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ON ATOM-BOND CONNECTIVITY STATUS INDEX OF GRAPHS

D. S. Revankar1, Priyanka S. Hande, and S. P. Hande

ABSTRACT. The atom-bond connectivity (ABC) status index of a graph is de-
fined by V. R. Kulli as ABCS(G)=

∑
uv∈E(G)

√
(σu + σv − 2)/σuσv, where σu

is a status of a vertex u ∈ V (G) and is defined as the sum of its distance from
every other vertex in V (G). In this paper we have obtained the bounds for the
atom-bond connectivity status index. Also obtained atom-bond connectivity
status index of some graphs.

1. INTRODUCTION

A topological index is a molecular structure descriptor having many appli-
cations in rationalizing the stability of linear and branched alkanes as well as
the strain energy of cycloalkanes. It is a numeric numerical quantity calcu-
lated mathematically of molecule obtained from its structural graph. Estrada
et.al. [12] has modified the Randić connectivity index [11] and proposed a new
topological index named atom–bond connectivity (ABC) index. The atom–bond
connectivity (ABC) index is widely studied [2,4–8,10,12] and for a connected
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graph G it is defined as,

ABC (G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

Where du is the degree of vertex u ∈ V (G).
Status [9] of a vertex u ∈ V (G) is denoted by σu and is defined by the sum of

its distance from every other vertex in V (G).
Harmonic status index [3] is defined by H.S. Ramane et. al. as

HS (G) =
∑

uv∈ E(G)

2

σu + σv
.

Here σu is the status of vertex u of G, E(G) is the edge set. V. R. Kulli defined
atom-bond connectivity status index [2] of G as,

ABCS (G) =
∑

uv∈ E(G)

√
σu + σv − 2

σuσv
.

2. PRELIMINARY RESULTS

Theorem 2.1. [2] For a complete graph Kn with n vertices,

ABCS (Kn) =
n√
2

√
(n− 2).

Theorem 2.2. [2] For a complete bipartite graph Kp,q with p + q vertices and pq
edges,

ABCS (Kp, q) = pq ×

√
3 (p+ q)− 6

2 (p2 + q2)− 6 (P + q) + (5pq + 4)
.

Theorem 2.3. [2] For a cycle Cn with n vertices and n edges,

ABCS (Cn) =


2
(√

2(n2−4
)

n
, if n is even

2n
√

2(n2−5)
n2−1 , if n is odd

.

Theorem 2.4. [2] For a wheel graph Wn with n+ 1 vertices and 2n edges,

ABCS (Wn) =
2n
√
n− 2

(2n− 3)
+

√
2n (3n− 2)

(2n− 3)
.
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Theorem 2.5. [2] For a friendship graph Fn with 2n+ 1 vertices and 3n edges,

ABCS (Fn) =
n
√

8n− 6

(4n− 2)
+

√
n (3n− 5)

(2n− 1)
.

3. OBTAINED BOUNDS FOR THE ATOM-BOND CONNECTIVITY STATUS INDEX

Theorem 3.1. IfG is a connected graph having n vertices and letD be the diameter
of G then,∑

uv∈E(G)

√
2D (n− 1)− (D − 1) [d (u) + d (v)]− 2

D2 (n− 1)2 −D (n− 1) [d (u) + d (v)] (D − 1) + d (u) .d (v) (D − 1)2

≤ ABCS (G) ≤
∑

uv∈E(G)

√
4n− 6− [d (u) + d (v)]

(2n− 2− d (u)) . (2n− 2− d (v))
.

Equality holds if and only if diam(G) ≤ 2.

