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BI-INTERIOR IDEALS IN TGSR

A. Nagamalleswara Rao, L. N. P. Varma, G. Srinivasa Rao!, D. Madhusudhana Rao,
and Ch. Ramprasad

ABSTRACT. In this paper, we will discuss notation of bi-interior ideals as a gen-
eralization of quasi-ideal, bi-ideal, interior ideals and bi-interior ideals of TGSR
and study the properties of bi-interior ideals of TGSR.

1. INTRODUCTION AND PRELIMINARIES

During 1950-1980, the concept of bi-ideals, quasi-ideals and interior ideals
were studied by many mathematicians. In this paper, we introduced the notation
of prime bi-interior ideals of TG Semi rings. G. Srinivasa Rao et.al [5-9] studied
ternary semi rings. A lot of literature is available related to this work [[1-4].

Let (R,+) and (T', +) be commutative semi groups. Then we call R a TG-semi
ring (T'GS), if there is mapping R x ' x R x I' x R — R(imagesof(p, a, q,b,r)
will be denoted by paqbr, Vp, q,r € R,a,b, € I') 5 it satisfies the following axioms
forall p,q,r,s,t € Rand a,b,c,d € I":

(1) pa(q + r)bs = pagbs + parbs
(2) (p+ q)arbs = parbs + qarbs
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(3) paqb(r + s) = paqbr + pagbs
(4) pa(qbres)dt = pagb(resdt) = (paqbr)csdt
A TGS R is said to be commutative TGS, if paqbr = parbq = qarbp = qapbr =

rapbq = ragbp,Ypgqr € R and a,b € I'. Let R be a TGS. An element e € R is said
to be unity element or neutralelemnt if for each p,q € R 3 a,b € I' > pagbe =
paebp = eapbp = e. A TGS R is said to have zero element if there exists an
element 0 € R such that 0 + p = p and O0apb0 = paOb0 = 0albp = 0 Vp € R,
a,b € T'. If there exists a,b € I' > p = papbp, then an element pis known as
an idempotent element. R is said to be an TGS R, if each element in R is an
idempotent. A TGS R is called a division TGS if for each non-zero element of R
has inverse with respect to multiplication. An element p in TGS R is said to be
reqularelement, id 3x,y in R and a, b, ¢, d in " such that p = pazbpcydp. If every
element in TGS R is regular element, then R is called regularTGSR.

Definition 1.1. A non-empty subset S is said to be ternarysub — I' — semi — ringR,
if S is a sub-semi-group with respect to + of R and aabfSc € S,Va,b,c € S and
o, el

Definition 1.2. A non-empty subset I of a ternary I'-semi-ring of a ternary I'-semi-
ring R is said to le ft(lateral, right) ternary I'-ideal of R, if (1) a,b €[ — a+ b €
I; (2 a,be Ri € [,a,f el = aabfi € I(aaifb € I,icafb € T'). An ideal 1
is said to be ternary I'-ideal, if it is left, lateral and right I ideal of R.

Example 1. Consider the set Z = {0,+1,+2,43,---} and Gamma be the set of
all even numbers. Then with respect to usual addition and ternary multiplication,
Z 1s ternary Gamma semi ring.

Example 2. Let () = R be the set of all rational numbers and T' the set of all
natural numbers. Define a mapping R x I' x R x I' x R — R by usual addition
and ternary multiplication defined by (p,a,q,b,r) = pagbr, ¥ p,q,r € R, a,b € T
then R is a ternary ' semi ring.

Definition 1.3. Let ¢ # S C R, where R is a TGS. The set S is said to be a
TG-subsemi ring of R, if (S, +) is a ternary sub semi group (T'SSG) of (R,+) and
STSTS C 8.

