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COMBINATORIAL PROPERTIES OF K−PERIODIC RECURRENCE WORD

V. Subharani1, N. Jansirani, and V.R. Dare

ABSTRACT. In this paper, k−Periodic Recurrence Word (k−PRW) is introduced
and its Combinatorial properties are studied. k−PRW, its mirror image and
it’s factor satisfy the properrties of Rich, Balanced and Bounded are shown.
Using the factor graph, k−PRW and the subword of PRW are in the form of
Regular Trapezium and Rauzhy Graph Pattern are observed. Based on Factor
Analysis, Bispecial factor is existed and the valence of k−PRW is examined. The
existence of Upper and Lower Christoffel is also discussed for k−PRW and it’s
Mirror image. Any length of k−PRW is a trapezoidal shape, is shown. The
regular expression for k−PRW over Σ are initiated and their basic properties
are studied. Finite State Automaton M(Q,Σ, δ, q0, F ) for k−PRW is derived
and M-ambiguity of k−PRW is deliberated.

1. INTRODUCTION

A finite or infinite sequence of symbols or alphabets over a finite set is a word
and studied by several authors, which is used in the field of theoretical computer
science, called Combinatorics on words [3,7,8]. In literature, abelian complex-
ity, maximal pattern complexity, k-abelian complexity, periodic complexity, min-
imal forbidden factor complexity and palindromic complexity are the measures
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of complexity of words [4,5]. The factor complexity of a word w = a1a2 . . . ∈ Σω,

counts the number of the distinct factor of length n in w. Hence, the subword
complexity for a given value of n does not count the repetitions of the sub-
words of length n. The study of repetitions of subwords is a classical subject
of research in molecular Biology [2]. The subword complexity gives a lot of
information about the structure of the words. The right special factors (left Spe-
cial factors) of different valence is related to the complexity of the word and
also related to the structure of the word itself. A word or string read by an au-
tomaton is called a regular expression. In formal language theory, mainly two
types of mechanisms are classified which are acceptors and generators. A finite
automaton is an acceptor. The regular expression and right(left) linear gram-
mars are generators. The Finite state automata also classified into deterministic
and non-deterministic finite state automata. In second section, basic definitions
and preliminaries are given. In third section, k−PRW is introduced and it can
be generated by NDFA and DFA. k−PRW is regular and Context Free Grammar,
which are verified by pumping lemma. k−PRW is closed under homomorphism
is shown. In fourth section, k−PRW is bounded by its period is shown. It has
the properties of Rich, Balance is derived. Rauzy graph pattern is observed.
k−PRW and it’s mirror image are Trapezoidal and Christoffel is examined . In
fifth section, k−PRW is unique in Parikh Matrix Mapping is studied.

2. BASIC DEFINITIONS AND PRELIMIARIES

Let Σ be a non-empty finite set of binary alphabets {a, b}. The set of all empty
and non-empty words over Σ is denoted as Σ∗. Σ+ = Σ∗ − {λ}, λ denoted as
an empty word. The length of a word w ∈ Σ∗ is denoted by |w| . |w|a denotes
the number of occurrences of a letter a in w. A right infinite word w is a se-
quence indexed by N over Σ. The set of all infinite word over Σ is denoted
by Σω. An infinite word w is ultimately periodic defined as w = uvω, for some
u, v ∈ Σ∗, v 6= λ, if u = λ then w is a periodic. Let w = w1w2 . . . wn then the
reverse(mirror image) of w is defined as wR = wnwn−1 . . . w2w1. If w = wR then
w is a palindrome. λ is assumed to be a palindrome. A finite word w is rich
if it has |w| + 1 distinct palindrome factors, including the empty word and an
infinite word, is rich if all of its factors are rich [6]. The word u ∈ Σ∗ is a factor
(or a subword) of w if there exist p, q ∈ Σ∗ such that w = puq. A factor u of
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w is called proper if u 6= w. The set of all factors of w is denoted by F (w). An
infinite word w is said to be recurrent if any factor of w occurs infinitely often
in w. The balance of a pair u and v of words of the same length as a number
δ(u, v) = ||u|a − |v|a| , a ∈ Σ. A word w ∈ Σ∗ is balanced if δ(u, v) ≤ 1 for any
u, v ∈ F (w) with |u| = |v| . Word s is called a right special factor of w if there
exist two letters x, y ∈ Σ, x 6= y, such that sx, sy ∈ F (w). A word s is called
a left special factor of w if there exist two letters x, y ∈ Σ, x 6= y, such that
xs, ys ∈ F (w). A word of w ∈ Σ∗ which is a right and left special factor of w is
called a Bispecial factor of w. A word w ∈ Σ∗ of length |w| is said to be Trape-
zoidal if, for every integer i ≤ |w| , w admits one right special factor of length i,
atmost [1].

