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ON LAPLACIAN SPECTRA OF SOME CORONA PRODUCT GRAPHS AND
APPLICATIONS

Idweep J. Gogoi, Bablee Phukan, Aditya Pegu, and A. Bharali1

ABSTRACT. The corona operations on graphs have attracted many researchers
because of its applications in various fields. Many variants of the corona op-
eration are defined over the years and their spectral properties have also been
studied. In this paper we consider the spectra of some of these corona graphs
namely; weighted edge corona product graphs, subdivision double corona, Q-
graph double corona and total double corona. In this note, we correct some of
the results proposed in the literature and also derive expressions for the num-
ber of spanning trees and Kirchhoff index of the above mentioned graphs as
applications.

1. INTRODUCTION

We consider simple and connected graphs throughout this paper. For a graph
G = (V,E) with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2,
. . . , em}, the Laplacian matrix is defined as L(G) = D(G) − A(G). Here D(G)

is the diagonal matrix with diagonal entries as the degrees of the vertices of G
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and A(G) is the adjacency matrix. The Laplacian spectrum is the collection of
all the eigenvalues of L(G) together with its multiplicities.

Let G be a connected graph with n vertices and m edges. The subdivision
graph S(G) for graph G is formed by adding a new vertex to every edge of G.
The Q(G)-graph for the graph is the one obtained by adding a new vertex to
every edge of G and joining these new vertices by edges if they lie on adjacent
edges of G. The total graph T (G) has its vertex set as the union of the set of
vertices and set of edges of G and two vertices are adjacent if and only if the
corresponding elements of G are adjacent.

The corona operations was first introduce by Frucht and Harary [4]. Let G1

and G2 be two graphs on disjoint sets of n and m vertices, respectively. The
corona G1 ◦G2 of G1 and G2 [16] is the graph obtained by taking one copy of G1

and n copies of G2, and then joining the ith vertex of G1 to every vertex in the
ith copy of G2.

A lot of research have been done so far on corona of graphs and its vari-
ants, also there spectra are described in [1, 5, 7, 9, 10, 12–15]. Barik & Sahoo
(2016), introduced some more variants of corona graphs in [2]. They have also
described the Laplacian spectra and eigenvectors for these graphs. We have con-
sidered the double corona graphs mentioned in [2] and the definitions are as
follows: Let G be a connected graph with n vertices and m edges. Let G1 and
and G2 be graphs with n1 and n2 vertices respectively. The Subdivision double
corona of G, G1 and G2, denoted by G(S)o{G1, G2}, is defined as the graph ob-
tained by taking one copy of S(G), n copies of G1 and m copies of G2 and by
joining the ith old vertex of S(G) to every vertex of the ith copy of G1 and the
jth new-vertex of S(G) to every vertex of jth copy of G2. Similarly, if we replace
S(G) with Q(G)(T (G)), then the resulting graph is the Q-graph( total) double
corona and denoted by G(Q)o{G1, G2}(G(T )o{G1, G2}).

Let there be two graphs G1 with order n1 and size m1, G2 the copy graph with
order n2 and size m2, respectively. The edge corona G1 � G2 [7] of G1 and G2 is
generated by making one copy of G1 and m1 copies of G2, joining each vertex of
the ith copy of G2 to the two end vertices of the ith edge of G1. For the weighted
edge corona product graph [3], we assign a unit weight on the initial graph G1

and weight factor r, 0 < r ≤ 1 on the copy graph G2.
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There are many applications of Laplacian eigenvalues of a graph. Two of such
applications are to determine the number of spanning trees and Kirchhoff index
of the associated graphs.

Definition 1.1. Number of spanning trees: [11]
The number of spanning trees of a given graph G is the number of subgraphs

which contains each vertices of G. Also, all those subgraphs must be trees. It can be
expressed in terms of Laplacian eigenvalues as

τ(G) =
1

| N(G) |

|N(G)|∏
i=2

µi,

where | N(G) | and µi are respectively the order and Laplacian eigenvalues of G.

Using resistive electrical networks Klein and Randić (1993) [8] introduced a
novel distance function called resistance distance. Here the graph is viewed as
an electrical network and each edge is replaced by a unit resistor.

