

Advances in Mathematics: Scientific Journal 10 (2021), no.3, 1663-1673

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.10.3.49

# ON COMMUTING PAIR AND CENTRALISING PAIR OF AUTOMORPHISMS OF RINGS

H. Habeeb Rani, G. Gopalakrishnamoorthy, and V. Thiripurasundari

ABSTRACT. Let R be a ring and S and T be non trivial automorphims of R. If [S(x),T(x)]=0 for all  $x\in R$ , then R is a commutative ring. If  $[S(x),T(x)]\in Z$ , the centre of R, then R is a commutative integral domain.

### 1. Introduction

Let R be an associative ring. An automorphism T of R is called a commuting automorphism,if T(x)x = xT(x) for every  $x \in R$ , In[3] Drivinskey showed that a semisimple artirian ring must be commutative if it posseses a non trivial commuting automorphism. Luh [4] extended this result by proving that a prime ring R possessing a non-trivial commuting automorphism T must be an integral domain. Mayne [5] generalised this result further by proving that a prime ring R possessing a non-triavial automorphism T.such that T(x)x - xT(x) is in the centre of R, for every  $x \in R$  must necessarily commutative.L.O.Chung and J.Luh [2] called an automorphism T of R, a semi commuting automorphism if  $T(x) \cdot x = \pm xT(x)$  for each  $x \in R$ . They also proved that a prime ring R with

2020 Mathematics Subject Classification. 20C07, 16D30.

Key words and phrases. Automorphism, integral domain, rings.

Submitted: 02.02.2021; Accepted: 15.03.2021; Published: 25.03.2021.

<sup>&</sup>lt;sup>1</sup>corresponding author

characteristic  $\neq 2,3$  possessing a non-trivial semi-commuting automorphism is necessarily a commutative integral domain.

In this paper we generalise the result of J. Mayne [5] by defining commuting pair of automorphisms and centralising pair of automorphisms and more general results are obtained. Throughout this paper R denote an associative ring unless otherwise specifically stated. Z denote the centre of R.

## 2. Preliminary

**Definition 2.1.** Let R be an associative ring and T be an automorphism of R.T is called.

- (i) a commuting automorphism if  $x T(x) = T(x) \times \forall x \in R$  i.e,  $[xT(x)] = 0 \forall x \in R$ ;
- (ii) an anti commuting automorphism if  $xT(x) = -T(x)x \forall x \in R$ ;
- (iii) a semi-commuting automorphism if either  $xT(x) = T(x)x(\text{ or }) \times T(x) = -T(x)x \text{ i.e, } \times T(x) = \pm T(x) \times \forall x \in R;$
- (iv) a strong commuting automorphism if  $[x, T(y)] = [T(x), y] \forall x, y \in R$ ;
- (v) a strong semi commuting automorphism if  $[x, T(y)] = \pm [T(x), y] \forall x, y \in R$ ;
- (vi) a centralising automorphism if  $[x, T(x)] \in Z \forall x \in R$ . i.e,  $xT(x) T(x)x \in Z, \forall x \in R$ ;
- (vii) an anti-centralising automorphism if  $x T(x) + T(x)x \in \mathbb{Z}, \forall x \in \mathbb{R}$ ;
- (viii) a semi-centralising automorphism if  $xT(x) T(x)x \in Z($  or  $) \times T(x) + T(x)x \in Z, \forall x \in R;$ 
  - (ix) a strong centralising automorphism if  $[x, T(y)] [T(x), y] \in \mathbb{Z}, \forall x, y \in \mathbb{R}$ ;
  - (x) a strong semi-centralising automorphism if  $[x,T(y)]\pm [T(x),y]\in Z, \forall x,y\in R$ .

# **Remark 2.1.** Let R be any ring. Then

- (i)  $[x, y + z] = [x, y] + [x, z], \forall x, y, z \in R$ ;
- (ii)  $[x + y, z] = [x, z] + [y, z], \forall x, y, z \in R$ ;
- (iii)  $[x,y] = -[y \times x], \forall x,y \in R$ ;
- (iv)  $[xy, z] = x[y, z] + [x, z]y, \forall x, y, z \in R$ ; v[x, y] = 0 if x = y.

