Advances in Mathematics: Scientific Journal 10 (2021), no.3, 1237-1248

é(EJI\{.I(%/‘L'JARTNHAI_ ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.10.3.12

FIXED POINT THEOREMS IN A GENERALIZED S-METRIC SPACE
Virath Singh! and Pravin Singh

ABSTRACT. In this paper, we provide a generalization of an S-metric space by
relaxing the triangle inequality. As applications, we provide some fixed point
theorems of mappings with common fixed points in the generalized S-metric
space.

1. INTRODUCTION

Metric spaces is a very important concept in Mathematics with a wide range of
applicability in many fields in applied sciences. Many authors, have given gen-
eralizations of metric spaces in several ways. Gahler, introduced the concept of
2-metric spaces, [2]] and Dhage, [1] introduced the concepts of D-metric spaces.
Mustafa al et., introduced a new structure of a generalized metric space which
they called G-metric spaces as a generalization of metric spaces, [3]]. They de-
veloped and introduced new fixed point theory for various mappings in this new
space.

Sam al et. established some useful propositions to show that many fixed
point theorems on (non-symmetric) G-metric spaces follow directly from results
on metric spaces, [5].
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Sedghi et al. introduced D*-metric spaces, [6] which are modifications of the
definition of D-metric spaces introduced by Dhage, [1]. The authors, further
introduced the concept of S-metric space and gave some properties with appli-
cations as common fixed point theorems for self mappings on complete S-metric
spaces, [7].

Definition 1.1. Let X be a nonempty set. A function S : X x X x X — [0,00) is
a S-metricon X if forall x,y,z,w € X:

(D) S(x,y,2) =0 <= x=y==z

(@) S(z,y,2) < S(x,z,w)+ S(y,y,w) + S(z, z, w)

The pair (X, S) is called an S-metric space, [7].

Example 1. Let X = R" and || - ||x be a norm on X, then the function S defined
by
Sy, 2) = lly+ 2 — 2zl x + [ly — =lx

is an S- metric on X.

Definition 1.2. Let X be a nonempty set. A function S, : X x X x X — [0,00)
and assume that there exists a real number o > 1, is an Sy-metric on X if for all
T, Y, 2, w € X:
(1) Sp(r,y,2) =0 <= x=y=2=2
(@) Sp(z,x,y) = Sp(y,y,x) forall x,y € X.
(Gi1) Sp(z,y,2) < a[Sp(z,z,w) + Sp(y,y,w) + Sp(z, z,w)]

The pair (X, Sp) is called an S,-metric space, [9], [8]]. If & = 1, we have that
the S,-metric is equivalent to the S-metric. It should be noted that the symmetry
property follows from the triangle property with o = 1.

Definition 1.3. Let X be a nonempty set. A function S,s,: X x X x X — [0, 00)
and assume that there exists real numbers o, 3,y > 1 is an S,a,-metric on X if for
all x,y, z,w € X:
(1) Sapy(z,y,2) =0 <= z=y=2=2
(17) Sapy(7,y,2) < aSapy(x, 2, W) + BSapy (Y, Yy, w) + VSasy (2, 2, w)
The pair (X, S,3,) is called an S,3,-metric space. If « = § = v = 1, we obtain

that S = S,3,. If @ = 8 = 7 then we obtain that S,5, = S;. Furthermore,
if a,f > 1 and v = 1 then we have the symmetry property, S.s,(z,z,y) =
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Sapy(y,y,x) for all z,y € X. The following example justifies the weakening in
the triangle inequality found in Definition (1.3

Example 2. Let X = (1,2) and define S,s,(z, vy, z) by

2|(E*y|+|y72|+|27m| x ;é y ;é z

Saﬁ“/<x> Y, Z) -
0 T=1yY=2z.
It suffices to verify property (iii) of Definition For x #+ y # z we have
Sa,B'y (.17, Y, Z)

— ole—yl+ly—z[+|z—z|
< gle—wl+|w—y|+|y—w|+|w—z|+|z—w|+|w—z|

_ 22|x7w|+2|y7w|+2|z7w\

(11) = 2bCl—wh+ i)+ @l—ulgle—ul+Fly—wq+]ls—u]
1 _ 3 _ 1 - ool B ey T 1
(12) S - (22\:15 w|) + 2 (22|y w|) 4= (22\7; w|) Sup2|m w45 ly—w|+ 7 |z—w|
2 8 8 (1,2)

= 85&57(*%’ T, U)) + 6501,37(?% Y, ’LU) + 2504,37(27 2 w)7
where we have obtained (1.2) from (1.1) by using Jensen’s inequality, [4]].

