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EXISTENCE AND ULAMS TYPE STABILITY FOR SYLVESTER MATRIX
IMPULSIVE VOLTERRA INTEGRO-DYNAMIC SYSTEM ON TIME SCALES

A. Sreenivasulu! and B.V. Appa Rao

ABSTRACT. In this paper, We developed the existence and Ulam’s type stabil-
ity for Sylvester matrix impulsive Volterra integro-dyanamic system on time
scale calculus. Banach fixed point theorem has used to established these re-
sults.Moreover, to outline the utilization of these outcomes an example is given.

1. INTRODUCTION

Integro-differential equations with impulsive matrix dynamical systems have
considered important in varied applications as physics, biological systems such
as heart-beats, economics, mechanical system with impact, control theory and
so on. See the monograph given by [11,12]. built up the consequence of com-
parative system with Q(t)=0, Later Murty et.al. [13,14]. There are numerous
physical problems that are characterized by unexpected changes in their states.
These unexpected changes are said to be impulsive effects in the system. In the
current writing these are two types of impulsive dynamical systems. Frist one is
linear impulsive dynamical and second one is non-linear dynamical system. In
the linear impulsive dynamical system in the span of these unexpected changes
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is very little in examinations with the term of a whole advancement measure as
like shocks and natural disasters and in non-linear impulsive dynamical system
is the span of these progressions proceeds over a finite time interval and ref-
erences them [4,9,10,15,16,17]. Volterra integral type equation on time scales
[18].In 19th century was introducing Hyers-Ulams type stability concept and
now it has been gained a lot of articles. The qualitative principal that could be
significant from enhancement and mathematical factor of view is committed to
the stability analysis of the solution to differential equations. Hyers-Ulams type
stability for the result of the differential equations has been conveyed in parts
of articles. See references [19,20].

Now, we focus our attention to study of delta differentiable existence, unique-
ness and Ulma’s type stability of the Volterra integro-dynamical systems with
Sylvester matrix impulsive on time scales are given by

(

aB(t) = P(t)a(t) + z(t)Q(t) + p(t) At)=(t) B(t)
+ [ (La(t, s)2(s) + 2(s) La(t, 5))

(1.1) +F(t, X (1)), t € To\{tr )22, :

z(t5) = (I + Dyp)a(ty), k =1,2,...

L $(t0) = 29

where T has the property unbounded above time scale with bounded graini-
ness, Ty := [tg,00) N T,t, € Ty are right dense, 0 < ¢ty < t; <,..., < t <
oo limy oo B = 00, 2(t;,) = limy,_0- x(t, — h)andz(t)) = limy, o+ z(tx + 1), Dy, €
M,(R),z(t) € M,x,(R) is a state varuable, F'(¢, X (t)) is an n x n function
and P(t) € CoyRM, 5, (R), Q(t) € CrgRM,,5n(R), Li(t) € CrqRM,,«n(R),and
Ly(t) € CrgRM,,x,(R) respectively, X2 (t) is the generalized delta derivative of
X and p(t) is a graininess function.

In section 2 and 3, we analysis basic techniques of time scales also derive ba-
sic concepts for converting given matrix valued system into a Kronecker product
system by using variation of parameters. we developed existence and unique-
ness stability of Volterra intrgro-dynamical system with Sylvester matrix impul-
sive on time scale.
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2. PRELIMINARIES

In 1988, Stefan Hilger introduced on the time scales calculus in his Ph.D.
thesis. Binding together the continuous as well as discrete analysis of the sys-
tem. Thought this paper T denotes the time scales calculus. For more de-
tailed data allude the text books [6,7] and the research paper [11]. We rec-
ollection some fundamental definitions, notations and useful lemmas. The Ba-
nach space of all continuous functions f : I — R™ and endowed with the
norm || f||. = supser) s is denoted by ||.||C(/,R™) and let R"be the space of n-
dimensional column vectors x(t) = col(xy, zs, . .., z,). denotes the Banach space
of Lebasque integrable functions from I into R™ is denoted by L!(7, R"). The Ba-
nach space of piecewise continuous functions as PC(I,R") =z : I - R" : z €
C((tr, tx + 1],R"),k = 0,1,2,..., and for some z(¢, ) and z(t;) For our conve-
nience notation PC(I,R") is ||z||pc = supic(ay Jgg{lg, for some 2 € R* Next, we
define PC,4(I,R") = {z € PC(I,R™)} PC,4(I,R™) from a space the supermom
norm ||z, = maz{l|z||pc, |[zallpC}.