Proof.
Lower Bound: For a vertex u ∈ V (G) of a graphG, d(u) vertices are at distance

1 from u. Then the remaining vertices are [n− 1− d (u)] which are of at most
diameter D from u, and

σ (u) ≤ d (u) +D (n− 1− d (u)) = D (n− 1)− (D − 1) d (u)

[σ (u) + σ (v)] ≤ 2D (n− 1)− (D − 1) [d (u) + d (v)]

σ (u) .σ (v) ≤ [D (n− 1)− (D − 1) d (u)] · [D (n− 1)− (D − 1) d (v)].
Therefore,

ABCS (G) =
∑

uv∈E(G)

√
σu + σv − 2

σuσv

≥
∑

uv∈E(G)

√
2D (n− 1)− (D − 1) [d (u) + d (v)]− 2

D2 (n− 1)2 −D (n− 1) [d (u) + d (v)] (D − 1) + d (u) .d (v) (D − 1)2
.

Upper Bound: Out of n vertices for u ∈ V (G), d(u) vertices are at distance 1
from u and the remaining [n− 1− d (u)] vertices are at the distance 2.

σ (u) ≥ d (u) + 2 (n− 1− d (u)) = 2n− 2− d (u)

σ (v) ≥ d (v) + 2 (n− 1− d (v)) = 2n− 2− d (v)

Therefore,
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ABCS (G) ≤
∑

uv∈E(G)

√
(4n− 4)− [d (u) + d (v)]− 2

(2n− 2− d (u)) . (2n− 2− d (v))
.

Hence,
(3.1)∑
uv∈E(G)

√
2D (n− 1)− (D − 1) [d (u) + d (v)]− 2

D2 (n− 1)2 −D (n− 1) [d (u) + d (v)] (D − 1) + d (u) .d (v) (D − 1)2

≤ ABCS (G) ≤
∑

uv∈E(G)

√
4n− 6− [d (u) + d (v)]

(2n− 2− d (u)) . (2n− 2− d (v))
.

Equality holds when the diameter D is 1 or 2.

Conversely, letABCS (G) =
∑

uv∈E(G)

√
4n−6−[d(u)+d(v)]

(2n−2−d(u)). (2n−2−d(v)) . SupposeD ≥ 3

therefore there exist at least one pair vertices u and v such that d (u, v) ≥ 3.
Therefore, σ (u) ≥ d (u) + 3 + 2 (n− 2− d (u)) = 2n− 1− d (u). Hence,

ABCS (G) ≤
∑

uv∈E(G)

√
4n− 2− [d (u) + d (v)]

(2n− 1− d (u)) . (2n− 1− d (v))

<
∑

uv∈E(G)

√
4n− 6− [d (u) + d (v)]

(2n− 2− d (u)) . (2n− 2− d (v))
.

This is a contradiction. Therefore diam(G) ≤ 2. �

Corollary 3.1. Let G be a connected graph having n vertices and m edges and let
D be the diameter of G. Let δ be the minimum and ∆ be the maximum degree of
the vertices of G, then

m ·

√
2D (n− 1)− (D − 1) . 2δ − 2

D2 (n− 1)2 − 2Dδ (n− 1) (D − 1) + δ2 (D − 1)2

≤ ABCS(G) ≤
√

4n− 6− 2∆

(2n− 2− 2∆)2
.

Proof. For any vertex u ∈ V (G), d(u) ≥ δ and d(u) ≤ ∆. Therefore substituting
[d(u) + d(v)] ≥ 2δ on LHS and [d(u) + d(v)] ≤ 2∆ on the RHS of equation 3.1 we
obtain the result. �
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Corollary 3.2. For a connected regular graph G of degree r having n vertices and
m edges and diam(G) = D, then,

m ·

√
2D (n− 1)− 2r (D − 1) . − 2

D2 (n− 1)2 − 2Dr (n− 1) (D − 1) + r2 (D − 1)2

≤ ABCS(G) ≤
√

4n− 6− 2r

(2n− 2− 2r)2
.

Equality holds if and only if diam(G) ≤ 2.

4. ATOM-BOND CONNECTIVITY STATUS INDEX OF SOME GRAPHS

Here we have obtained ABCS index of some graphs

Proposition 4.1. Let W(n+1) is a wheel graph with n ≥ 3. Then,

ABCS
(
W(n+1)

)
= n×

(√
(3n− 5)

n(2n− 3)
+

√
(4n− 8)

(2n− 3)2

)
.