Definition 1.4. Let (X, S,3,) a Saa,-metric space. For e > 0 and x € X, we define
the open ball Bs,, (v,¢) = {y € X;Sapy(y,y,2) < €}.

Definition 1.5. Let (X, S.3,) be a S,p,-metric space and A C X:

(@) If for every x € A there exists ¢ > 0 such that Bs,, (v,€) C A, then the
subset A is open.
(77) Subset A is bounded if there exists € > 0 such that Sus,(z,z,y) < € for all
x,y € A
(ii7) A sequence {x,} in X convergestox € X <= for every ¢ > 0 there exists
N € N such that S,p(%n, T,,x) < € forall n > N.
(iv) A sequence {z,} is a Cauchy sequence if for every ¢ > 0 there exists N € N
such that Sy (2p, T, ) < € for all n,m > N.
(v) The S,s,-metric space (X, S,s,) is complete if every Cauchy sequence in X
is convergent.

Lemma 1.1. Let (X, S,3,) be an S,,-metric space. If a sequence in X is conver-
gent then the limit point is unique.
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Proof. Let {z,} be a convergent sequence in X. Then for every ¢ > 0 there exists

z € X and N; € N such that S,3,(z,, z,, x) < m for all n > N;. Assume

that there exist y € X and N, € N such that S,s, (2, zn,y) < # for all n > Ns.
From Definition property (ii) it follows that
Saﬂ’}'(x? Z, y) < O‘Saﬁv(mu Z, l'n) + 5501/37(%7 Z, l'n) + 73045’7(% Y, xn)
= (a+ B)Sapy(@, 2, T0) + ¥Sapy (¥, ¥, Tn)
S (a + B)’YSaﬁ'y(Im Ty l’) + ryzsaﬂfy(xm Ty y)

<€

for all n > max{N;, N>}. It follows that S,s,(z,z,y) = 0 thuswe getz =y. O

2. SOME FIXED POINT RESULTS

Definition 2.1. Let (X, S,3,) be a S,s,-metric space. A mappingT : X — X isa
contraction if there exists a constant 0 < \ < 1 such that

Saﬂ'y(Txv Tl’, Ty) S )\Saﬂ’y(xa X, y)
forall z,y € X.

Theorem 2.1. Let (X, Sq3,) be a complete S,3,-metric space and T' : X — X be a

contraction with 0 < A < ,Y% Then T has a unique fixed point x € X.

Proof. To show uniqueness, we assume that there exists z,y € X with Tx = =
and Ty = y. Then

Soaﬂ’y (l’, x, y) = Sa,BV(Txv TIZ', Ty)
§ )\Sa,é”y(xa €, y)

since A < 1, we conclude S,3,(z,z,y) = 0 thus we get x = y. To show existence
we show that for x € X that {T"z} is a Cauchy sequence in X. For n € N, we
recursively obtain that

Sepy (T2, T2, T" ) < NSpp, (T o, T o, T"x)

2.1) < N'Supy(z, 2, Tx)
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For n,m € N, and from inequality (2.1]), we get
Sapy (T"x, Tz, T ™x)
< (0 ) Sun (T, T T40) + (04 )y S (T L, T, T420)
ot (a+ B)YHmDG (T2, T2 prEm=ly
+ (7)20 ) S (TN, T T )

m—1
< (Oé + 5) Z 72i5a57<Tn+ix’ Tn+ix7 Tn+i+1x)
=0
m—1
<(a+p) Z VNS g (2, 2, T)
=0
n 1
S (CY + 5))\ Soéfg,y(]}, Z',T.T)m

It follows that {7z} is a Cauchy sequence and since X is complete there exists
zo € X such that lim,_,., 7"z = x,. Since T is continuous it follows that z, =
lim,, oo T e = lim, oo TT"2z = T(lim,,_,o, T"x) = Tx,. Therefore z, is a fixed
point of 7. Taking m — oo, we get

STz, T"x, x9) < (o + B)A" Sapy (2, , Tm)m'

Example 3. Let X = [0, 1] and define S,z,(z,y, 2) by

1 1 1 2
Sapy(T,Y,2) = Z|33 —y| + Z\y— z| + 512 —z|) .

