ∩
RΓRΓPΓRΓR) ⊆ Q, because Q is a BII of R. (QΓRΓQΓRΓQ)∩ (RΓRΓQΓRΓR)

⊆ (PΓRΓQΓRΓQ)∩(RΓRΓPΓRΓR) ⊆ P ⇒ (QΓPΓQΓPΓQ) ∩(PΓPΓQΓPΓP )

⊆ (P ∩Q) ⊆ Q⇒ P = Q. Hence P is a minimal BII of R. �

Theorem 2.20. The intersection of BIIs {Pi : i ∈ ∆} of a TGSR is a BII of R.

Proof. Let P = ∩i∈∆Pi, where Pi is a BII of R. Now we show that P is a BII of
R. By the known theorem, P is a TGSSR R. Since Pi is a BII of R, we have
(RΓRΓPiΓRΓR) ∩ (PiΓRΓPiΓRΓPi) ⊆ Pi, for each Pi and i ∈ ∆ ⇒ (RΓRΓ ∩
PiΓRΓR) ∩ (∩PiΓRΓ ∩ PiΓRΓ ∩ Pi) ⊆ ∩Pi ⇒ ((PΓRΓPΓRΓP ) ∩ R ⊆ P ⇒
((PΓRΓPΓRΓP ) ⊆ P . Hence P is a BII of R. �
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Definition 2.4. An element ita of a TGSR R is said to be α-idempotent element, if
a = aαaαa. A ternary TGSR R is said to be α− idempotent TGSR, if every element
of R is α− idempotent. An element a of a TGSR R is said to be (α, β)− idempotent
element, if a = aαaβa.

Theorem 2.21. Let P be a BII of a TGSR R, e be (α, β)− idempotent element and
eΓeΓP ⊆ P . Then eΓeΓP is a BII of R.

Proof. Given R is a BII of a TGSR R. Suppose a ∈ P∩(eΓRΓR)⇒ a ∈ P and a =

eαyβz , where α, β ∈ Γ and y , z ∈ R. Consider a = eαyβz = (eγeδe)αyβz =

(eγeδ)eαyβz = eγeδa ∈ eΓeΓP . Therefore P ∩ (eΓRΓR ⊆ eΓeΓP ⊆ P ) and
eΓeΓP ⊆ eΓRΓR then eΓeΓP = eΓRΓR. Hence eΓRΓR is a BII of R. �

Theorem 2.22. Let R be a TGSR and e be a α-idempotent. Then eΓRΓR,RΓeΓR

and RΓRΓe are BIIs of R.

Theorem 2.23. Let e and f be a α-idempotent and a β-idempotent of TGSSR R

respectively. Then, eΓRΓRΓRΓf is a BII of R.

Theorem 2.24. Let P be a TGSSR of a regular TGSR R. Then P can be expressed
as P = KΓMΓL, where K is a right ideal, M is a lateral ideal and L is a left ideal
of R⇔ P is a BII of R.

Proof. Given P is a TGSSR of a regular TGSR R. Suppose P = KΓMΓL, where
K is a right ideal, M is a lateral ideal and L is a left ideal of R. Now we show
that P is a BII of R. Consider PΓRΓPΓRΓP = (KΓMΓL)ΓRΓRΓ(KΓMΓL) ⊆
(KΓMΓL) = P .

Consider (RΓRΓPΓTΓTΓRΓR) ∩ (PΓRΓPΓRΓP ) ⊆ PΓRΓPΓRΓP

⊆ KΓMΓL = P . Hence P is a BII of R.
Conversely, suppose that P is a BII of R. Now we show that P can be ex-

pressed as P = KΓMΓL, where K is a right ideal, M is a lateral ideal and
L is a left ideal of R. Since P is a BII of R by the known Theorem 3.22,
(RΓRΓPΓTΓTΓRΓR) ∩ (PΓRΓPΓRΓP ) = P . Let us take K = eΓRΓR,L =

RΓRΓe and M = RΓeΓR, where e is the identity element of R⇒ K = PΓRΓR

is a right ideal of R, L = RΓRΓP is a left ideal of R and M = RΓPΓR is a lat-
eral ideal of R. Consider (PΓRΓR)∩ (RΓPΓR)∩ (RΓRΓP ) ⊆ (PΓRΓPΓRΓP )∩
((PΓRΓPΓRΓP ) = P ⇒ (PΓRΓR)∩(RΓPΓR)∩(RΓRΓP ) ⊆ P ⇒ K∩M ∩L ⊆
P . Also, P ⊆ PΓRΓR = R,P ⊆ RΓPΓR = P, P ⊆ RΓRΓP = P ⇒ P ⊆
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K ∩M ∩ L⇒ P = K ∩M ∩ L = KΓMΓL, because R is a regular TGSR. Hence
P can be expressed as P = KΓMΓL, where K is a right ideal, M is a lateral
ideal and L is a left ideal of R. �

Theorem 2.25. Let R be a TGSR. Then R is regular TGSR⇔ P ∩ I ∩L ⊆ PΓIΓL,
for any BII P lateral ideal I and ideal L of R.

