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WATSON CRICK FUZZY AUTOMATA WITH OUTPUT

N. Vijayaraghavan1, N. Jansirani, and V.R. Dare

ABSTRACT. The concept of fuzziness is introduced in Watson Crick Mealy Au-
tomata and Watson Crick Moore Automata to give Watson Crick Fuzzy Mealy
Automata and Watson Crick Fuzzy Moore Automata. The Fuzzy sets were in-
troduced as an extension of classical sets. The uncertain sets or the Fuzzy sets
have elements with certain degrees of membership. The notion of Fuzzy sets is
well incorporated in Automata theory as Fuzzy Automata. The ideas of Watson
Crick Finite Automata and Fuzzy Automata are combined and studied as Wat-
son Crick Fuzzy Automata. Here in this research article, Watson Crick Fuzzy
Automata with output are introduced and studied. The Watson Crick Fuzzy
Mealy Automata and Watson Crick Fuzzy Moore Automata are theoretical out-
put producing model with certain degrees of membership or weightage for DNA
based Computation. Further, some of the topological and algebraic properties
of Watson Crick Fuzzy Automata with Output are established.

1. INTRODUCTION

Rosenberg introduced and studied Watson Crick Finite Automaton which was
designed to work on tapes that are double stranded sequences of symbols con-
nected and related by a complementarity relation much like in a DNA molecule
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[1, 3, 4, 6]. The Fuzzy Automaton was mathematically formulated with the
introduction of Fuzzy set theoretical ideas in formal languages and Automata
Theory [2, 5, 7]. Various modifications of Fuzzy Automata were done and their
topological, algebraic and characteristic properties were also studied [9]. In
order to study the imprecise languages and its usage in DNA Computing, the
notion of fuzziness is introduced in Watson crick Finite Automata by Jansirani
et.al to find Watson Crick Fuzzy Automata [10]. They also introduced the Equiv-
alence Grammar part of Watson Crick Fuzzy Automata known as Watson Crick
Fuzzy Regular Grammar. Since all modifications and developments on Watson
Crick Fuzzy Automata are done only on Language recognition, this prompts us to
introduce Watson Crick Fuzzy Automata with output by incorporating the Moore
machine and Mealy machine ideas with Watson Crick Automata and study their
characteristics. The corresponding Fuzzy languages of Watson Crick Fuzzy Au-
tomata with output are also studied.Here Watson Crick Fuzzy Automata with
output is introduced for a double tape input. Hence on reading the double tape
input, the Watson crick Fuzzy Automata with output not only moves to the next
state but also produces an output with certain degree of membership.

The second section recalls the Preliminaries and Basic Definitions required.
In the Third section, Watson Crick Fuzzy Automata with output are introduced
and their Characterizations are studied. The Fourth section deals with the intro-
duction of Homomorphism in Watson Crick Fuzzy Automata with output and its
usage. The Final section gives the Conclusion and Future Work.

2. PRELIMINARIES

In this section, the Preliminaries and the Basic Definitions needed to introduce
Watson Crick Fuzzy Automata with output are recalled.

A symmetric relation ρ ⊆ Σ×Σ, called the Watson-Crick complementarity re-
lation on Σ, inspired by the Watson-Crick complementarity of nucleotides in the
double stranded DNA molecule. The symmetric relation ρ is injective if for any
a ∈ Σ there exists a unique complementary symbol b ∈ Σ with (a, b) ∈ ρ.In accor-
dance with the representation of DNA molecules, viewed as two strings written

one over the other, it is written

(
Σ∗

Σ∗

)
instead of Σ∗ × Σ∗ and

(
w1

w2

)
instead of
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the element(w1, w2) ∈ Σ∗×Σ∗.

(
Σ∗

Σ∗

)
ρ

is denoted as

(
Σ

Σ

)
ρ

= {

(
a

b

)
|(a, b) ∈ ρ }

and WKρ(Σ) =

(
Σ

Σ

)∗
ρ

.The set WKρ(Σ) is called Watson-Crick domain associated

to Σ and ρ.
A Watson Crick Finite Automaton is a 6-tuple M = (Q,Σ, ρ, δ, qo, F ) where, Q

is a finite nonempty set of states, Σ is a finite set of Inputs called the alphabet,ρ ⊆

Σ × Σ is the complimentary relation, δ : Q ×

(
Σ∗

Σ∗

)
→ Q(2Q) is called the

transition function such that δ

(
q,

(
w1

w2

))
6= φ, only for finitely many triples

(q, w1, w2) ∈ Q × Σ∗ × Σ∗, q0 is an element of Q called the initial state, F ⊆ Q

is the set of final states of M. [8] . The transition function can be replaced with

rewriting rules, by using s

(
w1

w2

)
→

(
w1

w2

)
s′ instead of s′ ∈ δ

(
s,

(
w1

w2

))
.The

transitions in a Watson-Crick finite automaton can be defined as follows. For(
x1
x2

)
,

(
y1
y2

)
,

(
w1

w2

)
∈

(
Σ∗

Σ∗

)
such that

(
x1y1w1

x2y2w2

)
∈ WKρ(Σ) and s, s′ ∈ Q,

then

(
x1
x2

)
s

(
y1
y2

)(
w1

w2

)
⇒

(
x1
x2

)(
y1
y2

)
s′

(
w1

w2

)
if anly only if s′ ∈ δ

(
s,

(
x1
x2

))
.