**Definition 2.2.** Let R be an associative ring and T be an automorphism of R. Let

$$R_{-} = \{x \in R/[x, T(y)] - [y, T(x)] \in Z, \forall x, y \in R\};$$
  

$$R_{+} = \{x \in R/[x, T(y)] + [y, T(x)] \in Z, \forall x, y \in R\}.$$

#### 3. Main Results

We generalize the above definitions and prove many interesting results.

**Definition 3.1.** Let R be an associative ring and S and T be two non-trivial automorphisms of R. They are said to be

- (i) a commuting pair of automorphism if  $S(x)T(x) = T(x)S(x) \forall x \in R$  i.e.  $[S(x), T(x)] = 0 \forall x \in R$ ;
- (ii) an anti commuting pair of automorphism if  $S(x)T(x) = -T(x)S(x) \forall x \in R$ ;
- (iii) a semi-commuting pair of automorphism if either S(x)T(x) = T(x)S(x) (or) S(x)T(x) = -T(x)S(x) i.e,  $S(x)T(x) = \pm T(x)S(x) \forall x \in R$ ;
- (iv) a strong commuting pair of automorphism if [S(x), T(y)] = [T(x), S(y)] $\forall x, y \in R$ ;
- (v) a strong semi commuting pair of automorphism if

$$[S(x), T(y)] = \pm [T(x), S(y)], \quad \forall x, y \in R;$$

- (vi) acentralising pair of automorphism if  $[S(x), T(x)] \in Z \forall x \in R$  (or)  $S(x)T(x) T(x)S(x) \in z, \forall x \in R$ ;
- (vii) an anti-centralising pair of automorphism if  $S(x)T(x) = -T(x)S(x), \forall x \in R$ ;
- (viii) a semi-centralising pair of automorphism if  $S(x)T(x) T(x)S(x) \in z$  (or  $S(x)T(x) + T(x)S(x) \in Z$ ,  $\forall x \in R$ ;
  - (ix) a strong centralizing pair of automorphism if  $[S(x), T(y)] [T(x), S(y)] \in Z$ ,  $\forall x, y \in R$ ;
  - (x) a strong semi-centralising pair of automorphism if

$$[S(x), T(y)] \pm [T(x), S(y)] \in \mathbb{Z}, \quad \forall x, y \in \mathbb{R}.$$

**Definition 3.2.** Let R be an associative ring and S and T be two automorphisms of R. Define

$$R = \{x \in R/[S(x), T(y)] - [T(x), S(y)] \in Z, \forall y \in R\};$$

$$R_{+} = \{x \in R/[S(x), T(y)] + [T(x), S(y)] \in Z, \forall y \in R\};$$

$$R_{0} = \{x \in R/[S(x), T(x)] = 0\}.$$

**Lemma 3.1.** Let R be an associative ring and S and T be a commuting pair of automorphisms of R. Then they are Strong commuting pair of automorphism of R.

*Proof.* Let S and T be a commuting pair of automorphisms of R. Then

$$[S(x) \quad T(x)] = 0, \quad \forall x \in R.$$

So, 
$$[S(x+y) \cdot T(x+y)] = 0 \forall x, y \in R$$
, i.e,  $[S(x) + S(y), T(x) + T(y)] = 0 \forall x, y \in R$ , i.e,  $[S(x), T(x)] + [S(x), T(y)] + [S(y), T(x)] + [S(y), T(y)] = 0 \forall x, y \in R$ .