Proof. Given R is a TGSR. Suppose R is a regular TGSR. Now we show that P ∩
I∩L ⊆ PΓIΓL, for any BII P lateral ideal I and ideal L of R. Let x ∈ P∩I ∩L⇒
a ∈ R and since R is a regular TGSR, we have a = aαxβaγyδa, where x , y ∈
R and alpha, β, γ, δ ∈ Γ ⇒ a ∈ aΓRΓRΓa ⊆ aΓRΓRΓaΓRΓRΓaΓRΓRΓa ⊆
PΓRΓPΓRΓP .

Also a ∈ aΓRΓRΓa ⊆ a ∈ aΓRΓRΓa ⊆ aΓRΓRΓaΓRΓRΓaΓRΓRΓa ⊆
RΓRΓPΓRΓR ⇒ a ∈ (PΓRΓPΓRΓP) ∩ (RΓRΓPΓRΓR) = P ⇒ P ∩ I ∩ L ⊆ P .

Conversely, assume that P ∩ I ∩ L ⊆ PΓIΓL, for any BII P , ideal I and left
ideal L of R. Now we show that R is a regular TGSR. Let K be a right ideal, M
be a lateral ideal and L be a left ideal of R. Then by our assumption, K∩M∩L ⊆
K ∩ R ∩ L ⊆ KΓRΓL ⊆ KΓMΓL, we have KΓMΓL ⊆ K,KΓMΓL ⊆ M and
KΓMΓL ⊆ L⇒ KΓMΓL ⊆ K ∩M ∩ L.

Hence, KΓMΓL = K ∩M ∩ L.
Therefore, R is a regular TGSR. �

Theorem 2.26. If TGSR R is a left (lateral, right) simple TGSR, then every BII of
R is a right (lateral, left) ideal of R.

Proof. Let P be a BII of the left simple TGSR R. Then RΓRΓP is a left ideal of R
andRΓRΓP ⊆ R and clearlyR ⊆ RΓRΓP . ThenR = RΓRΓP . RΓRΓPΓRΓR =

RΓRΓR ⊆ R and PΓRΓPΓRΓP ⊆ PΓRΓR; (PΓRΓPΓRΓP )∩(RΓRΓPΓRΓR) =

R ∩ (PΓRΓR).
Also, PΓRΓR ⊆ PΓRΓPΓRΓP ⊆ (PΓRΓPΓRΓP ) ∩ (RΓRΓPΓRΓR) ⊆ P .

Hence, every BII is a right ideal of R.
Similarly, we can prove for the right simple TGSR R.
The proof is completed. �

Theorem 2.27. Let P be a TGSSR of a TGSR R. If P is a BII of R, then P is a left
bi-quasi ideal of R.

Theorem 2.28. Let P be a TGSSR of a TGSR R. If P is a BII of R, then P is a
right (lateral) of R.
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Theorem 2.29. Let P be a BII of R and Q be a non-empty subset of P such that
PΓQΓQ is a TGSSR of R, then PΓQΓQ is a BII of R.

Definition 2.5. An element a of a ternary semi ring R is said to be invertible
in R, if there exists an element b ∈ R (called the ternary semi ring inverse of
a) such that abt = bat = tab = tba = atb = bta = t ,∀t ∈ R. An element
a of a ternary gamma semi ring R is said to be invertible in R, if there exists
an element b ∈ R (called the ternary gamma semi ring inverse of a) such that
aαbβt = bαaβt = tαaβb = tαbβa = aαtβb = bαtβa = t ,∀t ∈ R, α, β ∈ Γ .

Definition 2.6. A ternary gamma semi ring R with | R |≥ 2 is said to be a ternary
division gamma semi ring, if every non-zero element of R is invertible.

Theorem 2.30. Every ternary division gamma semi ring is a regular ternary
gamma semi ring.

Definition 2.7. A commutative ternary division gamma semi ring R is said to be
a ternary gamma semi field i.e., a commutative ternary semi ring R with | R |≥ 2,
is a ternary gamma semi field, if for every non-zero element a of R, there exists an
element b ∈ R, α, β ∈ Γ such that aαbβx = x ,∀x ∈ R.

Remark 2.3. A ternary gamma semi field (TGSF) R has always an identity.

Theorem 2.31. If R is a field TGSR, then R is a bi-interior simple TGSR.

Proof. Let P be a proper BII of the TGSF R, t ∈ P and 0 6= a ∈ P . Since R is
a TGSF, ∃b ∈ R and α, β ∈ Γ 3 aαbβt = bαaβt = tαaβb = tαbβa = aαtβb =

bαtβa = t,∀t ∈ R ⇒ γ, δ ∈ Γ 3 t = aγbδt = aγbδ(aαbβt) ⇒ t ∈ PΓRΓR ⇒ R ⊆
pΓRΓR and clearly PΓRΓR ⊆ R⇒ R = PΓRΓR.

Similarly, it is easy to prove that R = RΓRΓP = RΓPΓR. Consider R =

PΓRΓR = RΓPΓR = RΓRΓP ⊆ P ⇒ R ⊆ P and since P ⊆ R, we have P = R.
Hence TGSF R is a bi-interior simple TGSR.

Hence the theorem. �
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