The language accepted by a Watson-Crick automaton is: L(M) =

{w1 ∈ Σ∗|q0

(
w1

w2

)
⇒ ∗

(
w1

w2

)
s}, with s ∈ F,w2 ∈ Σ∗,

(
w1

w2

)
∈ WKρ(Σ).

A Fuzzy Finite Automaton is a 5-tuple M = {Q,Σ, δ, q0, F} where Q is a finite
nonempty set of states, Σ is a finite set of Inputs called the alphabet, δ : Q×Σ→
f(Q) is called the fuzzy transition function, qo is an element of Q, it is called the
initial state, F ∈ f(Q) is the fuzzy set of final states of Q. The fuzzy language
L(M) recognized by M is a fuzzy subset of Σ∗, with the membership function
defined by L(M)s =

⋃
(δ (q0, s) ∩ F ) .

A Watson Crick Fuzzy Automaton is a 6-tuple M = {Q,Σ, ρ, δ, q0, F}where, Q
is a finite nonempty set of states, Σ is a finite set of Inputs called the alphabets,

ρ ⊆ Σ×Σ is the complimentary relation, δ : Q×

(
Σ∗

Σ∗

)
→ f(Q) called the fuzzy
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transition function or δ : Q×

(
Σ∗

Σ∗

)
×Q→ [0, 1] is the fuzzy transition function,

q0 is an element of Q called the initial state, F ∈ f(Q) is the fuzzy set of final
states of Q. The Language L(M) accepted by a Watson Crick Fuzzy Automata M

is a fuzzy subset of Σ∗ defined by L(M)

(
x1
x2

)
=
⋃(

δ

(
q,

(
x1
x2

)
, p

)
∩ F

)
for

all

(
x1

x2

)
∈

(
Σ∗

Σ∗

)
and x2 = ρ (x1) . Let M = (Q,Σ, ρ, δ, q0, F ) beWatson Crick

Fuzzy Automata, then the extension of Watson Crick Fuzzy transition function

from Q×

(
Σ∗

Σ∗

)
×Q to [0,1] is defined as [10]

δ∗

(
q,

(
λ

λ

)
, p

)
= 1 if q=p and δ∗

(
q,

(
λ

λ

)
, p

)
= 0 if q 6= p.

δ∗

(
q,

(
x1a1
x2a2

)
, p

)
=
⋃
r∈Q

(
δ∗

(
q,

(
x1
x2

)
, r

)
∩ δ∗

(
r,

(
a1
a2

)
, p

))

for all p, q ∈ Q,

(
x1
x2

)
∈

(
Σ∗

Σ∗

)
,

(
a1
a2

)
∈

(
Σ

Σ

)

3. WATSON CRICK FUZZY AUTOMATA WITH OUTPUT

In this section, the types of Watson Crick Fuzzy Automata with output are
introduced and their equivalence is established. The Transition map and output
map extensions of Watson Crick Fuzzy Automata with output are also done.
The characteristic property known as the successor property of Watson Crick
Fuzzy Automata with output and its usage is also dealt in detail. Finally the
Watson Crick Fuzzy subsystem of Watson Crick Fuzzy Automaton with output is
designed and its closure properties under Boolean operations are also studied.
Here the theorems are proved only for Watson Crick Fuzzy Mealy Machines as
it is equivalent to Watson Crick Fuzzy Moore Machine

Definition 3.1. A Watson Crick fuzzy Mealy machine is a quintuple M = (Q,Σ, ρ,

O, δ, q0, θ), where Q is a finite non-empty set called the set of states, Σ is a finite
non-empty set called the set of inputs, ρ ⊆ Σ×Σ is the complimentary relation, O is
a finite non-empty set called the set of outputs,q0 is an element of Q called the initial
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state, δ is called the transition function, which is a fuzzy subset of Q×

(
Σ

Σ

)
×Q, θ

is called the output function, which is a fuzzy subset of Q ×

(
Σ

Σ

)
× 0 with the

following condition getting satisfied:

(∀q ∈ Q) ,

(
∀

(
a1
a2

)
∈

(
Σ

Σ

))
, (∃p ∈ Q) , δ

(
q,

(
a1
a2

)
, p

)
> 0

↔ (∃b ∈ O) , θ

(
q,

(
a1
a2

)
, b

)
> 0.

Let M = (Q,Σ, ρ, O, δ, q0, θ)be a Watson Crick Fuzzy Mealy machine, then

δ∗ : Q×

(
Σ∗

Σ∗

)
×Q→ [0, 1] is defined as

∀p, q ∈ Q, ∀

(
a1
a2

)
∈

(
Σ

Σ

)
,∀

(
x1
x2

)
,

(
y1
y2

)
∈

(
Σ∗

Σ∗

)
.