Definition 1.4. Let Rbea TGS and ¢ # S C R. The set S is said to be a quasi-ideal
(QI) of R, if S is a TG-sub semi ring (I'GSSR) of R and (STRT'R) N (RI'STR +
RTRT'STRI'R) N (RTRI'S) C S.
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Definition 1.5. Let R be a TGS and ¢ # S C R. The set S is said to be a bi-ideal
(BI)of R, if Sisa (TGSSR) of Rand STRT'STRI'S C S.

Definition 1.6. Let R be a TGS and ¢ # S C R. The set S is said to be a interior-
ideal (II) of R, if Sisa (TGSSR) of R and RTRI'STRT'R C S.

Definition 1.7. Let R be a TGS and ¢ # S C R. The set S is said to be a rt.
(medial,lt.) ideal of R, if S is a (TGSSR) of R and STRI'R C S(RI'STR C
S, RTRT'S C 9).

Definition 1.8. Let R be a TGS and ¢ # S C R. The set S is said to be an ideal of
R, if Sisa (TGSSR) of Rand STRT'R C S, RT'STR C S, RT'RI'S C S.

Definition 1.9. Let R be a TGS and ¢ # S C R. The set S is said to be a k-ideal
of R, if Sisa (I'GSSR) of Rand STRI'R C S,RI'STR C S,RI'RI'S C S and
pER pt+qgeS,qe Sthenp e S.

Definition 1.10. Let R be a TGS and ¢ # S C R. The set P is said to be
a bi-interior-ideal (BID) of R, if P is a (TGSSR) of R and (RTRTPTRT'R) N
(PTRTPTRT'P) C P.

Definition 1.11. A TGSSR R is said to be left(lateral, right)simple TGSR, if R has
no proper left(lateral, right) ideal of R. A TGSSR R is said to be simpleTGSR, if R
has no proper ideals. A TGSSR R is said to be a bi — quasi — simple TGSSR, if R
has no proper bi-quasi-ideals of R.

Example 3. Consider the Tsemiring R= I'=My.o(W) where W = 0,1,2,3, ......
Then R is a TG-semi ring with PaQ (S is the ordinary ternary multiplication of
matrices, VP, o, Q, 3,S € R.

Al e

is a bi-ideal of R. Also

is a bi-ideal of R.
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2. BI IDEALS, INTERIOR IDEALS, BI INTERIOR IDEALS OF TGSR
Throughout this paper R is a commutative TGSR with unity element.

Definition 2.1. A non-empty subset P of a TGSR R is said to be bi-interior ideal of
R, if Pis a ternary I" sub semi ring of R and (RI' R PT'RT'R) N(PTRT'PT'RI'P) C
P.

Definition 2.2. A TGSR R is called bi interior simple TGSR if R has no bi interior
ideal other than R itself.

Theorem 2.1. Let R be a TGSR. Then the following are hold:

(1) Every left (right,lateral) ideal is a BII of R.

(2) Every QI is a BII of R.

(3) If A, B and C are bi-interior ideals of R, then AT' BT'C, BI'CT'A,CT AI'B
are BIIs of R.

(4) Every ideal is a BII of R.

(5) IfPis a Bl of R then PT'RT'R, RI" PT' Rand RT" RT'p are BIIs of R.

Theorem 2.2. Every Bl of a TGSR R is a BII of R.
Theorem 2.3. Every interior ideal of a TGSR R is a BII of R.
Theorem 2.4. Let R be a simple TGSR. Every BII of R is a BI of R.

Proof. Given R is a simple TGSR. Suppose P be a BIl of R then (RI'RI'PT’RT'R) N
(PTRI'PTRI'P) C P. Since (RI'RI'PT'RT'R) is and R is a simple TGSR, we
have (RI'RI'PT'RI'R) = R. Since (RI'RI'PI'RI'R) N (PTRI'PTRTP) C P =
((PTRTPTRTP)N R C P = ((PTRTPTRTP) C P. Hence PisaBlof R. [

Theorem 2.5. Let R be a TGSR. Then R is a bi-interior simple TGSR
< (RT'RTal’RT'RT) N (al'RT'al’RT'a) = R,Ya in R

Proof. Given R is a TGSR. Suppose R is a bi-interior simple TGSR « in R. Since
Ris a BII of R, we have (RI'RT'al’' R’ R)N(al'RT'al’'Rl'a) C R. Leta be ain R =
a € RTRTal'RT'R and a € al'R['RT'a = a € (RI'RT'al’'RT'R)N al’RTal' RT a.
Hence (RT RTal' RTRT) N (al' RTal'RTa) = R.