Using equation (3.1) we get

$$[S(x), T(y)] + [S(y) - T(x)] = 0, \quad \forall x, y \in R,$$
 i.e,  $[S(x), T(y)] = -[S(y), T(x)] = [T(x), S(y)] \forall x, y \in R$  and

$$[S(x), T(y)] = [T(x), S(y)], \quad \forall x, y \in R.$$

This proves that S and T are strong commuting pair of automorphisms of R.  $\square$ 

**Lemma 3.2.** Let R be an associative ring and S and T be a centralizing pair of automorphisms of R. Then they are Strong centralising pair of automorphisms of R.

*Proof.* Let R be an associative ring and S and T be a centralisiing pair of automorphisms of R. Then

$$[S(x) - T(x)] \in Z, \quad \forall x \in R.$$

Then,  $[S(x+y)-T(x+y)] \in Z \forall x,y \in R$  i.e,  $[S(x),T(x)]+[S(x),T(y)]+[S(y),T(x)]+[S(y),T(y)] \in Z \forall x,y \in R$ .

Using equation (3.2) we get

$$[S(x), T(y)] + [S(y)] = [T(x)] \in Z, \quad \forall x, y \in R,$$

i.e, 
$$[S(x), T(y)] = -[S(y), T(x)] = [T(x), S(y)] \forall x, y \in R$$
, and

$$[S(x),T(y)]=[T(x),S(y)], \quad \forall x,y \in R.$$

This proves that S and T are strong centralising pair of automorphisms of R.  $\square$ 

**Lemma 3.3.** Let R be an associative ring and S and T be a strong semi centralizing pair of automorphisms of R. If a, be R Then  $a + b \in R$  and  $a - b \in R$ ,  $\forall x, y \in R$ .

*Proof.* Let  $a, b \in R$ . Then

(3.3) 
$$[S(a), T(y)] - [T(a), S(y)] \in Z, \quad \forall y \in R,$$

(3.4) 
$$[S(b), T(y)] - [T(b), S(y)] \in Z, \quad \forall y \in R.$$

Expressions (3.3) and (3.4) give

$$[S(a) + S(b), T(y)] - [T(a) + T(b), S(y)] \in Z, \quad \forall y \in R,$$

i.e,

$$[S(a+b), T(y)] - [T(a+b), S(y)] \in Z, \forall y \in R.$$

This implies  $a + b \in R_-$ . Similarly (3.3) and (3.4) give  $a - b \in R_-$ .

**Lemma 3.4.** Let R be any ring and S and T be a strong semi centralizing pair of automorphisms of R. If  $a, b \in R_+$  Then  $a + b \in R_+$  and  $a - b \in R_+$ 

*Proof.* Similar to the proof of lemma 3.3.

**Lemma 3.5.** Let R be a 2-torision free ring. Let S and T be a strong commuting pair of automorphisms of R. Then the v are commuting pair of automorphisms of R.

*Proof.* Let S and T be a strong commuting pair of automorphisms of R. Then

$$[S(x), T(y)] = [T(x), S(y)], \quad \forall x, y \in R,$$

i.e,  $[S(x), T(x)] = [T(x), S(x)] = -[S(x), T(x)], \forall x \in R$ , i.e. S and T are commuting pair of automorphisms of R.

**Lemma 3.6.** Let R be a 2-torision free ring. Let S and T be a strong centralising pair of automorphisms of R, then they are centralising pair of automorphisms of R.

*Proof.* Let S and T be a strong centralising pair of automorphisms of R. Then

(3.6) 
$$[S(x), T(y)] - [T(x), S(y)] \in Z, \quad \forall x, y \in R,$$

$$\Rightarrow [S(x), T(x)] - [T(x), S(x)] \in Z, \quad \forall x \in Z$$

$$\Rightarrow [S(x), T(x)] + [S(x), T(x)] \in Z, \quad \forall x \in Z$$

$$\Rightarrow 2[S(x), T(x)] \in Z, \quad \forall x \in Z$$

$$\Rightarrow [S(x), T(x)] \in Z, \quad \forall x \in Z.$$

Finally, S and T are centralising automorphisms of R.