Let Σ = {a1 < a2 < . . . < an}. Then the Parikh mapping Ψ : Σ∗ → Nn is given
by Ψ(x) = (|w|a1 , |w|a2 , . . . , |w|an), where N is the set of nonnegative integers.
(|w|a1 , |w|a2 , . . . , |w|an) is the Parikh vector of w. The Parikh matrix mapping is
Ψ : (Σ∗, ., λ) → (Mk+1, ., Ik+1) defined by Ψ(aq) = (mij), 1 ≤ i, j ≤ k + 1 such
that

(i) m(i,j) = 1

(ii) m(j,j+1) = 1 (iii) all other elements are zero [9,10].
A word w ∈ Σ∗ is M-ambiguity iff it is M-equivalent to another distinct word.
Otherwise, w is M-unambiguity.

3. k-PERIODIC RECURRENCE WORD

In this section, k−Periodic Recurrence Word (k−PRW) is introduced and it
can be generated by a NDFA and DFA. k−PRW is a regular and Context Free
Grammar which are verified by pumping lemma. k−PRW is closed under homo-
morphism is shown.

Definition 3.1. k-Periodic Recurrence Word (PRW) w over Σ is defined as

wi =

{
a if i mod k 6= 0

b otherwise

}
.

where wi = (ak−1b)n, k ≥ 2, n ≥ 1 is the k−PRW over Σ.

For example if k = 3 then the 3−PRW is (a2b)n.

Theorem 3.1. k-PRW defined in 3.1 can be generated by
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(i) Non Deterministic Finite State Automata(NDFA)
(ii) Deterministic Finite State Automata(DFA)

(iii) Pumping Lemma.

Proof.
Case (i): Consider M = (Q,Σ, δ, q0, F ), where δ is given by
δ(q0, a) = q1, δ(q1, a) = q2, . . . ,

δ(qk−2, a) = qk−1, δ(qk−1, b) = qk, δ(qk, a) = q1.

Then K-PRW constructed by the NDFA

FIGURE 1. NDFA of k−Periodic Recurrence Word

Case (ii): Consider M = (Q,Σ, δ, q0, F ), where δ is given by
δ(q0, a) = q1, δ(q1, a) = q2, . . . ,

δ(qk−2, a) = qk−1,

δ(qk−1, b) = qk, δ(qk, a) = q1.

Then k−PRW constructed by the DFA

FIGURE 2. DFA of k-Periodic Recurrence Word

Case (iii): Let L = {(ak−1b)n : k ≥ 2, n ≥ 1} be a k−PRW over Σ. L is a
regular language and M its corresponding automaton with n number of states.
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Let w ∈ L and |w| = kn. Since k, n are positive integer, w can be decomposed as
w = xyz, with |xy| ≤ kn and |y| > 0. w = xyz ∈ L, by pumping lemma xyk−1z

should also in L.
If n = 2, k = 3 then w = aabaab = xyz, where x = aa, y = baa, z = b.

Then xy2z = xyyz = aabaabaab ∈ L. Hence, it is regular. From the three cases
concluded that k−PRW is a regular language. This language is also accepted by
a Büchi Automata. �

Theorem 3.2. Let L be a k−PRW over Σ. Then L is closed under homomorphism.