Definition 1.2. Kirchhoff index: [8] If G is a connected(molecular) graph then
the Kirchhoff index of G denoted by Kf(G) is the sum of resistance distances between
all vertex pairs in G, namely

Kf(G) =
∑
i≤j

rij,

where rij is the resistance distance.

The Kirchhoff index [6, 17] can expressed as the reciprocal of the Laplacian
eigenvalues of G, namely

Kf(G) =| N(G) |
|N(G)|∑
i=2

1

µi
,

The Laplacian spectra of some double corona graphs which are proposed in
[2] given as follows.

Lemma 1.1. [2] Let G be a r-regular graph on n vertices and m edges. Let G1

and G2 be any two graphs on n1 and n2 vertices, respectively. Then the laplacian
spectrum of G(S)o{G1, G2} consists of
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(i) all roots of the equation

λ4 − (n1 + n2 + r + 4)λ3

+((n1 + 1)(n2 + 3) + 2(r + 1) + n2r + λi(G))λ
2

−(r(n2 + 1) + 2(n1 + λi(G) + 1))λ+ λi(G) = 0,

for i = 1, 2, . . . , n;

(ii) n2+3±
√

(n2+3)2−8
2

repeated m− n times each;
(iii) λi(G1) + 1 repeated n times, for i = 2, 3, . . . , n1;

(iv) λi(G2) + 1 repeated m times, for i = 2, 3, . . . , n2.

Lemma 1.2. [2] Let G be a r-regular graph on n vertices and m edges. Let G1

and G2 be any two graphs on n1 and n2 vertices, respectively. Then the laplacian
spectrum of G(Q)o{G1, G2} consists of

(i) all roots of the equation

λ4 − (n1 + n2 + r + λi(G) + 4)λ3

+((n1 + r + 1)(n2 + λi(G) + 3) + 2(λi(G) + 1)− r)λ2

−(r(n2 + λi(G) + 3) + (2 + λi(G))(n1 + r + 1)− 2(2r − λi(G)))λ

+λi(G)(r + 1) = 0,

for i = 1, 2, . . . , n;

(ii) n2+2r+3±
√

(n2+2r+1)2+4n2

2
repeated m− n times each;

(iii) λi(G1) + 1 repeated n times, for i = 2, 3, . . . , n1;

(iv) λi(G2) + 1 repeated m times, for i = 2, 3, . . . , n2.

Lemma 1.3. [2] Let G be a r-regular graph on n vertices and m edges. Let G1

and G2 be any two graphs on n1 and n2 vertices, respectively. Then the laplacian
spectrum of G(T )o{G1, G2} consists of

(i) all roots of the equation

λ4 − (n1 + n2 + r + 2λi(G) + 4)λ3

+((n1 + r + λi(G) + 1)(n2 + λi(G) + 3) + 3λi(G)− r + 2)λ2

−(r + λi(G))(n2 + λi(G) + 3) + (2 + λi(G))(n1 + r + λi(G) + 1)

−2(2r − λi(G)))λ+ (λi(G) + r)(λi(G) + 2) + λi(G)− 2r = 0,

for i = 1, 2, . . . , n;

(ii) n2+2r+3±
√

(n2+2r+1)2+4n2

2
repeated m− n times each;
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(iii) λi(G1) + 1 repeated n times, for i = 2, 3, . . . , n1;

(iv) λi(G2) + 1 repeated m times, for i = 2, 3, . . . , n2.

2. LAPLACIAN SPECTRA OF THE WEIGHTED G1 �G2

Recently, Liu et al. in their paper entitled "On the Generalized Adjacency,
Laplacian and Signless Laplacian Spectra of the Weighted Edge Corona Net-
works" have studied a class of the weighted edge corona networks and tried
to obtain the generalized adjacency, Laplacian and signless Laplacian spectra in
association with two discrete structures. The spectra obtained in [3] have been
found to be prone to some errors. Here we report the corrected versions of some
of the results proposed in [3].