**Theorem 3.1.** Let R be a Prime ring and S and T be two non-trivial automorphisms of R, such that  $S \neq T$ . If S and T are commuting pair of automorphisms of R, then R is a commutative integral domain.

*Proof.* Let S and T be two non-trivial commuting pair of automorphisms of R, such that  $S \neq T$ . Then

$$[S(x), T(x)] = 0, \quad \forall x \in R.$$

Replace x by x + y in (3.7) we get,

$$[S(x+y), T(x+y)] = 0, \quad \forall x, y \in R,$$

i.e,

$$[S(x), T(x)] + [S(x), T(y)] + [S(y), T(x)] + [S(y), T(y)] = 0, \quad \forall x, y \in R.$$

Using (3.7) we get,

$$[S(x), T(y)] + [S(y)T(x)] = 0, \quad \forall x, y \in R,$$
 
$$[S(x), T(y)] = -[S(y), T(x)], \quad \forall x, y \in R,$$
 
$$[S(x), T(y)] = -[T(x), S(y)], \quad \forall x, y \in R.$$
 (3.8)

Replace y by xy in (3.8) we get,

$$\begin{split} [S(x),T(xy)] = & [T(x),S(xy)], \quad \forall x,y \in R; \\ [S(x),T(x)T(y)] = & [T(x),S(x)S(y)], \quad \forall x,y \in R; \\ T(x)[S(x),T(y)] + & [S(x),T(rx)]T(y) = S(x)[T(x),S(y)]; \\ & + & [T(x),S(x)]S(y), \quad \forall x,y \in R. \end{split}$$

Using (3.7) we get,

$$T(x)[S(x), T(y)] = S(x)[T(x), S(y)], \quad \forall x, y \in R.$$

Using (3.8) we get

$$T(x)[S(x), T(y)] = S(x)[S(x), T(y)], \quad \forall x, y \in R,$$

i.e,

(3.9) 
$$(S(x) - T(x))[S(x), T(y)] = 0, \quad \forall x, y \in R.$$

Since T is an automorphism we have

(3.10) 
$$(S(x) - T(x))[S(x), z] = 0, \quad \forall x, z \in R.$$

Now,

$$y[S(x), z] = [S(x), yz] - [S(x), y]z, \quad \forall x, y, z \in R,$$

i.e.,

$$(S(x) - T(x))y[S(x), z] = (S(x) - T(x))[S(x), yz] - (S(x) - T(x))[S(x), y]z = 0.$$

This is true for all  $y \in R$ . Hence

(3.11) 
$$(S(x) - T(x))R[S(x), z] = 0, \quad \forall x, z \in R.$$

Since  $S \neq T$  there must be at least one  $x_0 \in R$  such that  $S(x_0) \neq T(x_0)$ . Since R is Prime  $[S(x_0), z] = 0 \forall z \in R$  i.e.  $S(x_0) \in z$ . Suppose  $S(y) \notin Z$  for some  $y \in R$  Thus  $S(x_0) + S(y) \notin Z$ . Using (3.11) we get

$$[S(y) - T(y)]R[S(y), z] = 0, \quad \forall z \in R$$

Since

(3.12) 
$$S(y) \notin Z, [S(y), z] \neq 0.$$

Since R is Prime. S(y) - T(y) = 0 i.e, S(y) = T(y). Similarly,

(3.13) 
$$S(x_0 + y) = T(x_0 + y)$$

(3.12) and (3.13) gives  $S(x_0) = T(x_0)$  So  $S(y) \in Z$  is contradictives. Since S is an automorphism of  $Rx \in Z \forall x \in R$  and R is commutative.

**Remark 3.1.** Taking S as identity automorphism of R, we get the Theorem of J. Luh [4].

**Theorem 3.2.** Let R be a 2 torision free prime ring and S and T are non-trivial automorphisms of R. If S and T are strong commuting automorphisms of R then R is commutative.

*Proof.* Let S and T be strong commuting pair of automorphisms of R. By lemma 3.5, They are commuting pair of automorphisms of R.