Proof. Let L = {(ak−1b)n : k ≥ 2, n ≥ 1} be a k−PRW over Σ. The homomorphic
of L is defined by h : Σ → Γ∗ and h(a) = a, h(b) = b, where Γ is alphabets.
Then the holomorphic image of L is {(ak−1b)n : k ≥ 2, n ≥ 1}. If k = 3 then w =

aabaaba . . . ab and h(aabaaba . . . ab) = h(a)h(a)h(b) . . . h(a)h(b) = aabaaba . . . ab.

Hence the theorem. �

Theorem 3.3. Let L be the collection of all k−PRW over Σ. Then L is a Context
Free Language.

Proof.
Case (i): Consider L = {(ak−1b)n : k ≥ 2, n ≥ 1} is a k−PRW over Σ. L

is expressed as a grammar which is defined by the production rules as S →
ak−1bA,A→ ak−1bA|λ. All the productions of L are in right linear. Hence, L is a
Context Free Grammar. If k = 3 then L = {(a2b)n : n ≥ 1} and S → aabA,A →
aabA|λ.

Case (ii): The Parse Tree Diagram of L exists.

FIGURE 3. Parse Tree Diagram of k-Periodic Recurrence Word
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Case (iii): Chomsky Normal Form of L has the following rules:
S → A1A2 . . . Ak−2Y |A1A2 . . . Ak−2X,

C → A1A2 . . . Ak−2Y |A1A2 . . . Ak−2X,X → AB, Y → XC,A1A2 . . . Ak−2, A →
a,B → b, where S,A1A2 . . . Ak−2, A,B,C,X, Y are in V and a, b are in T.

If k = 3, then S → AY |AX, C → AY |AX, X → AB, Y → XC, A → a,
B → b.

Case (iv): L = {(ak−1b)n : k ≥ 2, n ≥ 1}, the set of string representing the
language L is {L1, L2, . . . Lk−1}, where L1 = {(ab)n}, L2 = {(a2b)n}, . . . , Lk−1 =

{(ak−1b)n}. n = 3 is the required positive integer by using pumping lemma z =

uvxyz with the condition as follows u = ak−2, v = aba, x = ak−2, y = baak−2, z =

b which satisfies the conditions that
(i). |vxy| ≤ kn;
(ii). vx 6= ε;
(iii). For all i ≥ 0, uviwxiy is in L.

Hence, from the four cases L is a Context Free Grammar. �

4. COMBINATORIAL PROPERTIES OF k− PERIODIC RECURRENCE WORD

In this section, k−PRW is bounded by k is shown. It has the properties of Rich,
Balanced are derived. The nature of k−PRW and its reverse are Trapezoidal and
Christoffel is examined. Rauzy Graph pattern is observed.

Theorem 4.1. Let w be a k−PRW over Σ. Then w is a bounded by k if |w| ≥ k−1.

Proof. Let w = {(ak−1b)n, k ≥ 2, n ≥ 1}. The proof is proceeded by Induction
method. To prove this is true for k = 3, n = 2 for 3−PRW w. w = (a2b)2 then the
distinct subgroup of w = {λ, a, b, aa, ab, ba, aab, aba, baa, aaba, abaa, baab, aabaa,
abaab, baaba, aabaab}. From this is we observed that every distinct length of sub-
words have k = 3 subwords. Hence it is bounded by three. Then this is true for
k = r for any positive integer. �

Theorem 4.2. Let w be a k−PRW over Σ. Then w is Rich.

Proof. For any length of k−PRW has the rich property. To prove this by the
Method of Induction. Consider the distinct subwords of k−PRW of length 2 are
{aa, ab, ba} then the possible distinct palindrome subwords of aa are {a, aa, λ}.
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Similarly for ab = {a, b, λ} and for ba = {a, b, λ} . Hence k−PRW has prop-
erty of rich. Well ordering principle this is true for the minimal value of 2.