Then, we have that

9

(2.2) Sapy(x,2,Ww) = E|x — w|2
9

2.3) Susn0 1) = xly
9

(24) Saﬁw(zazaw) = E|Z - w|2

and by Jensen’s inequality, [4], it follows that

1 1 1
(2.5) Swwmyx)ﬁZW—yP+ZM—ZF+—V—xP

2
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As

o = y* < (lz = w| + [w - y|)?
= |z —wl” + |w — yI* + 2|z — wily — wl
<20z — w|* + 2Jw — y|?

and similar relations hold for |y — z|* and |z — x|* we can simplify (2.5) as follows

3 3
Saﬁ’y<x>yaz) < 5"77 B w‘Z + |y - w|2 + 5'2 o w‘2'

Finally using (2.2)-(2.4) we conclude that
24 16 24
Saﬂv(xa Y, Z) S ?Saﬁ"/(xv X, ’U)) + gsocﬁ’v(i% Y, w) + ?Saﬂw(za 2, w)

It follows that (X, S,p,) is a complete S,z,-metric space. Let T : X — X defined

by

B 1
x4+ 2
then T is a contraction on X as shown below:

Tx

9
SaB’Y(T'Ta T.T, Ty) = 1_6 |TLU o Ty’2

2

9] 1 1
16 |v+2  y+2
9  Jz—yP

T 16]x + 2Py + 2P

1
< SWBW(:E’:E7:U)’

=16
where 3 = X\ < & = (2%)2. Thus by Theorem 2.1} T has a fixed point x* =
V2-1€X.

3. FIXED POINT RESULTS OF MAPPINGS WITH COMMON FIXED POINTS

Lemma 3.1. Let (X, S.p,) be an S,3,-metric space and assume that there exists a
sequence {z,} and {y,} such that lim,,_,oc Sap(Tn, Tn, yn) = 0 whenever {z,} is a
sequence such that lim,,_,, Sus+(z, z, x,) = 0 for some x € X then lim,_,o y, = .
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Proof. From Definition [1.3] property (ii) we get

Sapy(Yn; Yn, @) < (@ + B)Sapy(Un, Yns Tn) + VSapy (1, T, 70)
< (@ + B)vSasy(Tn, Tny Yn) + VSaps (T, 7, 7).
It follows that lim,,_,o sup {(a + £)Sagy(Tn, Tn, Yn) + ¥Sap (@, x, 2,)} = 0 since
Sapy (5, 1) > 0 we get
0 < Tim inf {(0+ 8)Suy (. T ) + ¥t (2,2, 2,))
< lim sup {(a+ B)Sasy (T, Tn, Yn) + VSasy (2, 2, 20)} = 0.

Hence, we get lim,,_,oc Sag(Yn, Yn, z) = 0 thus we obtain lim,,_, v, = . O

Definition 3.1. Let (X, S.3,) be a S,s,-metric space. A pair of mappings {f,g}
are compatible iff lim,,_, o0 Sapy (f92n, f92n, gf2,) = 0 whenever {x, } is a sequence
in X such that lim,, ., fz, = lim, . gx, = = for some z € X.

Theorem 3.1. Assume that f, g, F, G are self maps of a complete S,s-metric space
(X, Sapy) with f(X) C F(X), g(X) C G(X) and the pairs {f,G}, {g,F} are
compatible. If

Saﬁw(fxa fya gZ)
< Amax {Sas,(Gz, Gy, Fz), Sap(fx, fx,Gx),

(31) Saﬁ’y(gzagvaz)aSa,B’y(fya fyagz)}

forx,y,z€ X with0 < A < 7%1 Then mappings f, g, F', G have a unique common
fixed point in X provided that F, G are continuous.

Proof Let zo € X then fzy = Fux; for some z; € X since f(X) C F(X) and
gr; = Guxy for some zo € X since g(X) C G(X). In general, we get y,, =
fre, = Fxo,y1 for some x5,,1 € X and y9,41 = 92,11 = Guo,.o for some
Tonio € X. We shall show that the sequence {y,} is a Cauchy sequence in X.
For the sequence {y, } using the inequality (3.1)), we get

Sa,B'y(yZna Yon, y2n+1>
= aﬁ'y(fx%w fona gx2n+1)