*R* is commutative follows from theorem 3.1.

**Lemma 3.7.** Let R be a prime ring and  $x, y \in R$  such that  $0 \neq x \in Z$  If xy = 0, then y = 0.

*Proof.* Let  $z \in R$  be any element then  $zxy = 0 \Rightarrow xzy = 0$  (since  $x \in Z$ )  $\Rightarrow xRy = 0$ . Since R is prime x = 0 or y = 0. Now As  $x \neq 0$ , we get y = 0.

**Lemma 3.8.** Let b and ab be in the centre of a prime ring R. If b is not zero,then a is in the centre of R.

*Proof.* Let  $x \in R$  be any element. Now

$$(ax - xa)b = axb - xab$$

$$= abx - abx \ (\because b \in Z \text{ and } ab \in Z)$$

$$= 0$$

By lemma 3.7, we get ax - xa = 0 i.e,  $ax = xa \forall x \in R$ , i.e,  $a \in Z$ .

**Theorem 3.3.** Let R be a prime ring with non-trivial centralizing pair of automorphisms S and T such that  $S \neq T$ . Then R is commutative integral domains.

*Proof.* Let S and T be non trivial centralizing automorphisms of R such that  $S \neq T$ . Now,

$$[S(x), T(x)] \in z, \quad \forall x \in R.$$

We will first prove that S and T are commuting pair of automorphisms of R. Suppose there exists  $x_0 \in R$  such that

$$[S(x_0), T(x_0)] \neq 0.$$

Replacing x by  $x_0 + y$  in (3.14) we get,  $[S(x_0 + y), T(x_0 + y)] \in Z, \forall y \in R$ ,

$$[S(x_0), T(x_0)] + [S(x_0), T(y)] + [S(y), T(x_0)] + [S(y), T(y)] \in Z, \quad \forall y \in R.$$

Using (3.14) we get

(3.16) 
$$[S(x_0), T(y)] + [S(y), T(x_0)] \in Z, \quad \forall y \in R.$$

So,

$$[S(x_0), [S(x_0)T(y)] + [S(y), T(x_0)]] = 0, \quad \forall y \in R.$$

Replace y by  $x_0^2$  in (iv) we get,

i.e 
$$[S(x_0), [S(x_0), T(x_0^2)] + [S(x_0^2), T(x_0)]] = 0$$
  
i.e.  $[S(x_0), S(x_0), T(x_0), T(x_0)] + S(x_0)[S(x_0), T(x_0)] = 0$   
 $[S(x_0), T(x_0)[S(x_0), T(x_0)] + [S(x_0), T(x_0)], T(x_0)]$   
 $+ [S(x_0), S(x_0)[S(x_0), T(x_0)] + [S(x_0), T(x_0)], S(x_0)] = 0.$ 

Using (3.14) we get,

$$[S(x_0), 2T(x_0)[S(x_0), T(x_0)] + [S(x_0), 2S(x_0)[S(x_0), T(x_0)]] = 0$$

$$2T(x_0)[S(x_0)[S(x_0), T(x_0)] + 2[S(x_0), T(x_0)][S(x_0), T(x_0)]]$$

$$+2S(x_0)[S(x_0)[S(x_0), T(x_0)] + 2[S(x_0), S(x_0)][S(x_0), T(x_0)]] = 0.$$

Using (3.14) we get,  $0+2 [S(x_0), T(x_0)]^2+0+0=0$  i.e,  $2 [S(x_0), T(x_0)]^2=0$ . If Char  $R \neq 2$  then  $[S(x_0), T(x_0)]^2=0$ . Using lemma 3.8,  $[S(x_0), T(x_0)]=0$ . Contradicting (3.15), this contradiction proves that  $[S(x), T(x)]=0 \forall x \in R$  if Char  $R \neq 2$ . Assume Char R=2, then  $x=-x \forall x \in R$ . Now,