Now assume that this is true for m. Then to prove that is true for m + 1. The
k−PRW of length m+1 = {aabaaba . . . abaabaab}m.a or {aabaabaa . . . baabaa}m.b
or {aabaaba . . . abaabaaba}m.a, in any case, the increase in the size by one then
the palindrome count also increased by one. Hence this is true for all positive
integers. �

Theorem 4.3. Let w be a k−PRW over Σ. Then w is Balanced.

Proof. Let w = {(ak−1b)n, k ≥ 2, n ≥ 1}. If k = 4, n = 2, then w = aaabaaab.

Consider the distinct factors of w of length |w| = 6 are {aaabaa, aabaaa, abaaab,
baaaba}. u and v be any factors of w Then the factors of w have the property of
balance. Without Loss of generality assumed that this theorem is true for any
positive integer. �

Theorem 4.4. Let w be a k−PRW over Σ. Then w has a Bispecial factor if
|w| ≥ k + 1.

Proof. Let w be the k−PRW . w = {(ak−1b)n, k ≥ 2, n ≥ 1}. The right special
factors of w of any length exist with the valence is k − 1. If k = 4, n = 1 then
w = a3b. The right special factor of w is s = aa, x = a, y = b, then sx = aaa ∈
F (w), sy = aab ∈ F (w) and the other factors of right valence is zero. Similarly,
The left special of w of any length exist with the valence is k − 1 if the word
of length greater than k + 1. Then only the factor (i.e)s = a, x = a, y = b, then
xs = aa, ys = ba ∈ F (w). and the other factor’s left valence is zero. Hence it is a
Bispecial factor with the valence 2. �

Theorem 4.5. Let w be a k−PRW over Σ. Then w and wR are Trapezoidal word.

Proof. Let w = {(ak−1b)n, k ≥ 2, n ≥ 1}. Then the distinct factors of w are
Fi(w) = i+ 1, 0 ≤ i ≤ k − 2;

Fi+1(w) = Fi(w), k − 1 ≤ i ≤ |w| − k − 1;

Fi+1(w) = Fi(w)− 1, |w| − k − 2 ≤ i ≤ |w| .
where Fi(w) represents the distinct factor of w of length i.

If k = 3, |w| = 7, then w=aabaaba. The distinct factors of w are F0(w) =

1, F1(w) = 2, F2(w) = F3(w) = F4(w) = F5(w) = 3, F6(w) = 2, F1(w) = 1.
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This can be plotted in the graph, in which the sub word of length take it as in a
x−axis and the number of distinct subwords as in a y−axis. The corresponding
Trapezoidal graph is

FIGURE 4. Trapezoidal Graph of 3−Periodic Recurrence Word of
length 7

After plotting the graph, observed that the graph is a Regular Trapezium.
Similarly we can prove for its reverse. Rauzy Graph Pattern is existed in k−PRW
and it is given below.

FIGURE 5. Rauzy Graph Pattern is existed in k−PRW and it is
given below.

For example if k = 3 and 2 ≤ |w| ≤ 8 then 3−PRW Rauzy Graph is
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FIGURE 6. Rauzy Graph of 3−Periodic Recurrence Word of length
2 ≤ |w| ≤ 8

�

Theorem 4.6. Let w be a k−PRW over Σ. Then w is a Conjugate word if the word
of length is multiple of k, k ≥ 2.

Proof. Consider w is a k−PRW. w is a circular word if the length of the word is
multiple of k.

FIGURE 7. Circular pattern in k−Periodic Recurrence Word

Proof is by the method of contradiction. w is 3−PRW of length 7, then w =

aabaaba then the first shift of w is T2 = abaabaa, T3 = baabaaa /∈ F (w). Hence it
conjugates if the word of length should be in the multiple of k. �

Theorem 4.7. Let w be a k−PRW over Σ. Then w and its reverse are a Christoffel
word.
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Proof. The lower Christoffel word of the slope of k−PRW is
1

k − 1
and the upper

Christoffel word of the slope of k−PRW is
k − 1

1
. (k − 1, 1) are relatively prime.