S A max {SQBV<G'T2TL7 GmZna FxQn—Q—l)y Saﬂ'y(fony fona G$2n)7
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Sasy(9T2n41, 9Tt 1, FToni1), Sapy (fT2n, [Ton, 9Ton11)}
< Amax {Sapy (Yon—1, Y2n—1, Y2n), Sasy (Y2n, Yon, Yon—1),
Sasy(Y2n+1, Yon+1, Yon ), Sagy(Yon, Yon, Yont1) b
(3.2) < Ay max {Sasy (Yan—1, Yon—1, Y2n)s Sapy(Yons Yons Yont1) }

If Sesy(Y2ns Yon, Yont1) > Sapy(Yon—1, Y2n—1, Y2n) then from inequality (3.2)) we get

Socﬁ’y (y2m Yon, y2n+1) S )\/7 max {Saﬁw (y2n7 Yon, y2n+1)}
< Sozﬁ'y (an, Yon, y2n+1)

is a contradiction. Hence, Sas,(Yan,Y2n, Y2nt1) < Sapy(Y2n—1,Y2n—1,Yon), and
therefore

Sa,@'y (y2n7 Yon, y2n+1) S )\P)/Saﬁ'y (y2n717 Yon—1, y2n)
(33) S )‘7250457@/2117 Yon, y2n71)-

In a similar manner, have that

Sasy(Yan—1, Yan—1,Y2n)
< YSapy (Y2ns Y2ns Y2n—1)
= YSapy(fTon, [Ton, 9T2n1)
< Mymax {Sasy (Gron, Gon, Fron_1), Sapy(fTon, fon, GTan) ,

Sa,B'y(ngnfla 9Ton—1, Fxanl)a Saﬁ'y(fona f2n7 gx2n71)}
= 7/\ max {Saﬂfy (anfla Yon—1, y2n72>7 Sozﬁ’y (y2n7 Yon, y2n71) s

Sa,B’y <y2n717 Yon—1, y2n72)7 Sa/a"y (y2n7 Yon, y2n71)}
= yAmax {Saﬂy(me Yon, yznfl), SaB'y (y2n71, Yon—1, y2n72)}

If Sopy (Yons Yons Yon—1) > Sapy(Yon—1, Y2n—1, Yon—2), then it follows that

Sa,@'y (yZn—la Yon—1, y2n) S )\WSaﬁv(?J%a Yon, y2n—1)
S )\P)/QSaﬂ'y (anfla Yon—1, y2n)7
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which is a contradiction. Hence,

Sa/a"y(y2n—1a Yon—1, yzn) < /\’Ysaﬁv(yzn_b Yon—1, ?J2n—2)
(3.4) < AV Sy (Yon—2, Yo2n—2, Yon—1)

Thus, from inequality (3.3) and (3.4) we obtain

Socﬁv(yna Yn, yn—l) S )\’YQSGBW(yn—la Yn—1, yn—2)a

where \y? < 1 and n > 2. It follows that repeated application of inequality (3),

Saﬁw(@/na Yns yn71> < )"YQSaﬁ'y (Z/nq, Yn—1, yan)

(3.5) < (M) Sapy (Y1, 915 90)-
It follows from (3.5) that

Sasy(Uns Yns Ynt1) < VSasyUnrts Ynsts Un) < YAV Sapy (Y1, y1, o).
For n,m € N we get

Soaﬂ'y (yn7 Yn, yn-l—m)

< (CY + 5)504/3’7(%17 Yn, yn—i—l) + (Oé + B)’)/QSaﬂ’Y<yn+la Yn+1, yn+2) + -

+ (a + B) (72)m725aﬁ'y(yn+m72a Yn+m—2, ynerfl)
+ (72>m71 aBy (yn+mfla Ynt+m—1, yn+m)

m—1
=~ 05 + 6 Z aﬂ'y yn—i—za Yn+i, yn+z+1>
=0

[y

< (a+ B 3 ((1)'N) Sagy (y1, 91 90)

i

3

Il
o

1
< (Oé + B)W(Aryz)nmsaﬂ’y(yla Y1, y0)7

since \y? < 1, it follows that {y,} is a Cauchy sequence in a complete S,z -
metric space, thus there exists y € X such that lim,, . y2, = lim, .o f22, =
lim,, oo Foni1 =y = limy, o0 Yonr1 = My, o0 T2 1 = lim, oo G9,,2 We shall
now show that y is a common fixed point for mappings f, g, F,G. Since G is
continuous, we get lim, .., G(Gxa,12) = Gy and lim, ,., Gfxs, = Gy since
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f, G are compatible lim,, , Sap(fGTayn, fGTan, G f12,) = 0 so by Lemma it
follows that lim,,_,, fGxs, = Gy. It follows from inequality (3.1)),

Sa,B'y(foQna fGxay,, 9$2n+1)
< Amax {Sapy (GG oy, GGTapn, Froni1), Sapy(fGran, fGran, GGray),

Saﬁ'y(,ngn—i—ly gTon+1, Fx2n+1)7 Saﬁ'y(fGIQ'm foQna g$2n+1)} .