Conversely suppose that (RI'RI'al’' RT'RI") N (al'RT'al’RT'a) = R,Va in R. Let P
be a BIl of the TGSR R and a € P. Then R = (R['RT'al' RT' RT')N(al’'RT'aI' RT'a) C
(RCRTPT'RT'R)N PTRT PRI PCP. Therefore R = P. Thus R is a bi-interior
simple TGSR. O
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Theorem 2.6. If D is a minimal left ideal, A is a minimal right ideal and C'is a
lateral ideal of a TGSR R, then P = AT'CT D is a minimal BII of R.

Proof. Clearly P = AT'CT'D is a BII of S. It is enough if we show P is a minimal
BII of R. Let E be a BII of the TGSR S such that £ C P.

RT'RTE C RI'RI'P = RT'RT'(AI'CTD) C D, since D is a right ideal of R.
Similarly it is easy to prove that ETRI'R C A and RI'CT'R C C. There-
fore ETRT'R = A, RI'CT'R = C and RI'RI'E = D. Hence P = AT'CTD =
(ETRIR)T(RTCTR)[(RTRTE) C ATRTRTA C RTRTA = RIRTETRIR
and P = AT'CTD C AT'CT(RI'RT'E) C RI'RT'E C ETRI'RT'E. Hence P C
(ETRI'RT'E) N (RTRTETRI'RY') C E. Thus P = E. Therefore P is a minimal
BII of R. U

Theorem 2.7. The intersection of a BII P of a TGSR R and a TGSSR Q of R is a BII
of R.

Theorem 2.8. Let A, C and D be TGSSRs of a TGSRR and P = AT'DI'C. IfAis a
left ideal, then P is BII of R.

Proof. Suppose A, C and D be TGSSRs of a TGSR R, P = AI'DT'C and A is a left
ideal of TGSR R.

Consider PT'RI'PI'RT'P = (ATDTCYI'RI (ATDT'C)I'RT(AT'DT'C)
C (ATDTCYT(ATDTCY(ATDTC) C ATDIC = PU (PTRTPTRTP) N
RITRT'PTRI'R C PTRT'PT'RT'P C P. Hence P is a BII of R. O

Remark 2.1. Let A, C and D be TGSSRs of a TGSRR and P = AT'DI'C. IfCis a
right ideal, then P is a BII ideal of R.

Remark 2.2. Let A, C and D be TGSSRs of a TGSRR and P = AUDI'C. If D is a
lateral ideal, then P is a BII of R.

Theorem 2.9. Let R be a TGSSR and T be a TGSSR of R. Every TGSSR of T
containing (I'TRI'TTRI'T) U (RTURIU'TT RT'R) is a BII of R.

Proof. Let P be a TGSSR of T" containing (TT RI"TT RI'T)U(RI'RI'TT RI'R). Now
we show that P is a BII of R. Consider (P RI'PI'RI'P) C (TTRI'TTRIT) C
(TTRTTTRIT) U (RTRTTTRTR) C P.

Hence (TTRI'TTRI'T) U (RITRI'TT'RI'R) C P. Thus P is a BII of R. O



1188 A. N. Rao, L. N. P. Varma, S. Rao, M. Rao, and Ch. Ramprasad

Definition 2.3. Let R be a TGS. An element p € R is said to be an regularelement
if there exists x,y € Randa,b,c € T" such that p = paxbpcydp. Every element in
TGS is an regular element then R is a known as a Regular TGS.

Theorem 2.10. Let R be a regular TGSR. Then every BII of R is an ideal of R.