(i) δ∗
(
q,

(
λ

λ

)
, p

)
=

1 p = q

0 p 6= q

(ii) δ∗
(
q,

(
x1a1

x2a2

)
, p

)
=
⋃
r∈Q

δ∗

(
q,

(
x1

x2

)
, r

)
∩ δ

(
q,

(
a1

a2

)
, p

)

(iii) δ∗
(
q,

(
x1y1
x2y2

)
, p

)
=
⋃
r∈Q

δ∗

(
q,

(
x1
x2

)
, r

)
∩ δ

(
q,

(
y1
y2

)
, p

)
Let M = (Q,Σ, ρ, O, δ, qo, θ) be a Watson Watson Crick Fuzzy Mealy Machine,

then θ∗ : Q ×

(
Σ∗

Σ∗

)
× O∗ → [0, ] is defined as ∀q ∈ Q,∀

(
a1
a2

)
∈

(
Σ

Σ

)
,

∀

(
x1
x2

)
∈

(
Σ∗

Σ∗

)
,∀b ∈ O, ∀o ∈ O∗.

(i) θ∗
(
q,

(
x1
x2

)
, o

)
=
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1 if

x1
x2

 =

λ
λ

 and o = λ

0 if

x1
x2

 =

λ
λ

 and o 6= λ or

x1
x2

 6=
λ
λ

 and o = λ

(ii) θ∗
(
q,

(
x1a1
x2a2

)
, ob

)
=
⋃
r∈Q

θ∗

(
q,

(
x1
x2

)
, o

)
∩δ∗

(
q,

(
x1
x2

)
, r

)
∩θ

(
r,

(
a1
a2

)
, b

)

= θ∗

(
q,

(
x1
x2

)
, o

)
∩

( ⋃
r∈Q

δ∗

(
q,

(
x1
x2

)
, r

)
∩ θ

(
r,

(
a1
a2

)
, b

))
Definition 3.2. A Watson Crick Fuzzy Moore machine is a quintupleM = (Q,Σ, ρ,

O, δ, q0, θ), where Q is a finite non-empty set called the set of states, Σ is a finite
non-empty set called the set of inputs,ρ ⊆ Σ×Σ is the complimentary relation, O is
a finite non-empty set called the set of outputs,q0 is an element of Q called the initial

state, δ is called the transition function, which is a fuzzy subset of Q×

(
Σ

Σ

)
×Q,

θ is called the output function, which is a fuzzy subset of Q×O.

Theorem 3.1. Watson Crick Fuzzy Mealy machine is equivalent to a Watson Crick
Fuzzy Moore machine.

Proof. Let M = (Q,Σ, ρ, O, δ, q0, θ) be given Watson crick fuzzy Mealy machine.
Construct a fuzzy Moore machines as M = (Q×O,Σ, ρ, O, δ1, q0, θ), where

δ1

(
(p, α) ,

(
a1
a2

)
, (q, β)

)
= δ

(
p,

(
a1
a2

)
, q

)
∩ θ

(
p,

(
a1
a2

)
, β

)
,

for all (p, α) , (q, β) ∈ Q×O and(
a1

a2

)
∈

(
Σ

Σ

)
; θ1 ((p, α) , β) =

1 if α = β

0 otherwise
.

The extension of δ1 is the fuzzy set δ∗1 : (Q×O) ×

(
Σ∗

Σ∗

)
× (Q×O) → [0, 1]

is defined for all (p, α) , (q, β) ∈ Q × O,

(
a1

a2

)
∈

(
Σ

Σ

)
,

(
x1

x2

)
∈

(
Σ∗

Σ∗

)
as

δ∗1 ((p, α) , λ, (q, β)) = 0;
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δ∗1

(
(p, α) ,

(
a1
a2

)
, (q, β)

)
= θ

(
p,

(
a1
a2

)
, β

)
and

δ∗1

(
(p, α) ,

(
x1a1
x2a2

)
, (q, β)

)
=
⋃
{δ1

(
(p, α)

(
a1
a2

)
, (r, γ)

)
∩ δ

(
p,

(
a1
a2

)
, r

)
∩

δ1

(
(r, γ) ,

(
x1
x2

)
, (q, β) | (r, γ) ∈ Q×O

)
.

The extension of θ∗1 of θ1 is the fuzzy set θ∗1 : (Q×O)×

(
Σ∗

Σ∗

)
×O∗ → [0, 1] is

defined as length preserving map and it is given by:

θ∗1

(
(p, α) ,

(
x1
x2

)
, λ

)
= θ∗1

(
(p, α) ,

(
λ

λ

)
, b

)
= 0;

θ∗1

(
(p, α) ,

(
x1y1
x2y2

)
, τ1

)
=
⋃{

δ1

(
(p, α) ,

(
x1
x2

)
, ((q, τ1))

)

∩ θ1 ((q, τ1) , τ1) |q ∈ Q

}
= θ

(
p,

(
x1
x2

)
, τ1

)
;

θ∗1

(
(p, α) ,

(
x1y1
x2y2

)
, τ1τ2

)
=
⋃{

δ1

(
(p, α) ,

(
x1
x2

)
, ((q, τ1))

)

∩ δ

((
p,

(
x1
x2

)
, q

)
∩ θ∗1

(
(q, τ1) ,

(
y1
y2

)
, τ2

)
|q ∈ Q

)}

=
⋃
{θ

(
p,

(
x1
x2

)
, τ1

)
∩

[
δ

(
p,

(
x1
x2

)
, q

)
∩ θ

(
q,

(
y1
y2

)
, τ2

)]
|q ∈ Q;

θ∗1

(
(p, α) ,

(
x1y1z1
x2y2z2

)
, τ1τ2τ3

)
=
⋃
{δ1

(
(p, α) ,

(
x1
x2

)
, (q, τ1)