Consider a 3−PRW of w is (a2b)2. Then the corresponding Christoffel graph is

FIGURE 8. Christoffel Graph of k−Periodic Recurrence Word

shown in below.

FIGURE 9. Christoffel Graph of 3−Periodic Recurrence Word

�
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5. AMBIGUITY OF k−PERIODIC RECURRENCE WORD

In general Parikh Matrix mapping is not injective for words of equal length.
But k−PRW, the Parikh Matrix Mapping is injective and it is shown for k = 3, n =

2. Further theorems are proved for the Parikh Matrix Mapping for k− PRW and
it’s reverse.

Theorem 5.1. Let w be a k−PRW over Σ. Then Parikh Matrix Mapping of w and
it’s reverse are M-unambiguity.

Proof. Let w = (ak−1b)n. Then

ΨΣ(w) =

1 k − 1 k − 1

0 1 1

0 0 1


n

=

1 n(k − 1)
n(n+ 1)(k − 1)

2
0 1 n

0 0 1


and wR = (bak−1)n, then the corresponding

ΨΣ(wR) =

1 k − 1 0

0 1 1

0 0 1


n

=

1 n(k − 1)
n(n− 1)(k − 1)

2
0 1 n

0 0 1

 .

From ΨΣ(w) and ΨΣ(wR) observed that the Parikh Matrix Mapping are different.
Hence the result.

For example if k = 3, n = 2 then

ΨΣ((a2b)2) =

1 2 2

0 1 1

0 0 1


2

=

1 4 6

0 1 2

0 0 1


and

ΨΣ((ba2)2) =

1 2 0

0 1 1

0 0 1


2

=

1 4 2

0 1 2

0 0 1

 ,

ΨΣ(w) 6= ΨΣ(wR). �

Theorem 5.2. Let w be a k−PRW over Σ. Then Parikh Matrix Mapping of w and
wR are commutes.
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Proof. From previous theorem,

ΨΣ(w) =

1 n(k − 1)
n(n+ 1)(k − 1)

2
0 1 n

0 0 1


and

ΨΣ(wR) =

1 n(k − 1)
n(n− 1)(k − 1)

2
0 1 n

0 0 1

 ,

ΨΣ(w) ◦ΨΣ(wR) =

1 2n(k − 1) 2n2(k − 1)

0 1 2n

0 0 1

 = ΨΣ(wR) ◦ΨΣ(w).

Consider k = 3, n = 2. Then

ΨΣ((a2b)2) ◦ΨΣ(((a2b)2)R) =

1 8 16

0 1 4

0 0 1

 = ΨΣ(((a2b)2)R) ◦ΨΣ((a2b)2).

�

Theorem 5.3. Consider the alphabet Σk = {a1, a2, . . . , ak}. Let w1 and w2 be a
k−PRW. Then the words w1 with w2 are M-ambiguous.

1 If u1 = a1a2 . . . ak, u2 = a2a3 . . . aka1, . . . uk = aka1 . . . ak−1 and w1 =

u1u2 . . . uk, w2 = u2u3 . . . uku1, for any k ≥ 2.

2 If Ru1 = a1a2 . . . ak, Ru2 = aka1 . . . ak−1, . . . , Ruk = a2a3 . . . aka1 and
w1 = Ru1Ru2 . . .Ruk, w2 = Ru2Ru3 . . .RukRu1, for any k ≥ 2

Otherwise the words w1 with w2 are M-unambiguous.

Proof.
Case 1: Consider k = 4, then u1 = a1a2a3a4, u2 = a2a3a4a1, u3 = a3a4a1a2,

u4 = a4a1a2a3 and w1 = u1u2u3u4, w2 = u2u3u4u1. Then w1 = u1q1 and w2 = q1u1
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where q1 = u2u3u4.

Ψ4(q1) =


1 3 5 5 0

0 1 3 5 5

0 0 1 3 5

0 0 0 1 3

0 0 0 0 1

 and Ψ4(u1) =


1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

 ,

Ψ4(w1) =


1 4 9 14 14

0 1 4 9 14

0 0 1 4 9

0 0 0 1 4

0 0 0 0 1

 = Ψ4(w2).