Taking the limit n — oo, we get

SaB’Y(Gya Gya y)
< Amax {Sa,B'y(Gya Gya y)> Saﬁ'y(Gya Gy> Gy)> Saﬁ'y(ya Y, y)a Sa,@'y(Gyv Gya y)}
= AS@B’Y(Gya Gya y)7
since A < 1, we get S,3,(Gy,Gy,y) = 0 thus Gy = y. In a similar manner,
since [’ is continuous we get, lim, o, F'Fxo,,1 = Fy, lim, .o Fgro,s1 = Fy

since g and F' are compatible, lim,,_,o. Sagy (9F Zon+1, 9F Tant1, F'gra,11) = 0 and
it follows that lim,, .o, gF'x2,+1 = Fy. From inequality (3.1),

Saﬁ'y(fona fony ngQn—i—l)
S )\ max {Sa,B'y(Gx2na G$2na FF:EQn-&-l); Saﬁ’y(fona fx2na G$2n)a

Sa,B’y(ng2n+la gF$2n+17 FFx2n+1)7 Saﬁ'y(ft%Qm f:CQna ng2n+1>}
Taking the limit n — oo, we get
Soﬁ?/(ya ya Fy)
S /\ max {Saﬂv(yv ya Fy)a SOc/BW(ya ya y)>

Sapy(Fy, Fy, Fy), Sapy(y, y, Fy) }
S /\Saﬁ’y(y7 Y, Fy)7

since \ < 1, it follows that F'y = y. Furthermore, we obtain that

Saﬁ’y(fyv fya g$2n+1)
S A {Saﬁ’Y(Gy7 GZ/? Fx2n+1)7 Saﬁ“/(f@% fy7 GZ/)? Saﬁv(gx2n+17 9Ton+1, Fx2n+1>7
Saﬁ’y(fyv fy7 gx2n+1)} .
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Taking the limit n — oo, and Gy = F'y = y we have

Saﬁ'y(f% fy7 y)
S A max {Saﬁ'y(Gy7 Gy7 y)a Socﬁv(fya fyv y)a

SaﬁW(?J? Y, y>’ Saﬂv(fya fyu y)}
= )\SaB’Y(fy7 fya y)>

since A\ < 1, fy = y. Finally, we have Gy = Fy = fy = y and

Sapr (¥, Y, 9Y) = Sapy(fy. [y, 9y)

< Amax {Sasy(GY, GY, FY). Sapy (f: [, GY), Sapr (99, 99, F'Y), Sap(fy: fy. 9y)}
= ASapy (4,9, 9y)-

It follows that gy = y. Thus we get F'y = Gy = gy = fy = y. It remains to show
that the common fixed point is unique. Assume that there exists x € X such
that Fox = Gx = gr = fr = x then

Sapy (2,2, y) = Sapy ([, 1, 9y)

< Amax {Sasy (G, Gz, Fy), Sapy(f, f2,GY), Sapy(9Y: 9y, F'Y), Sasy(fz, f. 9y)}
= Amax {Susy (2, 2,9), Sapy (€, 2, 2), Sagy (€, 2, y) }

= ASagy(2, 7, y),

which implies that S,s,(x, z,y) = 0 thus z = y. 0

Corollary 3.1. Let (X, S,3,) be a complete S, g,- metric spaceandlet f,g: X — X
be mappings such that

Sapy(fz, [y, 92)
< Amax {Sas (7,9, 2), Sapy (f2, f7,2),
Sapy (92,972, 2), Sapy (fy, [y, 92)}
for all z,y,z € X with 0 < X\ < 1 then there exists a unique fixed point for
mappings f and g.

Proof. The proof follows in a similar manner as in Theorem by taking map-
pings F and G as identity mappings. O
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4. CONCLUSION

The results in the paper, demonstrate that the fixed point results can be ex-
tended to the generalized space.
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