)

∩ δ

[
δ

(
p,

(
x1
x2

)
, τ1

)
∩ θ∗1

(
q,

(
y1z1
y2z2

)
, τ2τ3

)
, τ2

)
|q ∈ Q};

=
⋃
{θ

(
p,

(
x1

x2

)
, τ1

)
∩

[
δ

(
p,

(
x1

x2

)
, q

)
∩ θ

(
q,

(
y1

y2

)
, τ2

)]

∩

[
δ

(
q,

(
y1
y2

)
, r

)
∩ θ

(
r,

(
z1
z2

)
, τ2

)]
|q, r ∈ Q}. �

Thus in general this gives rise to a Watson Crick Fuzzy Moore machine. Hence
from a Watson Crick Fuzzy Mealy machine, A Watson crick fuzzy Moore machine
can be obtained. The following corollary gives the converse part. From that we
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can establish the equivalence between Watson Crick Fuzzy Moore machine and
Watson Crick Fuzzy Mealy machine.

Corollary 3.1. Watson Crick Fuzzy Moore machine is equivalent to a Watson Crick
Fuzzy Mealy machine.

Proof. let M = (Q,Σ, ρ, O, δ, qo, θ) be given Watson Crick Fuzzy Moore machine.
Construct a Watson Crick fuzzy Mealy machineM1 as: M1 = (Q,Σ, ρ, O, δ1, qo, θ1),
where θ1 is defined by

θ1

(
p,

(
x1
x2

)
, o

)
= δ∗

(
p,

(
x1
x2

)
, o

)
, ∀p ∈ Q,

(
x1
x2

)
∈

(
Σ∗

Σ∗

)
and o ∈ O∗.

Then, M1 is equivalent to M. �

Definition 3.3. Let M = (Q,Σ, ρ, O, δ, q0, θ) be a Watson Crick Fuzzy Mealy ma-

chine. Let p, q ∈ Q, then q is called the immediate successor of p, if ∃

(
a1
a2

)
∈(

Σ

Σ

)
, b ∈ O such that δ

(
p,

(
a1
a2

)
, q

)
∩ θ

(
p,

(
a1
a2

)
, b

)
> 0 and q is called

the successor of p if ∃

(
x1
x2

)
∈

(
Σ∗

Σ∗

)
and o ∈ O∗ such that δ∗

(
p,

(
x1
x2

)
, q

)
∩

θ∗

(
p,

(
x1
x2

)
, o

)
> 0

Let M = (Q,Σ, ρ, O, δ, q0, θ) be a Watson Crick Fuzzy Mealy machine and
let q ∈ Q,the set of all successors of q is denoted as S(q). Let A ⊆ Q, then
the set S(A), which represents set of all successors of A, is defined as S(A) =

(
⋃

(S (q) /q ∈ A)). Let M = (Q,Σ, ρ, O, δ, q0, θ) be a Watson Crick Fuzzy Mealy
machine let p, q ∈ Q. Then M is called strongly connected, ifp ∈ S(q).

Theorem 3.2. Let M = (Q,Σ, ρ, O, δ, q0, θ) be a Watson Crick Fuzzy Mealy ma-
chine.Define a relation ∼ on Q as p ∼ q if and only if q is a successor of p. then the
relation ∼ is not an equivalence relation.

Proof. Let p, q, r ∈ Q. Consider p ∼ q ↔ q called the successor of

p↔ δ∗

(
p,

(
x1
x2

)
, q

)
∩ θ∗

(
p,

(
x1
x2

)
, o

)
> 0.
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Consider q ∼ r ↔ r is called the successor of

p↔ δ∗

(
q,

(
x1
x2

)
, r

)
∩ θ∗

(
q,

(
x1
x2

)
, o

)
> 0.

To prove that p ∼ r ↔ r called the successor of p ↔ δ∗

(
p,

(
x1
x2

)
, r

)
∩

θ∗

(
p,

(
x1
x2

)
, o

)
> 0,

δ∗

(
p,

(
x1
x2

)
, q

)
∩ δ∗

(
q,

(
x1
x2

)
, r

)
∩ θ∗

(
p,

(
x1
x2

)
, o

)
∩ θ∗

(
q,

(
x1
x2

)
, o

)

= δ∗

(
p,

(
x1
x2

)
, r

)
∩ θ∗

(
p,

(
x1
x2

)
, o

)
∩ θ∗

(
q,

(
x1
x2

)
, o

)
∩ θ∗

(
q,

(
λ

λ

)
, λ

)

= δ∗

(
p,

(
x1
x2

)
, r

)
∩ θ∗

(
p,

(
x1
x2

)
, o

)
> 0.

Hence it is transitive.
Clearly p ∼ p, hence it is reflexive.
Suppose if p ∼ q, then q cannot be a successor of p, hence it is not symmetric.

Hence it is established that the successor property satisfies the reflexive and
transitive axioms but not symmetric, therefore the relation defined is not an
equivalence relation. �

Theorem 3.3. Let M = (Q,Σ, ρ, O, δ, q0, θ) be a Watson Crick Fuzzy Mealy ma-
chine.Let A,B ⊆ Q

(1) if A ⊆ B then S(A) ⊆ S(B);
(2) A ⊆ S(A);
(3) S (S (A)) = A;
(4) S (A ∪B) = S (A) ∪ S (B);
(5) S (A ∩B) ⊂ S (A) ∪ S (B).