Proof. Given R is a regular element. Let us suppose P be BII of R. Now we
show that P is an ideal of R. Since P is an II of R, we have (TTRI'TTRI'T) U
(RTRT'TTRI'R) C P. Consider P RI'R C PI'RI'PT'RT'P and PT'RT'R

C RTRT'PTRTR = PTRTR C TTRI'TTRI'T)U(RI'RI'TTRI'R) C P. Similarly,
it is easy prove that RURI'P C PTRIT'R C TTRI'TTRI'T)U(RICRI'TTRTR) C P
and RTPTR C PTRT'R C TTRITTRI'T) U (RTRTTTRT'R) C P. Hence P is
an ideal of R. O

Theorem 2.11. Let R be a TGSR. Prove that the following statements are equiva-
lent:

(1) R is a bi-interior simple TGSR.

(2) RI’'RT'a = R,Va € R.

(3) < a >= R,Va € R and where < a > is the smallest bi-interior ideal
generated by a.

Proof. Given R is a TGSR. To show (1) = (2): Suppose R is a bi-interior simple
TGSR and a € R and P = RI'Rl'a = P is a left ideal of R. By theorem 3.4, P
isa BIl of R. Clearly P C Randletz € R = 2 = zazfSa € RIRl'a = R C P
therefore P = R. Hence RI'RT'a = R,Va € R. To show (2) = (3) : Suppose
RT'RT'a = R,Va € R. Consider RI'Rl'a C< a >C R and R C< a >C R.
Therefore < ¢ >= R. To show (3) = (1) : Suppose < a > is the smallest BII
generated by a, < a >= R,Va € R. Let PbeaBlland a € Pthen < a >C P C
R = R C P C R. Therefore, P = R. Hence R is a bi-interior simple TGSR. [

Theorem 2.12. If Pisa BIl of a TGSSR R, T'is a TGSSR of Rand T C P such that
PTU'TTT is a ternary sub-semi-group of the ternary semi-group (R, .), then PT'TT'T
is a BII of R.

Proof. Let P be a BII of TGSR R, T be a TGSSR of R and T' C such that
PT'TTT is a ternary sub-semigroup of the ternary semi-group (R,-). Now we
show that PI'TTT is a BIl of R. Clearly (PT'TT'T)I'P C RIUPTR C PTRI'R C
TTRTTTRIT)U (RTRTTTRTR) C P = PITTTTPTTIT C PTTTT.
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Hence PI"TTT is a TGSSR of R.

Also, RTRTPTTITTRTR C RTRUTTRT R and (PTTTT)T RTRU(PTTIT)
PTRTRTRTP = (RTRTPTTTTTRIR)N (PTRTPTRTP) C (RURIP)
(PTRT'R) C P.

Hence PI'TTT is a BII of the TGSR of R.

C
N

O

Theorem 2.13. Let P be a Bl of a TGSR R and () be an interior ideal of R. Then
PN QisaBII of R.

Proof. Suppose P be a BI of a TGSSR R and () be an interior ideal of R. Now we
show that PN( is a BII of R. By the known theorem, PN is a TGSSR of R. Also,
(PNQ)LRT(PNQ)TRI(PNQ) C PTRTPTRIP C P and RTRT(PNQ)TRTR C
RTRIQT'RTR C Q.
Here (PNQ)I'RI(PNQ)TRI(PNQ)(RTRT(PNQ)I'RTR) C (PNQ).
Hence PN (@ is a BII of R. O

Theorem 2.14. Let R be a TGSR. If R = RI'Rl'a,Va € R. Then every BII of R is
a QI of R.

Theorem 2.15. If P is a minimal BII of a TGSSR R, then any two non-zero ele-
ments of P generate the same right (left, lateral) ideal of R.

Theorem 2.16. Let R be a regular TGSR. Then P is a Bll of R < (PT'RI'PTRI'P)N
(RTRT'PTRT'R) = P,YBIIsPofR.