$$\begin{split} & \left[ \left[ S(x)S(y) \right] T(x) \right] + \left[ S\left(x^2\right), T(y) \right] \\ &= \left[ S(x)S(y) - S(y)S(x), T(x) \right] + S(x) \left[ S(x), T(y) \right] + \left[ S(x), T(y) \right] S(x) \\ &= \left[ S(x)S(y), T(x) \right] - \left[ S(y)S(x), T(x) \right] + S(x) \left[ S(x), T(y) \right] + \left[ S(x), T(y) \right] S(x) \\ &= S(x) \left[ S(y), T(x) \right] + \left[ S(x)T(x) \right] S(y) - S(y) \left[ S(x), T(x) \right] - \left[ S(y), T(x) \right] S(x) \\ &+ S(x) \left[ S(x), T(y) \right] + \left[ S(x), T(y) \right] S(x) \end{split}$$

Using the fact  $[S(x), T(x)] \in Z \forall x$  and  $x = x \forall x \in R$ . We get

$$S(x)[S(y),T(x)] + [S(y),T(x)]S(x) + S(x)[S(x),T(y)] + [S(x),T(y)]S(x)$$

$$= S(x)\{[S(y),T(x)] + [S(x),T(y)]\} + \{[S(y),T(x)] + [S(x),T(y)]\}S(x)$$

$$= 2 S(x)\{[S(y),T(x)] + [S(x),T(y)]\}$$

$$= 0 \quad \text{(since char } R = 2\text{)}.$$

Thus

(3.18) 
$$[[S(x), S(y)], T(x)] + [S(x^2), T(y)] = 0, \quad \forall x, y \in R.$$
  
Put  $z = T(x)$ ,

(3.19) 
$$[S(x)_2 S(y), z] + [S(x^2), T(y)] = 0, \quad \forall x, y \in R, z = T(x).$$

Put x = y in (3.19) we get  $[S(x^2), T(x)] = 0, \forall x \in R$ , i.e.

(3.20) 
$$[S(x^2), z] = 0.$$

Put  $y = xS^{-1}zS$  in (3.19). Then  $S(y) = S(xS^{-1}(z S)) = S(x)z$ . So (3.19) becomes

$$[[S(x), S(x)z], z] + [S(x^{2}), T(xS^{-1}(zS))] = 0$$

$$[S(x)[S(x), z] + [S(x), S(x)]z, z] + [S(x^{2}), T(x)T(S^{-1}(z))] = 0$$

$$[S(x)[S(x), z], z] + [S(x^{2}), z^{w}] = 0,$$

where  $w = T(s^{-1}(z))$ 

$$S(x)[[S(x), z], z] + [S(x), z][S(x), z] + z [S(x^2)w] + [S((x^2), z]w = 0,$$
  
 $[S(x), z] = [S(x), T(x)] \in Z,$ 

 $\forall x \in R$ . Using (3.20) we get  $[S(x), z]^2 + z [S(x^2), w] = 0$ , i.e.,

$$[S(x), z]^2 = -z \left[ S\left(x^2\right), w \right] = z \left[ S\left(x^2\right), w \right], \quad \forall x \in R.$$

Put  $y = xs^{-1}(z)x$  in (3.19). Then  $S(y) = S(xs^{-1}(z)x) = S(x)zS(x)$ . So, (3.19) becomes

$$[S(x), S(x)zS(x), z] + \left[S\left(x^{2}\right), T\left(xs^{-1}(z)x\right)\right] = 0$$

$$\left[S\left(x^{2}\right)zS(x) - S(x)zS\left(x^{2}\right), z\right] + \left[S\left(x^{2}\right), T(x)T\left(S^{-1}(zS)\right)T(x)\right] = 0$$

$$\left[S\left(x^{2}\right)zS(x), z\right] - \left[S(x)zS\left(x^{2}\right), z\right] + \left[S\left(x^{2}\right), zwz\right] = 0$$

$$S\left(x^{2}\right)\left[zS(x), z\right] + \left[S\left(x^{2}\right), z\right]zS(x) - S(x)z\left[S\left(x^{2}\right), z\right]$$

$$-\left[S(x)z, z\right]S\left(x^{2}\right) + \left[S\left(x^{2}\right), zwz\right] = 0.$$