Proof.
(1) Given A ⊆ B, to prove S (A) ⊆ S (B). Consider q ∈ S (A), then q ∈ S (p)

for some p ∈ A. Since A ⊆ B, p ∈ B, therefore q ∈ S(p) for some p ∈ B. Hence
q ∈ S(B), this implies that S(A) ⊆ S(B).

(2) From the definition 3.3, it is obvious that A ⊆ S(A).
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(3) By (2), we have A ⊆ S(A), then S(A) ⊆ S (S(A)),which proves the first
part. To prove the second part S (S (A)) ⊆ S (A). Consider q ∈ S (S (A)). Then
it is obvious that q ∈ S(r), for some r ∈ S(A). Hence r ∈ S(t), for some t ∈ A.
Now, q is a successor of r and r is successor of t, hence by Theorem 3.2, q is a
successor of t. Thus q ∈ S(t) ⊆ S(A). Therefore q ∈ S(A). Hence,S (S (A)) ⊆
S (A).

(4) Since Q is non empty, LetA,B ⊆ Q, then either A or B is non empty, which
implies A ∪ B is nonempty. To prove S (A ∪B) = S (A) ∪ S (B), consider q ∈
S (A ∪B), then q ∈ S(r), for some r ∈ A∪B. Then q ∈ S(r), for some r ∈ A∪B,
r ∈ A ∪ B implies r ∈ A or r ∈ B, thus q ∈ S(r), for some r ∈ A or r ∈ B hence
q ∈ S(A)∪S(B). Therefore, S(A∪B) ⊆ S(A)∪S(B) . . . (i). Retracing the above
steps, we get S(A) ∪ S(B) ⊆ S(A ∪B). Therefore S(A ∪B) = S(A) ∪ S(B).

(5) Proof is similar to (4), �

Definition 3.4. Let M = (Q,Σ, ρ, O, δ, q0, θ) be a Watson Crick Fuzzy Mealy Ma-
chine. Let ω be a fuzzy subset of Q. We say that ω is called a Watson Crick Fuzzy
subsystem of M, if

ω (q) ≥ ω (p) ∩ δ

(
p,

(
a1
a2

)
, q

)
∩ θ

(
p,

(
a1
a2

)
, b

)
,

for all p, q ∈ Q,

(
a1
a2

)
∈

(
Σ

Σ

)
, b ∈ O.

Theorem 3.4. Let M = (Q,Σ, ρ, O, δ, q0, θ) be a Watson Crick Fuzzy Mealy ma-
chine. Then ω is a Watson Crick Fuzzy subsystem of M, if, and only if,

ω (q) ≥ ω (p) ∩ δ∗
(
p,

(
x1

x2

)
, q

)
∩ θ∗

(
p,

(
x1

x2

)
, o

)
,

for all p, q ∈ Q,

(
x1
x2

)
∈

(
Σ∗

Σ∗

)
, o ∈ O∗.

Proof. Suppose ω is a Watson Crick Fuzzy subsystem of M. Let p, q ∈ Q,

(
x1

x2

)
∈(

Σ∗

Σ∗

)
and o ∈ O∗.
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To prove this theorem, Let us use the concept of mathematical induction on∣∣∣∣∣x1x2
∣∣∣∣∣ = |o| = n

Basis: If n = 0, then

(
x1
x2

)
=

(
λ

λ

)
and o = λ. Now, if q=p, then

ω (p) ∩ δ∗
(
q,

(
λ

λ

)
, q

)
∩ θ∗

(
q,

(
λ

λ

)
, λ

)
= ω (q) .

Now, if q 6= p, then

ω (p) ∩ δ∗
(
p,

(
λ

λ

)
, q

)
∩ θ∗

(
p,

(
λ

λ

)
, λ

)
= 0 ≤ ω (q) .

Hence the theorem is true for the basis.
Induction Hypothesis: Let us Assume that the theorem holds true for all(
u1
u2

)
=

(
Σ∗

Σ∗

)
and 0 ∈ O∗ such that

∣∣∣∣∣u1u2
∣∣∣∣∣ = |v| = n− 1, n > 1.

Induction: Let

(
x1
x2

)
=

(
u1a1
u2a2

)
and o=bv, where

(
a1
a2

)
∈

(
Σ

Σ

)
, b ∈ O and∣∣∣∣∣∣∣

u1
u2
−

∣∣∣∣∣∣∣ = |v| = n− 1. Then

ω (p) ∩ δ∗
(
p,

(
x1
x2

)
, q

)
∩ θ∗

(
p,

(
x1
x2

)
, o

)

= ω (p) ∩ δ∗
(
p,

(
u1a1

u2a2

)
, q

)
∩ θ∗

(
p,

(
u1a1

u2a2

)
, bv

)

=ω (p) ∩

{ ⋃
r∈Q

δ∗

(
p,

(
u1

u2

)
, r

)
∩ δ

(
r,

(
a1

a2

)
, q

)}

∩

{
θ∗

(
p,

(
u1

u2

)
, r

)
∩

( ⋃
r∈Q

δ∗

(
p,

(
u1

u2

)
, r

)
∩ θ

(
r,

(
a1

a2

)
, b

))}

= ω (p) ∩

{ ⋃
r∈Q

δ∗

(
p,

(
u1
u2

)
, r

)
∩ δ

(
r,

(
a1
a2

)
, q

)