Proof. Given R is a regular TGSR. Suppose P be a BIl of TGSR R and a € P. Now
we show that (PRI’ PTRI'P) N (RTRT'PTRT'R) = P. Since P is a BII of TGSR
R, we have (PTRT'PT'RI'P) N (RTRTPTRI'R) C P. Also, RI'Rl'a C RT'RT'P.
Let a € P then «a is a regular element, because R is a regular TGSR = dz,y €
R,a,B,v € I' 5 a = aazPyya € PIRIPIRI'P = a € PI'RI'PI'RI'P) N
(RCRI'PI'RI'R) = P C PI'RI'PI'RI'P)N(RI'RI'PI'RI'R). Hence P RT'PT'RT'P)N
(RCRTPT'RT'R) = P.

Conversely, assume that PI’RI'PI'RI'P) N (RI'RTPTRI'R) = P, for all
BIllsPofR. Clearly PTRI'PTRI'P) N (RTRTPTRI'R) C P, we have P is a
BII of R. U

Theorem 2.17. Let R be a TGSR. If P is a BII of R and P is a regular TGSSR of
R, then any BII of P is a BII of R.
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Proof. Given R is a TGSR. Let P be a BII of R and it is a regular TGSSR of R.
Suppose ) be a BII of P. Now we show that @) is a BII of R. By the theorem
3.21, (QTPTQTPTQ) N (PTPTQTPIP) = Q. Since Q C P and P C R, we
have (PT RT PTRT P)N(RTRTPTRI'R) C (QT PTQTPT'Q)N(PTPTQI PTP) =
Q C P = (PTRTPIRTP) N (RTRTPTRIR) C P. = (QUPTQIPTQ) N
(PTPTQIPTP) = Q C P and (QTPTQTPTQ) N (PTPTQTPIP) C P =
{(QTRTQTRI'Q) N (PTPLQT PTP)} N {(PTRTPTRTP) N (RTRTPTRTR)} C
(QN P) = (QTRTQTRI'Q) N (PTPTQTPTP) C (QN P) C Q = Q is a BII of
R. Hence the theorem. O

Theorem 2.18. Let R be a TGSR. Then R is a bi-interior simple TGSR, if, and only
i,
(RI'RT'al’ RT'RY") (aI'RT'al’RT'a) = R, Va € R.

Theorem 2.19. Let R be a TGSR and P be a BII of R. Then P is a minimal BII of
R < P is a bi-interior simple TGSr of R.

Proof. Given R is a TGSR and P is a BII of R. Let () be a BII of P. Now we
show that P is a bi-interior simple TGSR of R. Since @ is a Bls of P, we have
(QTPTQTPTQ) N (PTPIQTPIP) C Q = (QTPTQTPIQ) N (PTPILQT P P)
is a BII of R. Since P is a minimal BII of R, we have (QT'PTQT'PI'Q) N
(PTPTQTPTP) = P = P = (QTPTQTPTQ) N(PTPTQTPTP) C Q = P = Q.
Hence P is a minimal BII of R.

Conversely suppose that P is a bi-interior simple TGSR of R. Now we show
that P is a minimal BII of R. Let ) be a BIl of R and ) C P. It is enough
to show P = Q. Here (QI'PTQI' PT'Q) N (PTPTQIPT'P) C (QI'RTQT RI'Q) N
RTRTPTRTR) C @, because Q is a BII of R. (QTRTQI'RT'Q) N (RTRTQIRT'R)
C (PTRIQT'RTQ)N(RIRTPTRI'R) C P = (QI'PLQTPI'Q) N(PTPIQT PT'P)
C(PNQ)C Q= P=Q.Hence P is a minimal BII of R. O

Theorem 2.20. The intersection of Blls {P; : i € A} of a TGSR is a BII of R.

