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EXISTENCY RESULTS OF FIRST ORDER NEUTRAL DELAY DIFFERENCE
EQUATION WITH POSITIVE AND NEGATIVE COEFFICIENT IN THE

NEUTRAL TERM

G. Gomathi Jawahar

ABSTRACT. In this paper some criteria for oscillatory behavior of first order
Neutral Delay Difference equation with the positive coefficient and the negative
coefficient in the neutral term is obtained, where k, l > 0, {pn}, {qn} are
positive sequences.

1. INTRODUCTION

First order Neutral Delay Difference Equation is gaining interest because they
are the discrete analogue of differential Equations. In recent years, several
papers on oscillation of solutions of Neutral Delay Difference Equations have
appeared. S.S. Cheng and Y.Z. Lin [1] have provided a complete character-
ization of oscillation solutions of first order Neutral Delay Difference Equa-
tions with positive coefficient in the Neutral term. John R.Graef, R.Savithri,
E.Thandapani [3] have analyzed the non oscillatory solutions of first order Neu-
tral Delay Differential Equations with positive coefficient in the Neutral term.
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Elmetwally M.Elabbasy, Taher S.Hassan, Samir H.Saker [2] have provided oscil-
latory solutions of first order Neutral Delay Differential Equations with negative
coefficient in the Neutral term.

Ozkan Ocalan [4] extensively discuss the problem of Oscillation of neutral
differential equation with positive and negative coefficients.

Tanaka [5] discussed the various solutions of Oscillation First order Neutral
Delay Differential Equations.

Here some oscillation results in difference equations based on the existence
results of differential equations are provided. Examples are provided to illus-
trate the results.

2. SECTION I

In this section some criteria for oscillatory behavior of first order Neutral Delay
Difference Equation,

(2.1) ∆(xn + pnf(xn−k) + qnf(xn−l)) = 0

is obtained where k, l > 0, {pn}, {qn} are positive sequences.
The following assumptions has been made to prove the results:

H1: f(u) is an increasing function and uf(u) > 0.
H2: There exists a function w such that w(u) > 0 for u > 0 and w(u)f(v) >

f(uv).
H3: ϕ(u) is an increasing function such that uϕ(u) > 0 and |ϕ(u + v)| <
|f(u) + f(v)|.

3. EXISTENCE OF OSCILLATORY SOLUTIONS

Theorem 3.1. Every solution of the equation (2.1) is oscillatory if there exists a
constant λn such that 0 < λn < 1 for some n ≥ n0 and the difference inequality

(3.1) ∆zn +Qnϕ(zn−l+k) ≤ 0

satisfies, where Qn = min

{
λnqn,

(1− λn−k)qn−l
wpn−l

}
and zn =

m∑
n0+k

Qnφ(yn−l).
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Proof. Suppose to the contrary that there is a non oscillatory solution {xn} of
(2.1). Suppose that xn > 0 for all n ≥ n0.

Let yn = xn + pnf(xn − k).
Then by the equation (2.1), ∆yn = −qnf(xn − l) < 0, yn+1 < yn, and yn is a

decreasing function. Further, yn+1 − yn = −qnf(xn − l),

yn+1 + qnf(xn−l) = yn,

qnd yn > qnf(xn− l) for some n ≥ n0. Taking summation from n0 to m, m > n0:

m∑
n=n0

yn >

m∑
n=n0

qnf(xn−l)

>
m∑

n=n0

(λnqnf(xn−l) + (1− λn)qnf(xn−l))

>
m∑

n=n0

Qnf(xn−l) +
m∑

n=n0+k

(1− λn−k)qn−kf(xn−k−l)

>
m∑

n=n0

Qnf(xn−l) +
m∑

n=n0+k

Qnw(pn−l)f(xn−k−l)

>
m∑

n=n0

Qnf(xn−l) +
m∑

n=n0+k

Qnf(pn−lxn−k−l))

>
m∑

n=n0+k

Qn [f(xn−l + f(pn−lxn−k−l))]

>

m∑
n=n0+k

Qn [ϕ(xn−l + pn−lxn−k−l)]

=
m∑

n=n0+k

Qnϕ [yn−l]

m∑
n=n0+k

Qnϕ [yn−l] > 0.

Let

zn =
m∑

n=n0+k

Qnφ(yn−l).
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Also,

∆zn = zn+1 − zn

=
m∑

n=n0+k

(Qn+1ϕ [yn+1−l]−Qnϕ [yn−l])

= Qn0+k+1ϕ [yn0+k+1−l] +Qn0+k+2ϕ [yn0+k+2−l] +Qn0+k+3ϕ [yn0+k−l]

+ · · ·+Qm+1φ [ym+1−l]−Qn0+kφ [yn0+k+1]−Qn0+k+1ϕ [yn0+k+1−l]

−Qn0+k+2ϕ [yn0+k+2−l] + · · · −Qmϕ [ym−l]

= Qm+1ϕ [ym+1−l]−Qn0+kϕ [yn0+k−l]

∆zn > −Qn0+kϕ [yn0+k−l]

> −Qnϕ(yn−1), n ≥ n0 + k

> −Qnϕ(zn−1+k)

and

(3.2) ∆zn +Qnϕ(zn−1+k) > 0.

Condition (3.2) holds when zn is eventually positive solution. Contradiction
to the equation (3.1). Since zn =

∑m
n=n0+k

Qnφ(yn−l) and yn = xn + pnxn−k, we
say that {xn} is an oscillatory solution of the equation (2.1). �

Theorem 3.2. Every solution of the equation (2.1) is oscillatory, if it satisfies
the condition ∆yn + qnf(xn−1) ≤ 0, where yn = xn + pnf(xn−k) and Qn =

min
{
λnpn,

1−λn
ωn−l

pn

}
and if there exists a function ω such that ω(u) > 0, for u > 0

and f(u) = u, |f(uv)| ≤ ω(u)|f(v)| and f(uv) ≥ uv, λn is positive constant.