∩ θ∗
(
p,

(
u1
u2

)
, v

)
∩ δ∗

(
p,

(
u1
u2

)
, r

)
∩ θ

(
r,

(
a1
a2

)
, b

)}
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=

{ ⋃
r∈Q

ω (p) ∩ δ∗
(
p,

(
u1
u2

)
, r

)
∩ δ

(
r,

(
a1
a2

)
, q

)
∩ θ∗

(
p,

(
u1
u2

)
, v

)

∩ θ∗
(
r,

(
a1
a2

)
, b

)}

≤
⋃
r∈Q

ω (r) ∩ δ∗
(
p,

(
u1
u2

)
, r

)
∩ θ∗

(
p,

(
u1
u2

)
, v

)
≤ w (q).

Therefore ω (q) ≥ ω (p) ∩ δ∗
(
p,

(
x1
x2

)
, q

)
∩ θ∗

(
p,

(
x1
x2

)
, o

)
.

Retracing the above steps will establish the converse part. �

Theorem 3.5.
a) Every constant Watson Crick Fuzzy set ω on Q defines a Watson Crick Fuzzy

subsystem of a Watson Crick Fuzzy Mealy machine M = (Q,Σ, ρ, O, δ, q0, θ).
b) M = (Q,Σ, ρ, O, δ, q0, θ)be a Watson Crick Fuzzy Mealy machine . Let ω1 and

ω2 be a Watson Crick fuzzy subsystems of M, Then (1) ω1 ∩ ω2 Watson Crick Fuzzy
subsystem of M and (2) ω1 ∪ ω2 is Watson Crick Fuzzy subsystem of M.

Proof.
(a) Suppose ω is a constant Watson Crick Fuzzy set on Q. Then for any p, q ∈ Q

we have ω(p) = ω(q). Therefore for any

(
a1
a2

)
∈

(
Σ

Σ

)
, b ∈ O, we have clearly,

ω (q) = ω (p) ≥ ω (p) ∩ δ

(
q,

(
a1
a2

)
, p

)
∩ θ

(
q,

(
b1
b2

)
, b

)
.

Therefore ω is Watson Crick Fuzzy subsystem of a Watson Crick Fuzzy Mealy
Machine M.

(b) Since ω1 and ω2 are Watson Crick Fuzzy subsystems of M, for p, q ∈

Q,

(
x1

x2

)
∈

(
Σ∗

Σ∗

)
and o ∈ O∗, we have ω1 (q) ≥ ω1 (p) ∩ δ∗

(
p,

(
x1

x2

)
, q

)
∩

θ∗

(
p,

(
x1

x2

)
, o

)
and ω2 (q) ≥ ω2 (p) ∩ δ∗

(
p,

(
x1

x2

)
, q

)
∩ θ∗

(
p,

(
x1

x2

)
, o

)
. We

consider (ω1 ∩ ω2) (q) = ω1 (q) ∩ ω2 (q) ≥ (ω1 (p) ∩ ω2 (p)) ∩ δ∗
(
p,

(
x1

x2

)
, q

)
∩

θ∗

(
p,

(
x1

x2

)
, o

)
, therefore ω1 ∩ ω2 is Watson Crick Fuzzy subsystem of M. Also
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ω1∪ω2 (q) = ω1 (q)∪ω2 (q) ≥ (ω1 (p) ∪ ω2 (p))∩δ∗
(
p,

(
x1
x2

)
, q

)
∩θ∗

(
p,

(
x1
x2

)
, o

)
.

This implies that ω1 ∪ ω2 is also Watson Crick Fuzzy subsystem of M. �

4. HOMOMORPHISM ON WATSON CRICK FUZZY AUTOMATA WITH OUTPUT

In this section, the algebraic concept of homomorphism is introduced on Wat-
son Crick Fuzzy Automata with Output. The applications of the homomorphism
in Successor property, topological property and Watson Crick Fuzzy subsystem
of Watson Crick Fuzzy Automata with output are studied. The Kernel of the
homomorphism is also defined with kernel being an equivalence relation is also
established. Here also the theorems are proved only for Watson Crick Fuzzy
Mealy Machine as it is equivalent to Watson Crick Fuzzy Moore Machine.

Definition 4.1. Let M1 = (Q1,Σ1, ρ, O1, δ1, qo, θ1) and M2 = (Q2,Σ2, ρ, O2, δ2, qo,

θ2) be Watson Crick Fuzzy Mealy Machines .A triplet (f,g,h) of mappings, f : Q1 →

Q2, g :

(
Σ1

Σ1

)
→

(
Σ2

Σ2

)
and h : O1 → O2, is called a Watson Crick Fuzzy Mealy

machine homomorphism from M1 to M2,denoted by

(i) δ1

(
q,

(
x1
x2

)
, p

)
≤ δ2

(
f (q) , g

((
x1
x2

))
, f (p)

)

(ii) θ∗1

(
q,

(
x1
x2

)
, o

)
≤ θ∗2

(
f (q) , g

((
x1
x2

))
, h (o)

)
∀q, p ∈ Q1,(

x1
x2

)
∈

(∑∗
1∑∗
1

)
and o ∈ O∗1.