In the section 3 of [3], the Theorem 3.1 for the spectra of generalized Lapla-
cian of the weighted edge corona networks is found to be incorrect which can
be verified by the following example. Consider the graphs G1 and G2 which is
shown in the Figure 1 and let the weight factor be 1. Now according to the above
theorem we obtain the eigenvalues of L(G1 �G2) for the aforementioned graph
to be 8, -2, 9.65685425, 9.65685425, -1.65685425, -1.65685425, 11.4031243,
-1.40312425, 4, 4, 4, 4, whereas the actual eigenvalues of L(G1 � G2) should
have been 0, 1.1716, 1.1716, 2, 4, 4, 4, 4, 6, 6.8284, 6.8284, 8. The corrected
version of the theorem should be as follows.
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FIGURE 1. G1, G2 and G1 �G2

Theorem 2.1. Let G1 be a d1-regular graph with order n1 and size m1, G2 be
any graph with order n2 and size m2, respectively. Assume that the Laplacian
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spectrum of G1 and G2 are l(G1) = {0 = µ
(1)
1 , µ

(1)
2 , . . . , µ

(1)
n1 } and l(G2) = {0 =

µ
(2)
1 , µ

(2)
2 , . . . , µ

(2)
n2 }. Then the Laplacian spectra of L(G1 �G2) are as follows.

(i)
2r+rd1n2+µ

(1)
i ±

√
(2r+rd1n2+µ

(1)
i )2−4(2rµ(1)i +r2n2µ

(1)
i )

2
∈ l(G1�G2) with multiplicity

1, i = 2, 3, . . . , n1.
(ii) 0, 2r + rd1n2 ∈ l(G1 �G2) with multiplicity 1.

(iii) r(µ(2)
j + 2) ∈ l(G1 �G2) with multiplicity m1, j = 2, 3, . . . , n2.

(iv) 2r ∈ l(G1 �G2) with multiplicity m1 − n1 (if possible).

Proof. Consider a row matrix Jn2 of order n2 whose all elements are 1. Now from
the definition of weighted edge corona product, we have the Laplacian matrix
of weighted G1 �G2 as below

L(G1 �G2) =

[
L(G1) + rd1n2In1 −rJn2 ⊗B(G1)

−r[Jn2 ⊗B(G1)]
T r[L(G2) + 2In2 ]⊗ Im1

]
.

Let µ be the Laplacian eigenvalue of L(G1 �G2) and the corresponding eigen-
vector to be X = [X1X2 · · ·Xn2+1]

T , X1 ∈ Rn1 and Xi ∈ Rm1 otherwise.
Now consider the case µ 6= 2r.

Case I. For X1 6= 0.
According to the definitions of eigenvalues and eigenvectors, we have

(2.1) (L(G1) + rd1n2In1)X1 − rB(G1)(X2 +X3 + · · ·+Xn2+1) = µX1.

Consider the set Ei = (

i−1︷ ︸︸ ︷
0m10m1 · · · 0m1 Im1

n2−i︷ ︸︸ ︷
0m10m1 · · · 0m1) Then

(2.2)
−rB(G1)

TX1 + rE1[(L(G2) + 2In2)⊗ Im1 ][X2 · · ·Xn2+1]
T = µX2,

−rB(G1)
TX1 + rE2[(L(G2) + 2In2)⊗ Im1 ][X2 · · ·Xn2+1]

T = µX3,
...

−rB(G1)
TX1 + rEn2 [(L(G2) + 2In2)⊗ Im1 ][X2 · · ·Xn2+1]

T = µXn2+1.

By (2.2), we get

− rn2B(G1)
TX1 + 2r(X2 +X3 + · · ·+Xn2+1) = µ(X2 +X3 + · · ·+Xn2+1).

(2.3) ⇒ (X2 +X3 + · · ·+Xn2+1) =
−rn2

µ− 2r
B(G1)

TX1.
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Substituting (2.3) to (2.1), we get

(L(G1) + rd1n2In1)X1 − rB(G1)

(
−rn2

µ− 2r

)
B(G1)

TX1 = µX1

⇒ (L(G1) + rd1n2In1)X1 +
2r2n2d1
µ− 2r

X1 −
r2n2

µ− 2r
L(G1)X1 = µX1

⇒
(
1− r2n2

µ− 2r

)
L(G1)X1 =

(
µ− rd1n2 −

2r2n2d1
µ− 2r

)
X1.

(2.4)

Let l(G1) = {0 = µ
(1)
1 , µ

(1)
2 , . . . , µ

(1)
n1 } be the spectrum of L(G1). From (2.4), we

have

µ2 + µ(−2r − rd1n2 − µ(1)
i ) + (2r + r2n2)µ

(1)
i = 0

Now for µ(1)
1 = 0, we have µ1,2 = 0, 2r + rd1n2.