Proof. We give alternate proof of Theorem 2.4. Partitioning the edge set of
W(n+1) in to two sets E1 and E2 where, E1 = {uv/d (u) = n and d (v) = 3} and
E2={uv/d (u) = 3 and d (v) = 3}. Also, diam (Wn+1) = 2,

ABCS (Wn+1) =
∑

uv∈E1(G)

√
4 (n+ 1)− 6− (n+ 3)

[2 (n+ 1)− 2− n] [2 (n+ 1)− 2− 3]

+
∑

uv∈E2(G)

√
4 (n+ 1)− 6− (3 + 3)

[2 (n+ 1)− 2− n] [[2 (n+ 1)− 2− 3]
.

Thus, ABCS (W n+1 ) = n×
(√

3n−5
n(2n−3) +

√
4n−8

(2n−3)2

)
. �

Proposition 4.2. Let Fn, n ≥ 2 be a Friendship graph. Then,

ABCS (Fn ) =

(
2n×

√
(3n− 2)

2n (2n− 1)

)
+

(
n×

√
4n− 3

2 (2n− 1)2

)
.

Proof. We give alternate proof of Theorem 2.5.
Partitioning the edge set of Fn in to two sets E1 and E2 where, E1 = {uv/d (u)

= 2n and d (v) = 2} and E2 = {uv/d (u) = 2 and d (v) = 2}. Also, |E1| = 2n
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and |E2| = n. Also, diam (Fn) = 2 and Fn has 2n + 1 vertices. Therefore, by the
equality part of Theorem 3.1

ABCS (Fn) =
∑

uv∈E1(G)

√
4 (2n+ 1)− 6− (2n+ 2)

[2 (2n+ 1)− 2− 2n] [2 (2n+ 1)− 2− 2]

+
∑

uv∈E2(G)

√
4 (2n+ 1)− 6− (2 + 2)

[2 (2n+ 1)− 2− 2] [2 (2n+ 1)− 2− 2]

=
∑

uv∈E1(G)

√
6n− 4

(2n) (4n− 2)
+

∑
uv∈E2(G)

√
8n− 6

(4n− 2)2

=
∑

uv∈E1(G)

√
2 (3n− 2)

4 (n) (2n− 1)
+

∑
uv∈E2(G)

√
2 (4n− 3)

4 (2n− 1)2
.

Therefore ABCS (Fn)= 2n×
√

(3n−2)
2n(2n−1)+n×

√
4n−3

2(2n−1)2 . �

Proposition 4.3. For a path on n vertices,

ABCS (P n ) =
n−1∑
i=1

√
(n− i)2 + i2 − 2[

n2+n
2

+ i (i− n− 1)
] [

n2+n
2

+ (i+ 1) (i− n)
] .

Proof. Let v1, v2, v3,. . . , vn be the vertices, where vi is adjacent to vi+1, i = 1, 2,
3,. . . , (n− 1). Therefore, σ (vi)=(i− 1) + (i− 2) + · · ·+ 1 + 1 + 2 + · · ·+ (n− i)
=
[
n2+n

2
+ i (i− n− 1)

]
and [σ (u) + σ (v)− 2] = (n− i)2 + i2 − 2.

Hence the result follows. �

5. ATOM-BOND CONNECTIVITY STATUS INDEX OF SUBDIVISION GRAPH OF SOME

GRAPH

Definition 5.1. If G = (V,E) be a connected graph on n vertices and m edges then
the subdivision graph of G is denoted by S(G) and defined as a graph resulting
from introducing a vertex of degree two for every edge.