Proof. Let P = N;caP;, where P, is a BII of R. Now we show that P is a BII of
R. By the known theorem, P is a TGSSR R. Since P; is a BII of R, we have
(RTRTPTRTR) N (PTRTPTRTP) C P, for each P, and i € A = (RT'RT' N
PTRTR) n(NPT'RCNPIRI'NP) C NP, = (PTRTPTRTP)NR C P =
((PTRT'PTRT'P) C P. Hence P is a BII of R. O
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Definition 2.4. An element ita of a TGSR R is said to be a-idempotent element, if
a = acaaa. A ternary TGSR R is said to be o — idempotent TGSR, if every element
of Ris a—idempotent. An element a of a TGSR R is said to be («, ) —idempotent
element, if a = acafa.

Theorem 2.21. Let P be a BIl of a TGSR R, e be («, ) — idempotent element and
el'e['P C P. Then el'el'P is a BII of R.

Proof. Given R is a BIl of a TGSR R. Suppose a € PN(el'RI'R) = a € Pand a =
eayfz, where o, € T" and y, 2 € R. Consider a = eayfz = (eyede)ayfz =
(eved)eayPz = eyeda € el'el'P. Therefore P N (e'RT'R C el'el'P C P) and
el'el'P C el'RI'R then el'el'P = e'RI'R. Hence eI'RI'R is a BII of R. O

Theorem 2.22. Let R be a TGSR and e be a a-idempotent. Then eI'RI'R, RI'el'R
and RI'RI’e are BIIs of R.

Theorem 2.23. Let e and f be a a-idempotent and a (-idempotent of TGSSR R
respectively. Then, e['RI'RI'RI’f is a BII of R.

Theorem 2.24. Let P be a TGSSR of a regular TGSR R. Then P can be expressed
as P = KI'MTL, where K is a right ideal, M is a lateral ideal and L is a left ideal
of R< PisaBIlof R.

Proof. Given P is a TGSSR of a regular TGSR R. Suppose P = KI'MT' L, where
K is a right ideal, M is a lateral ideal and L is a left ideal of R. Now we show
that P is a BII of R. Consider PTRTPT'RI'P = (KTMTL)I'RTRT'(KTMTL) C
(KTMTL) = P.

Consider (RI'RI'PI'TTTT'RI'R) n (PTRI'PT'RI'P) <  PI'RI'PIRIP
C KT'MTL = P. Hence P is a BII of R.

Conversely, suppose that P is a BIl of R. Now we show that P can be ex-
pressed as P = KI'MT'L, where K is a right ideal, M is a lateral ideal and
L is a left ideal of R. Since P is a BII of R by the known Theorem 3.22,
(RCRTPITTTTRIR) N (PTRTPTRI'P) = P. Let us take K = e'RI'R,L =
RTU'RT'e and M = RI'el'R, where e is the identity element of R = K = PT'RI'R
is a right ideal of R, L = RI'RT'P is a left ideal of R and M = RI'PT'R is a lat-
eral ideal of R. Consider (PT'RI'R)N(RI'PT'R)N(RT'RT'P) C (PTRTPTRI'P)N
((PTRTPTRTP) = P = (PTRTR)N(RTPTR)N(RTRTP) C P = KNMNL C
P. Also, P C PTRTR = R,P C RTPTR = PP C RTRTP =P = P C
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KNMNL=P=KnNnMnNL=KIMTL, because R is a regular TGSR. Hence
P can be expressed as P = KI'MT'L, where K is a right ideal, M is a lateral
ideal and L is a left ideal of R. O

Theorem 2.25. Let R be a TGSR. Then R is regular TGSR < PNINL C PI'ITL,
for any BII P lateral ideal I and ideal L of R.

Proof. Given R is a TGSR. Suppose R is a regular TGSR. Now we show that P N
INL C PTITL, for any BII P lateral ideal / and ideal L of R. Letx € PNINL =
a € R and since R is a regular TGSR, we have a = aazfayyda, where z,y €
R and alpha,3,7,6 € ' = a € al'RI'RT'a C al’'RT' RT'al' RT RT'al’ RT'RT'a C
PU'RU'PTRI'P.