For µ(1)
2 , . . . , µ

(1)
n1 we have,

µ1,2 =
2r + rd1n2 + µ

(1)
i ±

√
(2r + rd1n2 + µ

(1)
i )2 − 4(2r + r2n2)µ

(1)
i

2
,

(2.5)

i = 2, 3, . . . , n1.

Case II. For X1 = 0.

The similar considerations for (2.1) and (2.2) give us

B(G1)(X2 +X3 + · · ·+Xn2+1) = 0,

r[(L(G2) + 2In2)⊗ Im1 ][X2 · · ·Xn2+1]
T = µ[X2 · · ·Xn2+1]

T .

Let the spectrum of L(G2) is l(G2) = {µ(2)
1 , µ

(2)
2 , . . . , µ

(2)
n2 }. Then one can easily

get that

(2.6) µ = r(µ
(2)
j + 2), j = 2, 3, . . . , n2.

Now, from (2.5) and (2.6) we obtain (n2−1)m1+2n1 eigenvalues of L(G1�G2).
Hence µ = 2r is also an eigenvalue and its multiplicity m1 − n1. �



1266 I.J. Gogoi, B. Phukan, A. Pegu, and A. Bharali

3. SOME APPLICATIONS

In this section we derive the formulas of the number of spanning trees and
kirchhoff index of the double corona graphs and weighted edge corona product
graphs.

3.1. For subdivision graph, Q-graph, and T -graph double corona.

Theorem 3.1. Let G be a r-regular graph on n vertices and m edges. Let G1 and
G2 be any two graphs on n1 and n2 vertices, respectively. Then

(i) τ(G(S)o{G1, G2}) =
2m−n·(r(n2+1)+2(n1+1))·

∏n
i=2 λi(G)·

∏n1
i=2(λi(G1)+1)n·

∏n2
i=2(λi(G2)+1)m

n(n1+1)+m(n2+1)
.

(ii) Kf(G(S)o{G1, G2}) = n(n1+1)+m(n2+1)×
[
(n2+3)(m−n)

2
+
∑n1

i=2
n

(λi(G1)+1)
+∑n2

i=2
m

(λi(G2)+1)
+ (n1+1)(n2+3)+2(r+1)+n2r

r(n2+1)+2(n1+1)
+
∑n

i=2
r(n2+1)+2(n1+λi(G)+1)

λi(G)

]
.

Proof. The proof goes like this, for tree number, using Definition 1.1 and by the
following cases we have,
Case I: For λi 6= 0. By the relation between coefficients and roots of a polynomial
we have,

x1x2x3x4 = λi(G),

where x1, x2, x3&x4 are roots of equation in Lemma 1.1
case II: For λi = 0,

The fourth order equation of Lemma 1.1 reduces to the cubic equation,

λ3−(n1+n2+r+4)λ2+((n1+1)(n2+3)+2(r+1)+n2r)λ−r(n2+1)+2(n1+1)) = 0.

Let y1, y2, y3 be its roots, then

y1y2y3 = r(n2 + 1) + 2(n1 + 1)),

Again,

n2 + 3 +
√
(n2 + 3)2 − 8

2
·
n2 + 3−

√
(n2 + 3)2 − 8

2
= 2.

For Kirchhoff index,
By Definition 1.2 and by the following cases, we have

Case I: For λi 6= 0. Using the relation between coefficients and roots of the
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equation in Lemma 1.1, we have

x1x2x3 + x2x3x4 + x1x3x4 + x1x2x4 = r(n2 + 1) + 2(n1 + λi(G) + 1)

and

1

x1
+

1

x2
+

1

x3
+

1

x4
=
x1x2x3 + x2x3x4 + x1x3x4 + x1x2x4

x1x2x3x4

=
r(n2 + 1) + 2(n1 + λi(G) + 1)

λi(G)
.

Case II: For λi = 0,

The fourth order equation of Lemma 1.1 reduces to the cubic equation λ3−(n1+

n2 + r + 4)λ2 + ((n1 + 1)(n2 + 3) + 2(r + 1) + n2r)λ− r(n2 + 1) + 2(n1 + 1) = 0.