Theorem 5.1. Let Kn is a complete graph on n vertices. Then,

ABCS [S (Kn)] = 2m×

√
7n2 − 9n− 4

n2 (6n2 − 15n+ 9)
.
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Proof. Partitioning the vertex set of S (Kn) into two vertex set.
Let U={u1, u2, u3, . . . , un} with |U | = n be the vertex set of Kn and let V =

{v1, v2, v3, . . . , vm} be the vertex set of subdivision vertices with |V | = m. For any
edge E in S (Kn), E = {uv/u ∈ U and v ∈ V }. Therefore, every vertex ui ∈ U
is at a distance 2 from every vertex uj ∈ U in S (Kn). As such there are (n− 1)

vertices at a distance 2 from ui.
Also (n− 1) subdivision vertices are at distance 1 from ui and the remaining

[m− (n− 1)] vertices are at distance 3 from ui.
Therefore,

σ (ui) = 2 (n− 1) + (n− 1) + 3 [m− (n− 1)]

= 3 (n− 1) + 3

[
n (n− 1)

2
− (n− 1)

]
.

Hence, σ (ui)=3
[
n(n−1)

2

]
.

Similarly, for every vertex vi ∈ V there are two vertices in U at distance 1 and
the remaining (n− 2) vertices of U at a distance 3.

Also, (2n− 4) subdivision vertices are at distance 2 and [(m− 1)− 2d (u)− 1]

number of vertices are at distance 4.

σ (vi) = 2 + 2 (2n− 4) + 3 (n− 2) + 4[(m− 1)− 2(d (u)− 1)]

= 7n− 12 + 4[(nC2 − 1)− 2((n− 1)− 1)] = 2n2 − 3n = n (2n− 3) .

Therefore,

ABCS [S (Kn)] =
∑

uv∈E(S(Kn))

√
σu + σv − 2

σu σv

=
∑

uv∈E(S(Kn))

√
7n2 − 9n− 4

n2 (6n2 − 15n+ 9)
.

Since there are 2m edges in S (Kn), ABCS [S (Kn)]= 2m×
√

7n2−9n−4
n2(6n2−15n+9)

. �

Example 1. From the figure 1 in S (K4), σ(vi)=18, i=1,2,3,4. Let sj, j = 1, 2,
3, 4, 5, 6 be the subdivision vertices,then σ(sj)=20. Then,

ABCS[S(K4)] =
∑

uv∈E(G)

√
18 + 20− 2

20× 18
= 12×

√
36

360
= 3.7947.
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FIGURE 1. K4 and S (K4)

By the formula for m = 6 and n = 4,

ABCS[S(K4)] = 2m×

√
7n2 − 9n− 4

n2 (6n2 − 15n+ 9)

= 12×

√
7(16)− 9(4)− 4

42 [6(16)− 15(4) + 9]
= 3.7947.

Theorem 5.2. For a complete bipartite graph Kp,q on n vertices,

ABCS [S (Kp,q )] = m×

[√
7m+ n+ 4p− 10

(3m+ 4p− 4) (4m+ n− 4)

+

√
7m+ n+ 4q − 10

(3m+ 4q − 4) (4m+ n− 4)

]
.

Proof. Partitioning the vertex set of subdivision graph of Kp,q in to three vertex
set U = {u1, u2, u3, . . . , up} ; V = {v1, v2, v3, . . . , vq}; W = {w1, w2, w3, . . . , wm}.
Here n = p + q and m = pq. For any edge in S (Kp,q ), partitioning the edge
set, E = {uv/u ∈ Uor V and v ∈ W}. Let E1 = {uv/u ∈ U and v ∈ W} and
E2 = {uv/u ∈ V and v ∈ W}. Every vertex u ∈ E1 is at a distance 1 from q

subdivision vertices, at a distance 2 from q vertices of V , At a distance 4 from
(p− 1) vertices of U , at a distance 3 from (p− 1) subdivision vertices and at a
distance 3 from (p− 1)(q − 1) subdivision vertices.

Therefore,

σ (u) = q + 2q + 3 (p− 1) = 4 (p− 1) + 3 (p− 1) (q − 1)

σ (u) = 3pq + 4p− 4 = 3m+ 4p− 4.