Using (3.20) we get

$$\begin{split} S\left(x^{2}\right)[z\;S(x),z][S(x)z,z]S\left(x^{2}\right) + \left[S\left(x^{2}\right),zwz\right] &= 0\\ S\left(x^{2}\right)\left\{z[\}S(x),z] + [z,z]S(x)\right\} - \left\{S(x),[z,z] + [S(x),z]z\right\}S(x)\\ &+ \left[S\left(x^{2}\right),zwz\right] &= 0\\ \text{i.e. } S\left(x^{2}\right)z[\;S(x),z] - [S(x),z]zS\left(x^{2}\right) + \left[S\left(x^{2}\right),zwz\right] &= 0. \end{split}$$

Since,

$$[S(x),z] = [S(x),T(x) \in Z \forall x$$
 
$$[S(x),z] \left[S\left(x^2\right)z - zS\left(x^2\right)\right] + \left[S\left(x^2\right),zwz\right] = 0$$
 i.e. 
$$[S(x),z] \left[S\left(x^2\right),z\right] + \left[S\left(x^2\right),zwz\right] = 0.$$

Using (3.20) we get  $[S(x^2), zwz] = 0$  i.e,

$$z\left[S\left(x^{2}\right),wz\right]+\left[S\left(x^{2}\right),z\right]wz=0.$$

Using (3.20) we get  $z [S(x^2), wz] = 0$  i.e.

$$z\left\{ w\left[S\left(x^{2}\right),z\right]+\left[S\left(x^{2}\right),w\right]z\right\} =0.$$

Using (3.20) we get z  $[S(x^2), w]$  z = 0. Using (3.21) we get  $[S(x), z]^2 \cdot z = 0$ . Since  $z = T(x) \neq 0$ , we get  $[S(x), z]^2 = 0 \forall x$ , i.e.,  $[S(x), z] = 0 \forall x$ , i.e.,  $[S(x), T(x)] = 0 \forall x \in R$  i.e, S and T are commuting pair of automorphim. Hence by Theorem 3.1, R is commutative.

### REFERENCES

- [1] R. AWTAR, On a theorem of posner proc, Cambridge Philos., sec., 73(1973), 25-27.
- [2] L.O. CHUNG, J. LUH, On semi contracting automorphism of rings, Canad. Math. Bull., **21**(1) (1978), 13-16.
- [3] W. DIVINSKY, On commuting automorphisms of rings, Trans. Roy. Soc. Canada, sect. III, 49 (1955), 19-22.
- [4] T. LUH, A note on commuting automorphism of rings, Amer Math Monthy, 77 (1970), 61-62.
- [5] J.H. MAYNE, Centralizing automorphism of prime Rings, Canad. Math. Bull., **19**(1) (1976), 113-115.
- [6] J.H. MAYNE, Centralizing mapping of prime Rings, Canad. Math. Bull., 27(1) (1984), 122-126.
- [7] E. POSNER, Derivation in prime Rings, Proc. Amer. Math Soc., 8(1957), 1093-1100.

DEPARTMENT OF MATHEMATICS

H.K.R.H. COLLEGE, UTHAMAPALAYAM,

THENI DISTRICT, TAMILNADU, INDIA.

Email address: habeebrani23@gmail.com.

SRI KRISHNASAMY ARTS AND SCIENCE COLLEGE, METTAMALAI, SATTUR,

VIRUDHUNAGAR DISTRICT, TAMILNADU, INDIA.

Email address: ggrmoorthy@gmail.com

DEPARTMENT OF MATHEMATICS

SRI S.R.N.M. COLLEGE, SATTUR,

VIRUDHUNAGARDISTRICT, TAMILNADU, INDIA.

Email address: thiripurasund@gmail.com