Let y1, y2, y3 be its roots, then y1y2 + y2y3 + y1y3 = (n1 + 1)(n2 + 3) + 2(r + 1) +

n2r, y1y2y3 = r(n2 + 1) + 2(n1 + 1) and

1

y1
+

1

y2
+

1

y3
=
y1y2 + y2y3 + y1y3

y1y2y3
=

(n1 + 1)(n2 + 3) + 2(r + 1) + n2r

r(n2 + 1) + 2(n1 + 1)
.

Again

2

n2 + 3 +
√

(n2 + 3)3 − 8
+

2

n2 + 3−
√
(n2 + 3)3 − 8

=
n2 + 3

2
.

Combining the above cases and using Lemma 1.1 we get the required result. �

Similar results corresponding to Q-graph and T -graph can also be obtained as
follows, we omit the proofs as they are mutatis mutandis.

Theorem 3.2. Let G be a r-regular graph on n vertices and m edges. Let G1 and
G2 be any two graphs on n1 and n2 vertices, respectively. Then

(i) τ(G(Q)o{G1, G2}) =
(rn2+r+2n1+2)·

∏n
i=2 λi(G)(r+1)·(2r+2)m−n·

∏n1
i=2(λi(G1)+1)n·

∏n2
i=2(λi(G2)+1)m

n(n1+1)+m(n2+1)
.

(ii) Kf(G(Q)o{G1, G2}) = n(n1 + 1) +m(n2 + 1)

×
[∑n

i=2
rn2+r+2n1+2+(2r+n1+3)λi(G)

λi(G)(r+1)
+n1n2+3n1+rn2+n2+2r+5

rn2+2n1+r+2
+ (m−n)(n2+2r+3)

2r+2
+∑n1

i=2
n

(1+λi(G1))
+
∑n2

i=2
m

(1+λi(G2))

]
.

Theorem 3.3. Let G be a r-regular graph on n vertices and m edges. Let G1 and
G2 be any two graphs on n1 and n2 vertices, respectively. Then



1268 I.J. Gogoi, B. Phukan, A. Pegu, and A. Bharali

(i) τ(G(T )o{G1, G2}) =
(rn2+r+2n1+2)·

∏n
i=2((λi(G)+r)(λi(G)+2)+λi(G)−2r)·(2r+2)m−n

n(n1+1)+m(n2+1)
·∏n1

i=2(λi(G1) + 1)n ·
∏n2

i=2(λi(G2) + 1)m.

(ii) Kf(G(T )o{G1, G2}) = n(n1 + 1) + m(n2 + 1) ×
[
n1n2+3n1+rn2+n2+2r+5

rn2+2n1+r+2
+∑n

i=2
rn2+(2r+n2+8+n1)λi(G)+2λ2i (G)+r+2+2n1

λ2i (G)+3λi(G)+rλi(G)
+ (m−n)(n2+2+3)

2r+2
+
∑n1

i=2
n

(1+λi(G1))
+∑n2

i=2
m

(1+λi(G2))

]
.

3.2. For weighted edge corona product graphs. From Theorem 2.1 it is seen
that if G1 is a unicycle graph then 2r is not the eigenvalue of the weighted edge
corona graphs G1 �G2 as m1 − n1 = 0. So, there arises two cases.
Case 1: For the initial graph G1 which is not unicycle.

In the section 5 of [3], the theorem 5.1 gives the number of spanning trees and
Kirchhoff index of weighted edge corona network is also found to be erroneous,
which can be verified from following example.

Consider the graph G1 and G2 which is shown in the Figure 2 and let the
weight factor be 1. Now according to the above theorem we obtain the value
of number of spanning trees to be 339738624 and the Kirchhoff index to be
117.33333 whereas their actual values should be 33556455.31 and 77.999276
respectively.

FIGURE 2. G1, G2 and G1 �G2

The correct version of the Theorem 5.1 presented in [3] is as follows.