ON ATOM-BOND CONNECTIVITY STATUS INDEX OF GRAPHS 1205

Similarly, every vertex u ∈ E2 is at a distance 1 from p subdivision vertices, at a
distance 2 from p vertices of U , at a distance 4 from (q − 1) vertices of U , at a
distance 3 from p (q − 1) subdivision vertices.

Therefore, σ (u)=p+2p+3p (q − 1)+4 (q − 1)σ (u)=3pq+4q−4=3m+4q−4.
For every vertex v ∈ E1 or E2, two vertices are at a distance 1, (p− 1) and (q − 1)

vertices of U and V are at a distance 3, (p− 1) and (q − 1) vertices are at distance
2 and (p− 1) (q − 1) vertices at distance 4. Therefore, σ (v)=2 + 3 (p+ q − 2) +
2 [(p− 1) + (q − 1)] + 4 (p− 1) (q − 1).
σ (v) = 4m+ n− 4.

By the definition of Atom bond connectivity status index of a graph G,

ABCS [S (Kp,q )] =
∑
uv∈E1

√
7m+ n+ 4p− 10

(3pq + 4p− 4) (4m+ n− 4)

+
∑
uv∈E2

√
7m+ n+ 4q − 10

(3pq + 4q − 4) (4m+ n− 4)
.

Hence,

ABCS [S (Kp,q)] = m×

[√
7m+ n+ 4p− 10

(3m+ 4p− 4) (4m+ n− 4)

+

√
7m+ n+ 4q − 10

(3m+ 4q − 4) (4m+ n− 4)

]
.

�

Example 2. From the figure 2 in, S (K2,3),σ(u1) = σ(u2) = 22, σ(v1) = σ(v2) =
σ(v3) = 26. Let wi, i=1, 2, 3, 4, 5, 6 be the subdivision vertices. Then, σ(wi) =

FIGURE 2. K2,3 and S (K2,3)
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25 for i=1, 2, 3, 4, 5, 6. Now,

ABCS [S (K2,3)] =
∑
uv∈E1

√
σu + σv − 2

σuσv
+
∑
uv∈E2

√
σu + σv − 2

σuσv

=
∑
uv∈E1

√
22 + 25− 2

(22) (25)
+
∑
uv∈E2

√
26 + 25− 2

(26) (25)
= 3.3635.

By the Formula for m = 6, n = 5, p = 2, q = 3,

ABCS [S (K2,3 )]

= m×

[√
7m+ n+ 4p− 10

(3m+ 4p− 4) (4m+ n− 4)
+

√
7m+ n+ 4q − 10

(3m+ 4q − 4) (4m+ n− 4)

]

= 6×

[√
7(6) + 5 + 4(2)− 10

[3(6) + 4(2)− 4][4(6) + 5− 4]
+

√
7(6) + 5 + 4(3)− 10

[3(6) + 4(3)− 4][4(6) + 5− 4]

]
= 3.3635.

Theorem 5.3. If Pn is a path graph on n vertices, then

ABCS [S (Pn)] =
2n−2∑
i=1

√
2n(2n− 1) + i(i− 2n) + (i+ 1)[(i+ 1)− 2n]− 2

[n(2n− 1) + i(i− 2n)][n(2n− 1) + (i+ 1)[(i+ 1)− 2n]]
.

Proof. The subdivision graph of Pn has n + n − 1 = 2n − 1 vertices. Let v1, v2,
v3,. . . ,v2n−1 be the vertices, where vi is adjacent to vi+1, i = 1, 2, 3,. . . ,2n− 2.
Therefore,

σ (vi ) =

[
(2n− 1)2 + (2n− 1)

2
+ i (i− (2n− 1)− 1)

]
= n (2n− 1) + i (i− 2n)

σ (vi+1) = n (2n− 1) + (i+ 1) [(i+ 1)− 2n]

[σ (u) + σ (v)− 2] = 2n (2n− 1) + i (i− 2n) + (i+ 1) [(i+ 1)− 2n]− 2

[σ (u) .σ (v)] = [n (2n− 1) + i (i− 2n)] [n (2n− 1) + (i+ 1) [(i+ 1)− 2n]].