Proof. Suppose {xn} is a non oscillatory solution. Let xn > 0 and let us assume
{xn} is eventually positive. Let

yn = xn + pnf(xn−k)

> pnf(xn−k).
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Hence

yn > pnf(xn−k)

= λnpnf(xn−k) + (1− λn)pnf(xn−k)

> Qnf(xn−k) +Qnf(xn−k)ωn−1+k

> Qnf(xn−k) +Qnf(xn−kxn−1+k)

> Qnf(xn−k) + xn−kxn−1+k > 0,

since yn > 0, ∆yn > 0, i.e., ∆yn + qnf(xn−l) > 0, yn > 0.
This contradicts our assumption. Hence {xn} is an oscillatory solution. �

Theorem 3.3. If lim
n→∞

∑
qn > 0, and {xn} is an eventually positive solution of

(3.3) ∆(xn + pnxn−k) + qnf(xn−1) = 0,

then ∆zn +
Mqn
p2n

(pn − 1)zn+k−1 ≤ 0, where

(3.4) zn = xn + pnxn−k.

Proof. Equation (3.3) becomes,

∆zn + qnf(xn−1) = 0

∆zn = −qnf(xn−1) < 0

zn+1 − zn < 0

⇒ zn+1 < zn.

Hence zn is decreasing. From the equation (3.4),

(3.5) pnxn−k = zn − xn.

From the equation (3.4),
zn+k = xn+k + pnxn,

since zn is decreasing, zn > zn+k ≥ pnxn.

From the equation (3.5),

p2nxn−k = pnzn − pnxn (multiplying by pn)(3.6)

pnxn = zn+k − xn+k
pnxn < zn+k

−pnxn ≥ −zn+k.
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Substituting in the equation (3.6),

p2nxn−k = pnzn − pnxn
≥ pnzn − zn+k
≥ pnzn+k − zn+k

xn−k ≥
pn − 1

p2n
zn+k

xn−1 ≥
pn − 1

p2n
zn+k−1

∆zn + qnf(xn−1) = 0

⇒ ∆zn = −qnf(xn−1)

∆zn ≤ −qnM
pn − 1

p2n
zn+k−1

∆zn +M
qn(pn − 1)

p2n
zn+k−1 ≤ 0.(3.7)

Hence the theorem. �

4. SECTION II

In this section some criteria for oscillatory behavior of first order Neutral Delay
Difference Equation:

(4.1) ∆ (xn − qnf(xn−k)) + pnxn−l = 0

is obtained where k, l > 0 and {pn} and {qn} are positive sequences.

4.1. Some oscillatory results.

Theorem 4.1. Every solution of the equation (4.1) is oscillatory if k, l, pn, qn > 0.

Proof.
Case 1
Suppose {xn} is a non oscillatory solution of equation (4.1), let xn > 0 and {xn}
is eventually positive, xn−1 < xn:

∆ (xn − qnf(xn−k)) = −pnxn−l
= −pn (zn−l + qn−lxn−k−l) .
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Hence

∆zn + pnzn−l + pnqn−lxn−k−l = 0

zn+1 − zn + pn (zn−l + qn−lxn−k−l) = 0

zn+1 + pn (zn−l + qn−lxn−k−l) = zn

pn (zn−l + qn−lxn−k−l) < 0

pn (xn−l − qn−lxn−k−l + qn−lxn−k−l) < 0

pnxn−l < 0,

which is a contradiction since pn is positive and xn−l is eventually positive.
Hence equation (4.1) has an oscillatory solution.

Case 2
Let us assume xn < 0 and {xn} is eventually negative, then xn−1 > xn,

∆ (xn − qnf(xn−k)) = −pnxn−l
= −pn (zn−l + qn−lxn−k−l)

∆zn + pnzn−l + pnqn−lxn−k−l = 0

zn+1 − zn + pnzn−l + pnqn−lxn−k−l = 0

pn (zn−l + qn−lxn−k−l) > 0

pn (xn−l − qn−lxn−k−l + qn−lxn−k−l) > 0

pnxn−l > 0,

which is a contradiction since pn is positive and xn−l is eventually negative solu-
tion.

Hence equation (4.1) has an oscillatory solution. �

4.2. Some Non oscillatory results.

Theorem 4.2. Let {xn} be an eventually positive solution of ∆ (xn − qnf(xn−k)) +

pnxn−l = 0 xn > 0 and let

(4.2) zn = xn − qnxn−k.

Assume k, l > 0, pn, qn > 0. Then zn is eventually non increasing positive function.
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Proof. From the equation (4.1),

∆zn = −pnxn−l < 0

zn+1 − zn < 0

zn+1 < zn.

Hence zn is eventually non increasing positive function. �

Theorem 4.3. Every non oscillatory solution of the equation (4.1) converges to
zero monotonically for large n as n→∞ if k, l > 0, qn > 0, pn > 0.

Proof. Suppose {xn} is a non oscillatory solution of (4.1). Let us assume {xn} is
eventually positive (if xn is eventually negative, the proof is similar).

Hence from the theorem (3.7), zn is eventually non increasing positive func-
tion.

From the equation (4.2),

xn ≥ zn.

Here lim
n→∞

xn ≥ lim
n→∞

zn = α ≥ 0. If α > 0, then from the equation (4.1),

∆zn = −pnxn−l < 0.

Hence lim
n→∞

zn → −∞, which contradicts that zn is a positive function, and

further we take α = 0, therefore lim
n→∞

xn = 0.

Hence every non oscillatory solution of the equation (4.1) converges to zero
monotonically as n→∞. �
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