Theorem 3.4. Let G1 be the d1-regular graph(not unicycle graph) with order n1

and size m1, G2 the any graph with order n2 and size m2, respectively. Assume
that the Laplacian spectra of G1 and G2 are l(G1) = {0 = µ

(1)
1 , µ

(1)
2 , . . . , µ

(1)
n1 } and

l(G2) = {0 = µ
(2)
1 , µ

(2)
2 , . . . , µ

(2)
n2 }. Then one has
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(i) τ(G1 � G2) =
2r(m1−n1)
n1+m1n2

(2r + rd1n2)
∏n1

i=2(2rµ
(1)
i + n2r

2µ
(1)
i )
∏n2

j=2[r(µ
(2)
j +

2)]m1.

(ii) Kf(G1�G2) = (n1+m1n2)

[∑n1

i=2
2r+d1n2r+µ

(1)
i

2rµ
(1)
i +n2r2µ

(1)
i

+
∑n2

j=2
m1

r(µ
(2)
j +2)

+ (m1−n1)
2r

+

1
(2r+rd1n2)

]
.

Proof. The order of the weighted edge corona graphs G1 �G2,

(3.1) | N(G1 �G2) |= n1 +m1n2.

Secondly, let χ =

√
(2r + d1n2r + µ

(1)
i )2 − 4(2rµ

(1)
i + n2r2µ

(1)
i ). Then

n1∏
i=2

2r + d1n2r + µ
(1)
i + χ

2

n1∏
i=2

2r + d1n2r + µ
(1)
i − χ

2
=

n1∏
i=2

(2rµ
(1)
i + n2r

2µ
(1)
i ).

This gives

(3.2)
|N(G)|∏
i=2

= 2r(m1 − n1)(2r + rd1n2)

n1∏
i=2

(2rµ
(1)
i + n2r

2µ
(1)
i )

n2∏
j=2

[r(µ
(2)
j + 2)]m1 .

Combining (3.1) and (3.2), one gets the desired result of the number of span-
ning trees as below

τ(G1 �G2) =
2r(m1 − n1)

n1 +m1n2

(2r + rd1n2)

n1∏
i=2

(2rµ
(1)
i + n2r

2µ
(1)
i )

n2∏
j=2

[r(µ
(2)
j + 2)]m1 .

For the Kirchhoff index, one obtains
n1∑
i=2

2

2r + d1n2r + µ
(1)
i + χ

+

n1∑
i=2

2

2r + d1n2r + µ
(1)
i − χ

=

n1∑
i=2

2r + d1n2r + µ
(1)
i

2rµ
(1)
i + n2r2µ

(1)
i

.

This leads
|N(G)|∑
i=2

1

µi
=

n1∑
i=2

2r + d1n2r + µ
(1)
i

2rµ
(1)
i + n2r2µ

(1)
i

+

n2∑
j=2

m1

r(µ
(2)
j + 2)

+
(m1 − n1)

2r
+

1

(2r + rd1n2)
.

Thus one gets

Kf(G1 �G2) = (n1 +m1n2)

[∑n1

i=2
2r+d1n2r+µ

(1)
i

2rµ
(1)
i +n2r2µ

(1)
i

+
∑n2

j=2
m1

r(µ
(2)
j +2)

+ (m1−n1)
2r

+

1
(2r+rd1n2)

]
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The desired results thus holds.
Case 2: For the initial graph G1 which is unicycle.
Similarly the corrected version of Theorem 5.2 presented in [3] can be stated as
follows. �

Theorem 3.5. Let G1 be the d1-regular graph(not unicycle graph) with order n1

and size m1, G2 the any graph with order n2 and size m2, respectively. Assume
that the Laplacian spectra of G1 and G2 are l(G1) = {0 = µ

(1)
1 , µ

(1)
2 , . . . , µ

(1)
n1 } and

l(G2) = {0 = µ
(2)
1 , µ

(2)
2 , . . . , µ

(2)
n2 }. Then

(i) τ(G1 �G2) =
(2r+rd1n2)
n1+m1n2

∏n1

i=2(2rµ
(1)
i + n2r

2µ
(1)
i )
∏n2

j=2[r(µ
(2)
j + 2)]m1.

(i) Kf(G1�G2) = (n1+m1n2)

[∑n1

i=2
2r+d1n2r+µ

(1)
i

2rµ
(1)
i +n2r2µ

(1)
i

+
∑n2

j=2
m1

r(µ
(2)
j +2)

+ 1
(2r+rd1n2)

]
.

The proof is similar to the above theorem.
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