Hence,

ABCS [S (Pn)] =
2n−2∑
i=1

√
2n(2n− 1) + i(i− 2n) + (i+ 1)[(i+ 1)− 2n]− 2

[n(2n− 1) + i(i− 2n)][n(2n− 1) + (i+ 1)[(i+ 1)− 2n]]
.

�
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Example 3. From the figure3 in, S (P4).If v1, v2, v3 are the subdivision vertices
then, σ (u1) = 21, σ (v1) = 16, σ (u2) = 13, σ (v2) = 12, σ (u3) = 13, σ (v3) =

16, σ (v4) = 21, and also

ABCS [S (P4 )] =
∑

uv∈E[S(P4)]

√
σu + σv − 2

σuσv

=

√
21 + 16− 2

(21) (16)
+

√
13 + 16− 2

(13) (16)
+

√
13 + 12− 2

(13) (12)

+

√
13 + 12− 2

(13) (12)
+

√
13 + 16− 2

(13) (16)
+

√
21 + 16− 2

(21) (16)

= 0.3227 + 0.3602 + 0.3839 + 0.3839 + 0.3602 + 0.3227 = 2.1336.

FIGURE 3. P4 and S (P4)

By the formula given in Theorem 5.3,

ABCS [S (P4)] =
6∑
i=1

√
56 + i(i− 8) + (i+ 1)[(i+ 1)− 8]− 2

[28 + i(i− 8)][28 + (i+ 1)[(i+ 1)− 8]]
= 2.1336.

Theorem 5.4. For a cycle Cn, n ≥ 3 on n vertices,

ABCS [S (Cn)] =
2

n

(√
2n2 − 2

)
.

Proof. The subdivision graph of Cn has 2n vertices. For any vertex u of S (Cn),
σ (u) = 2

[
1 + 2 + · · ·+ n−1

2

]
+ n

2
= (2n)2

4
= n2. Therefore, ABCS (Cn) = 2n ×√

2n2−2
n4 = 2

n

(√
2n2 − 2

)
�

FIGURE 4. C4 and S (C4)
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Example 4. Let vi, i = 1, 2, 3, 4 be the subdivision vertices then from the above
figure 4 in S (C4), σ (ui)=σ (vi)=16, i =1, 2, 3, 4. Then, ABCS [S (P4)] =∑

uv∈E[S(C4)]

√
σu+σv−2
σuσv

= 8
√

16+16−2
(16)(16)

=2.7386.

By the formula, ABCS [S (Cn)] = 2
n

(√
2n2 − 2

)
=2

4

(√
32− 2

)
=2.7386.

6. ATOM-BOND CONNECTIVITY STATUS INDEX OF GRAPHS FORMED BY USING THE

COMPLETE GRAPH

In this section we have obtained the atom- bond connectivity status index of
some graphs, which are defined in [1].

Proposition 6.1. For a complete graph Kn with n ≥ 3, let ei, i = 1, 2, . . . , k,
1 ≤ k ≤ n − 2, be the distinct edges all being incident with a single vertex. The
graph Kan(k) is obtained by deleting ei, i = 1, 2, . . . , k from Kn. Then,

ABCS (Kan (k)) = [n− k − 1]×

√
2n+ k − 4

n (n− 1)
+

[
k (k − 1)

2

]

×
√

2n− 2

n2
+ [(n− k − 1) k]×

√
2n− 3

n (n− 1)

+

[
(n− k − 1) (n− k − 2)

2

]
×
√

2n− 4

(n− 1)2
.