Theorem 4.1. LetM1 = (Q1,Σ1, ρ, O1, δ1, qo, θ1) andM2 = (Q2,Σ2, ρ, O2, δ2, qo, θ2)

be Watson Crick Fuzzy Mealy Machines. Let (f, g, h) : M1 →M2 be a Watson Crick
Fuzzy Mealy machine homomorphism from M1 to M2 if p is a successor of q in
M1,then f(p) is a successor of f(q) in M2.

Proof. (f, g, h) : M1 →M2 a Watson Crick Fuzzy Mealy machine homomorphism
from M1 to M2 . Therefore by definition, we have

(i) δ1

(
q,

(
x1

x2

)
, p

)
≤ δ2

(
f (q) , g

((
x1

x2

))
, f (p)

)
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(ii) θ∗1

(
q,

(
x1
x2

)
, o

)
≤ θ∗2

(
f (q) , g

((
x1
x2

))
, h (o)

)
∀q, p ∈ Q1,(

x1
x2

)
∈

(
Σ∗1
Σ∗1

)
and o ∈ O∗1.

Also it is given that p is a successor of q in M1, then ∃

(
x1
x2

)
∈

(
Σ∗1
Σ∗1

)
and o ∈ O∗1

such that δ∗1

(
q,

(
x1
x2

)
, p

)
∩ θ∗1

(
q,

(
x1
x2

)
, o

)
> 0.

To prove that f(p) is a Successor of f(q) in M2, consider

δ∗1

(
q,

(
x1
x2

)
, p

)
∩ θ∗1

(
q,

(
x1
x2

)
, o

)
> 0 ≥ δ∗2

(
f (q) , g

((
x1
x2

))
, f (p)

)

∩ θ∗2

(
f (q) , g

((
x1
x2

))
, h (o)

)
(by definition).

Hence f(p) is a successor of f(q) �

Theorem 4.2. LetM1 = (Q1,Σ1, ρ, O1, δ1, qo, θ1) andM2 = (Q2,Σ2, ρ, O2, δ2, qo, θ2)

be Watson Crick Fuzzy Mealy Machines. Let (f, g, h) : M1 →M2 be a Watson Crick
Fuzzy Mealy machine homomorphism from M1 satisfying the conditions

(i)δ2

(
f (q) , g

((
x1
x2

))
, f (p)

)
= δ1

(
q,

(
x1
x2

)
, p

)

(ii) θ∗2

(
f (q) , g

((
x1

x2

))
, h (o)

)
= θ∗1

(
q,

(
x1

x2

)
, o

)
,∀p, q ∈ Q1,

(
x1

x2

)
∈

(
Σ∗1
Σ∗1

)
and o ∈ O∗1, then S (f (q)) = f (S (q)) , ∀q ∈ Q1

Proof.
f (p) ∈ f (S (q))⇔ p ∈ S (q)

⇔ δ∗1

(
q,

(
x1

x2

)
, p

)
∩ θ∗1

(
q,

(
x1

x2

)
,

)
> 0

⇔ δ∗1

(
q,

(
x1
x2

)
, p

)
> 0 and θ∗1

(
q,

(
x1
x2

)
, o

)
> 0

⇔ δ∗2

(
f (q) , g

((
x1

x2

))
, f (p)

)
> 0 and θ∗2

(
f (q) , g

((
x1

x2

))
, h (o)

)
> 0
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⇔ δ∗2

(
f (q) , g

((
x1
x2

))
, f (p)

)
∩ θ∗2

(
f (q) , g

((
x1
x2

))
, h (o)

)
> 0

⇔ f (p) ∈ f (S (q)).
Hence S (f (q)) = f (S (q)). �

Theorem 4.3. LetM1 = (Q1,Σ1, ρ, O1, δ1, qo, θ1) andM2 = (Q2,Σ2, ρ, O2, δ2, qo, θ2)

be Watson Crick Fuzzy Mealy Machines. Let (f, g, h) : M1 →M2 be a Watson Crick
Fuzzy Mealy machine homomorphism from M1 to M2.If M1 is strongly connected,
then M2 is also strongly connected.

Proof. Let r, s ∈ Q2. Then there exists p, q ∈ Q1 such that f(p)= r and f(q)=s.
Since M1 is given to be strongly connected, we have p ∈ S(q). Then f(p) ∈
f(S(q)). By the previous Theorem, we have f(p) ∈ S(f(q)), which implies that
r ∈ S(s). Therefore M2 also is strongly connected. �

Theorem 4.4. LetM1 = (Q1,Σ1, ρ, O1, δ1, qo, θ1) andM2 = (Q2,Σ2, ρ, O2, δ2, qo, θ2)

be Watson Crick Fuzzy Mealy Machines. Let (f, g, h) : M1 →M2 be a Watson Crick
Fuzzy Mealy machine homomorphism from M1 to M2 satisfying the conditions

(i) δ2

(
f (q) , g

((
x1
x2

))
, f (p)

)
= δ1

(
q,

(
x1
x2

)
, p

)

(ii) θ∗2

(
f (q) , g

((
x1
x2

))
, h (o)

)
= θ1∗

(
q,

(
x1
x2

)
, o

)
,∀p, q ∈ Q1,

(
x1
x2

)
∈(

Σ∗1
Σ∗1

)
and o ∈ O∗1, then then if ω is a Watson Crick Fuzzy subsystem of M1,then

f(ω) is a Watson Crick Fuzzy subsystem of M2.