Also a € al'RI'RI'a C a € al'RI'RI'a C al'RCRI'al’RI'RI'al’'RI'RI'a C
RI'RIPI'RIR = a € (PITRI'PI'RI'P)N (RI'RI'PIRIR) =P = PNINLCP.

Conversely, assume that PN I N L C PI'IT'L, for any BII P, ideal [ and left
ideal L of R. Now we show that R is a regular TGSR. Let K be a right ideal, M
be a lateral ideal and L be a left ideal of R. Then by our assumption, KNMNL C
KNRNL C KI'RI'L C KI'MTL, we have KTMTI'L C K, KI'MTI'L C M and
KI'MI'LC L= KI'MI'LC KNMnN L.

Hence, KI'TMI'L =K nNMnN L.

Therefore, R is a regular TGSR. O

Theorem 2.26. If TGSR R is a left (lateral, right) simple TGSR, then every BII of
R is a right (lateral, left) ideal of R.

Proof. Let P be a BII of the left simple TGSR R. Then RI'RI'P is a left ideal of R
and RI'RT'P C Rand clearly R C RI'RT'P. Then R = RI'RI'P. RURT'PTRT'R =
RTRTR C Rand PTRTPTRT'P C PTRT'R; (PTRT'PTRT' P)N(RTRTPTRT'R) =
RN (PT'RUR).

Also, PTRT'R C PTRT'PTRI'P C (PTRI'PTRI'P) N (RCRTPT'RI'R) C P.
Hence, every BII is a right ideal of R.

Similarly, we can prove for the right simple TGSR R.

The proof is completed. O

Theorem 2.27. Let P be a TGSSR of a TGSR R. If P is a BII of R, then P is a left
bi-quasi ideal of R.

Theorem 2.28. Let P be a TGSSR of a TGSR R. If P is a BII of R, then P is a
right (lateral) of R.
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Theorem 2.29. Let P be a BII of R and () be a non-empty subset of P such that
PT'QT'Q is a TGSSR of R, then PT'QI'Q is a BII of R.

Definition 2.5. An element a of a ternary semi ring R is said to be invertible
in R, if there exists an element b € R (called the ternary semi ring inverse of
a) such that abt = bat = tab = tba = atb = bta = t,Vt € R. An element
a of a ternary gamma semi ring R is said to be invertible in R, if there exists
an element b € R (called the ternary gamma semi ring inverse of a) such that
aabft = baaft = taafb = tabBa = aatfb = batfa =t,Vt € R, € .

Definition 2.6. A ternary gamma semi ring R with | R |> 2 is said to be a ternary
division gamma semi ring, if every non-zero element of R is invertible.

Theorem 2.30. Every ternary division gamma semi ring is a regular ternary
gamma semi ring.

Definition 2.7. A commutative ternary division gamma semi ring R is said to be
a ternary gamma semi field i.e., a commutative ternary semi ring R with | R |> 2,
is a ternary gamma semi field, if for every non-zero element a of R, there exists an
element b € R, «, 8 € I' such that aabfzr = xz,Vz € R.

Remark 2.3. A ternary gamma semi field (TGSF) R has always an identity.
Theorem 2.31. If R is a field TGSR, then R is a bi-interior simple TGSR.

Proof. Let P be a proper BII of the TGSF R, t € P and 0 # a € P. Since R is
aTGSF, db € Rand o, € T' 3 aabft = baaft = taafb = tabfa = aatb =
batfa =t,Vt € R = 7,0 € ' 5 t = aybdt = aybd(aabft) =t € PTRITR = R C
pI'RT'R and clearly PTRT'R C R = R = PI'RT'R.

Similarly, it is easy to prove that R = RI'RI'P = RI'PT'R. Consider R =
PT'RI'R = RI’PTR = RI'RI'P C P = R C P and since P C R, we have P = R.
Hence TGSF R is a bi-interior simple TGSR.

Hence the theorem. O
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