Proof. By the equality part of Theorem 3.1,

ABCS (G) =
∑

uv∈E(G)

√
4n− 6− [d (u) + d (v)]

(2n− 2− d (u)) (2n− 2− d (v))
.

The edge set E(Kan(k)) can be partitioned into four sets E1, E2, E3 and E4,
where E1={uv/d (u) = n− 1− k and d (u) = n− 1}, E2={uv/d (u) = n− 2 and
d (u) = n−2}, E3 = {uv/d (u) = n−2 and d (u) = n−1}, E4={uv/d (u) = n−1

and d (u) = n− 1}, with |E1| = n− k − 1, |E2| =(k − 1) /2, |E3| =(n− k − 1) k,
|E4| =(n− k − 1) (n− k − 2) /2. Also diam((Kan(k)) = 2.
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Therefore,

ABCS (Kan (k)) =
∑

uv∈E(G)

√
4n− 6− [n− 1− k + n− 1]

(2n− 2− (n− 1− k)) (2n− 2− (n− 1))

+
∑

uv∈E2(G)

√
4n− 6− [n− 2 + n− 2]

(2n− 2− (n− 2)) (2n− 2− (n− 2))

+
∑

uv∈E3(G)

√
4n− 6− [n− 2 + n− 1]

(2n− 2− (n− 2)) (2n− 2− (n− 1))

+
∑

uv∈E4(G)

√
4n− 6− [n− 1 + n− 1]

(2n− 2− (n− 1)) (2n− 2− (n− 1))
.

Therefore

ABCS(Kan(k)) =
∑

uv∈E1(G)

√
2n+ k − 4

n(n− 1)
+

∑
uv∈E2(G)

√
2n− 2

n2

+
∑

uv∈E3(G)

√
2n− 3

n (n− 1)
+

∑
uv∈E4(G)

√
2n− 4

(n− 1)2
.

Hence,

ABCS(Kan(k)) = [n− k − 1]×

√
2n+ k − 4

n(n− 1)
+

[
×k (k − 1)

2

]

×
√

2n− 2

n2
+ [(n− k − 1)k]×

√
2n− 3

n(n− 1)

+

[
(n− k − 1) (n− k − 2)

2

]
×
√

2n− 4

(n− 1)2
.

�

Proposition 6.2. For a complete graph Kn with n ≥ 3, let fi, i = 1, 2, . . . , k,
1 ≤ k ≤ bn/2c, be independent edges. The graph Kbn(k) is obtained by deleting fi,
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i = 1, 2, . . . , k edges from Kn. Then,

ABCS(Kbn(k)) = [2k(n− 2k)]×

√
2n− 3

n(n− 1)
+

[
(n− 2k)(n− 2k − 1)

2

]

×

√
2n− 4

(n− 1)2
+

[(
2k(2k − 1)

2

)
− k
]
×
√

2n− 2

n2
.

Proof. The edge set E(Kbn(k)) can be partitioned into three sets E1, E2 and E3,
where E1={uv/d(u) = n − 2 and d(v) = n − 1}, E2={uv/d(u) = n − 1 and
d(v) = n− 1}, E3 = {uv/ d(u) = n− 2 and d(v) = n− 2}. It is easy to check that
|E1| = 2k(n− 2k), |E2| =((n− 2k)(n− 2k − 1)/2) and |E3| =(2k(2k− 1)/2)− k.
Also diam((Kbn(k)) = 2.

By the equality part of Theorem 3.1,

ABCS (G) =
∑

uv∈E(G)

√
4n− 6− [d (u) + d (v)]

(2n− 2− d (u)) (2n− 2− d (v))

ABCS(Kbn(k)) =
∑

uv∈E1(G)

√
4n− 6− [n− 2 + n− 1]

(2n− 2− (n− 2))(2n− 2− (n− 1))

+
∑

uv∈E2(G)

√
4n− 6− [n− 1 + n− 1]

(2n− 2− (n− 1))(2n− 2− (n− 1))

+
∑

uv∈E3(G)

√
4n− 6− [n− 2 + n− 2]

(2n− 2− (n− 2))(2n− 2− (n− 2))
.