Hence the theorem is true for k = 4.

Then this is true for k = r and to prove for k = r + 1, u1 = a1a2 . . . arar+1,

u2 = a2a3 . . . arar+1a1, . . . , ur+1 = ar+1a1 . . . ar−1ar and w1 = u1u2 . . . urur+1,

w2 = u2u3 . . . ur+1u1, and further,

w1 = a1a2 . . . ar+1a2a3 . . . ar+1a1 . . . ar+1a1 . . . ar → (5.1)

w2 = a2a3 . . . ar+1a1 . . . ar+1a1 . . . ara1a2 . . . ar+1 → (5.2)

Comparing (5.1) and (5.2) the w1 = u1q1 and w2 = q1u1 where q1 = u2u3u4 . . . ur+1.

Consider the Parikh Matrix of q1,

Ψr(q1) =



1 p1 p1,2 . . . p1,r p1,r+1

0 1 p2 . . . p2,r p2,r+1

0 0 1 . . . p3,r p3,r+1

...
...

... . . . ...
...

...
...

... . . . pr pr,r+1

0 0 0 . . . 1 pr+1

0 0 0 . . . 0 1


and Parikh Matrix of u1,

Ψr(u1) =


1 1 . . . 1 1

0 1 . . . 1 1
...

... . . . ...
...

0 0 . . . 1 1

0 0 . . . 0 1

 ,
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Parikh Matrix of w1,

Ψr(w1) =

1 p1 + 1 p1,2 + p2 + 1 . . . p1,r + p2,r + . . .+ pr + 1 p1,r+1 + p2,r+1 + . . .+ pr+1 + 1

0 1 p2 + 1 . . . p2,r + . . .+ pr + 1 p2,r+1 + . . .+ pr+1 + 1

0 0 1
. . .

...
...

...
...

...
. . . pr + 1 pr,r+1 + pr+1 + 1

0 0 0 . . . 1 pr+1 + 1

0 0 0 . . . 0 1


.

Parikh Matrix of w2, Ψr(w2) =

1 1 + p1 1 + p1 + p1,2 . . . 1 + p1 + p1,2 + . . .+ p1,r 1 + p1 + . . .+ p1,r+1 + pr+1

0 1 1 + p2 . . . 1 + p2 + . . .+ p2,r 1 + p2 + . . .+ p2,r+1 + pr+1

0 0 1
. . .

...
...

...
...

...
. . .

... 1 + pr + pr,r+1

0 0 0 . . . 1 1 + pr+1

0 0 0 . . . 0 1


.

FIGURE 10. The Circulant Orientation of a Word

From the diagram q1 is in the circulant type. Hence it is a Pascal Symmet-
ric, then pi,j = pk,l if i + j = k + l,, and further, w1 and w2 satisfies the

Ratio Property of word,
p1 + 1

1 + p1

=
p1,2 + p2 + 1

1 + p1 + p1,2

= . . .
p1,r + p2,r + · · ·+ pr + 1

1 + p1 + p1,2 + . . .+ p1,r
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=
p1,r+1 + p2,r+1 + . . .+ pr,r+1 + pr+1

1 + p1 + . . .+ p1,r+1 + pr+1

= . . . =
pr,r+1 + pr+1 + 1

1 + pr + pr,r+1

=
pr+1 + 1

1 + pr+1

= s.

Hence the Statement.
Case 2: Similar proof is followed in the Case 1. Even though, in this case

u1, u2, u3, u4 are in Right Circulant but the direction of the orientation (the dot-
ted lines in the Fig.10 ) doesn’t change. Hence the theorem. �

6. CONCLUSION

k−Periodic Recurrence Word (k−PRW) is introduced and regular expression
is derived. k−PRW is rich and balanced is shown. Regular Trapezium, Christof-
fel for k−PRW and its reverse are existed, is verified. Rauzy Graph pattern is
observed for k−PRW. The Parikh Matrix Mapping is unique in k−PRW is studied.
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