Proof. Let q1, q2 ∈ Q2 and

(
y1
y2

)
∈

(
Σ∗2
Σ∗2

)
and o2 ∈ O∗2. Since f is given to be

onto, then there exist p1, p2 ∈ Q1, such that f(p1) = q1 and f(p2) = q2 .Also it is

given that g and h are onto, then there exists

(
x1

x2

)
∈

(
Σ∗1
Σ∗1

)
and o ∈ O∗1, such

that g

((
x1

x2

))
=

(
y1

y2

)
and h (o1) = o2.

Let us suppose that there exists a p3 ∈ Q1, such that f(p3) = q1. Then,

δ∗1

(
p1,

(
x1
x2

)
, p2

)
= δ∗2

(
f (p1) , g

((
x1
x2

))
, f (p2)

)
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= δ∗2

(
f (p3) , g

((
x1
x2

))
, f (p2)

)
= δ∗1

(
p3,

(
x1
x2

)
, p2

)

θ∗1

(
p1,

(
x1
x2

)
, o1

)
= θ∗2

(
f (p1) , g

((
x1
x2

))
, h (o1)

)

= θ∗2

(
f (p3) , g

((
x1
x2

))
, h (o1)

)
= θ∗1

(
p3,

(
x1
x2

)
, o1

)
.

Now, let us prove that f (ω) is a Watson Crick Fuzzy subsystem of M2. Con-
sider

f(ω)(q1) ∩ δ∗2

(
q1,

(
y1

y2

)
, q2

)
∩ θ∗2

(
p2,

(
y1
y2

)
, o2

)

=
⋃{

ω (p3) |f (p3) = q1

}
∩ δ∗2

(
q1,

(
y1
y2

)
, q2

)
∩ θ∗2

(
p2,

(
y1
y2

)
, o2

)

=
⋃{

ω (p3) ∩ δ∗2

(
q1,

(
y1
y2

)
, q2

)
∩ θ∗2

(
p2,

(
y1
y2

)
, o2

)
|f (p3) = q1

}

=
⋃{

ω (p3) ∩ δ∗2

(
f (p1) , g

((
x1
x2

))
, f (p2)

)

∩ θ∗2

(
f (p1) , g

((
x1
x2

))
, h (o1)

)
|f (p3) = q1

}

=
⋃{

ω (p3) ∩ δ∗2

(
f (p3) , g

((
x1
x2

))
, f (p2)

)

∩ θ∗2

(
f (p3) , g

((
x1
x2

))
, h (o1)

)
|f (p3) = q1

}

=
⋃{

ω (p3) ∩ δ∗1

(
p3,

(
x1
x2

)
, p2

)
∩ θ∗1

(
p3,

(
x1

x2

)
, o1

)
|f (p3) = q1

}
≤
⋃{

ω(p3)|f(p3) = q1

}
.

Since ω is a Watson Crick Fuzzy subsystem ofM1 ≤
⋃{

f(ω)(q2)|f(p3) = q1} =

f(ω)(q2). �

Definition 4.2. Let π : M1 → M2 be a Watson Crick Fuzzy Mealy machine ho-
momorphism from M1 to M2. The kernel of π denoted by ker(π) is defined as
ker(π) =

{
(p, q) /π(p) = π(q)

}
.
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Theorem 4.5. LetM1 = (Q1,Σ1, ρ, O1, δ1, qo, θ1) andM2 = (Q2,Σ2, ρ, O2, δ2, qo, θ2)

be Watson Crick Fuzzy Mealy Machines. Let π : M1 →M2 be a Watson Crick Fuzzy
Mealy machine homomorphism from M1 to M2. then The kernel of π denoted by
ker(π) is an equivalence relation.

Proof. Suppose π is a Watson Crick Fuzzy Mealy machine homomorphism, then
clearly by the definition of ker(π), if p, q ∈ Q1 and (p, q) ∈ ker(π), then π(p) =

π(q) Clearly π is relexive. By the definition if if p, q ∈ Q1 and (p, q) ∈ ker(π),
then π(p) = π(q) That is π(q) = π(p),which implies it is symmetric. To prove the
transitivity if p, q, r ∈ Q1 and (p, q) & (q, r) ∈ ker(π), then we have π(p) = π(q)

and π(q) = π(r), hence π(p) = π(q) = π(r). Therefore π(p) = π(r). This implies
that (p, r) ∈ ker(π). Thus ker(π) is an equivalence relation on Q. �

5. CONCLUSION AND FUTURE SCOPE

The Mealy machine and Moore machine ideas were introduced in Watson
Crick Fuzzy Automata to get Watson Crick Fuzzy Automata with output. Their
word processing takes less time when compared to ordinary Mealy and Moore
machines. The equivalence of Watson Crick Fuzzy Moore Automata and Watson
Crick Fuzzy mealy Automata is established. The characterizations of Watson
Crick Fuzzy Automata with output are well studied along with its properties.
Some Algebraic aspects of Watson Crick Fuzzy Automata with output are also
discussed. The Future work aims to introduce Watson Crick Rough Automata
with output and to study its characterizations.
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