Therefore,

ABCS(Kbn(k)) =
∑

uv∈E1(G)

√
2n− 3

n(n− 1)
+

∑
uv∈E2(G)

√
2n− 4

(n− 1)2
+

∑
uv∈E3(G)

√
2n− 2

n2
.

Hence,

ABCS(Kbn(k)) = [2k(n− 2k)]×

√
2n− 3

n(n− 1)
+

[
(n− 2k)(n− 2k − 1)

2

]

×

√
2n− 4

(n− 1)2
+

[(
2k(2k − 1)

2

)
− k
]
×
√

2n− 2

n2
.

�
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Proposition 6.3. For a complete graph Kn, n ≥ 3, let Vk be a k-element subset of
the vertex set 2 ≤ k ≤ n− 1. The graph Kcn(k) is obtained by deleting from all the
edges connecting pairs of vertices from Vk. Then,

ABCS(Kcn(k)) = [(n− k)k]×

√
(2n+ k − 5)

(n− 2 + k)(n− 1)
+

[
(n− k)(n− k − 1)

2

]

×

√
(2n− 4)

(n− 1)2
.

Proof. The edge setE(Kcn(k)) can be partitioned into two setsE1 andE2, where
E1={uv/d(u) = n−k and d(v) = n−1} and E2={uv/d(u) = n−1 and d(v) =

n−1}. Also |E1|= (n−k)k, |E2|= (n−k)(n−k−1)/2. and diam((Kbn(k)) = 2.

By the equality part of Theorem 3.1,

ABCS(Kcn(k)) =
∑

uv∈E1(G)

√
4n− 6− [n− k + n− 1]

(2n− 2− (n− k))(2n− 2− (n− 1))

+
∑

uv∈E2(G)

√
4n− 6− [n− 1 + n− 1]

(2n− 2− (n− 1))(2n− 2− (n− 1))
.

Therefore,

ABCS(Kcn(k)) =
∑

uv∈E1(G)

√
2n+ k − 5

(n− 2 + k)(n− 1
+

∑
uv∈E2(G)

√
2n− 4

(n− 1)2
.

Hence the result follows. �

Proposition 6.4. For a complete graph Kn with n ≥ 5, let 3 ≤ k ≤ n. The graph
Kdn(k) is obtained by deleting from Kn, the edges belonging to a k-membered
cycle. Then

ABCS(Kdn(k)) =

[
k(k − 1)

2
− k
]
×

√
2n

(n+ 1)2
+ [(n− k)k]

×

√
2n− 2

(n− 1)(n− 1)
+

[
(n− k)(n− k − 1)

2
− k
]
×

√
2n− 4

(n− 1)2
.

Proof. The edge set E(Kdn(k)) can be partitioned into three sets E1, E2 and E3,
where E1={uv/d(u) = n−3 = d(v)}, E2={uv/d(u) = n−3 and d(v) = n−1}, E3
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= {uv/ d(u) = n− 1 = d(v)}. It is easy to check that and |E1| =(k(k− 1)/2)− k,
|E2| = (n− k)k and |E3| =((n− k)(n− k − 1)/2). Also diam((Kdn(k)) = 2.

By the equality part of Theorem 3.1,

ABCS(Kdn(k)) =
∑

uv∈E1(G))

√
2n

(n+ 1)2
+

∑
uv∈E2(G)

√
2n− 2

(n+ 1)(n− 1)

+
∑

uv∈E3(G)

√
2n− 4

(n− 1)2
.

Hence the result follows. �

7. CONCLUSION

In this paper we have obtained bounds for the atom-bond connectivity status
index of graph in terms of degree and diameter. Gave alternate proof of atom-
bond connectivity status index of some standard graphs. Obtained atom- bond
connectivity status index of subdivision graph of some graphs and edge deleted
graph obtained from complete graph.
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