Definition 2.1. [6] A nonempty closed subset of R is called a time scale. It is
denoted by T. We define a T interval as [a,blr = {t € T : a <t < b} accordingly,
we define (a,b)r,[a, b)r, (a, bl and so on. Also, we define T* = T{maxT} if maxT
exists, otherwise the forward jump operator o : T — T is defined by o(t) = inf{s €
T : s > t} € T with the substitution inf{(} = supT and The graininess function
w(t) : T — [0, 00)byu(t) = o(t) — t,vt € T.

Definition 2.2. [6] The mapping x from T — R (when 7=sup'T, choose 7 is not left
scattered). The generalized delta derivative of x(t), represented by x> (7), having
the nature that, for any € < 0. There exists a nbd U(t) implies

[o(o(7)) = a(s)] = 22(7)[o(7) = s]| € elo(r) — s,

each se U.

Here x is delta derivative for every 7 € T; then mapping x from T to R is
called as generalized derivative on time scales calculus.

Definition 2.3. [6] The mapping H from T* to R is know as anti-derivative of h
from T* to R only if h™(7) = H() fulfilled, for all 7 € T*. Then

/ h(s)As = H(t) — H(a).
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Definition 2.4. [7] The regressive function x mapping from T to R is defined
asl + u(t)y(t) # 0 for all t € T. The combination of all regressive and right
dense continuous function are represented as R = R(t) = R(T,R) Similarly all
positively regressive function are denoted as

RY=R*(T,R)={y € R: 1+ u(t)y(t) > 0forallt € T}.
Definition 2.5. [3]| The right dense continuous matrices M and N on T, implies
(M + N)2(t) = M2(t) @ N(t) + M(o(t) ® Na(t)).

We put the vec operator to the equation (1), the it is converted into a Kronecker
product dynamical system by using Kronecker product properties [3], we have

At) = GESNE (s)As+ f(t, Z(1)),
2.1) te Uk:D(Skvtk-H]
Z(t;:) = (In ® Rk)z(tk),t c (Sk,tk+1]']1*, kE=0,1,...,m
Z(to) = Z20-
Here T is time scales.sy,t, € T are right dense ponits with 0 = sy = ¢, <
th <ty < t3 <oy < S < g, iMooty = 00, 2(t) = limyy- 2(t,, — h)

and z(t}) = limy o+ 2(tx + h) represent the right and left limits of z(t) at
t =t in T, f(t,2(t)) = vecF(t,X(t)) vecotor function which is piece wise rd-
continuous on T.z(t) = Vecz(t),A(t) = [Q* @I +1® P+ u(t)(Q* ® P) €
CraR(Mp252(R)),G(t, ) = [(La ® I,) + (In @ L1)] € CraR(Mp2sn2(R))],Ri =
(I ® Dg) € CraR(Myae(R))].

Using Tensor product (KP) definition the matrix P : TF — R" is both the
regressive as well as rd-continuous. Clearly the system 2 is known as KP system
linked (1).

Definition 2.6. [7] For A € R the generalized exponential function on T is defined
as

ea(t,s) = e:z:p(/ () (A(T))AT),t,s € T,

where
lo T
%lﬂb( ) #£0

@@N“””‘{AﬁMﬂ%o

is a cylinder transformation.

Definition 2.7. [7] Let A, B € R, then
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i.A®B=A+ B+ u(r)AB
.. _A

11 . @A:m

iii. AoB=A® (6B)

Lemma 2.1. [7] Let A, B € R, then

a.et,s)=1andea(t,t) = 1.

b . ea(o(t),s) = (14 pu(r)p(t))ealt, s).
c eA(t s)ea(s, r) =eu(t,r)
d.eult,s) = GA(S o) = esals,t).

e . (eea(t s))™ = OA(t)ecalt, s)

Lemma 2.2. [6] If X € PC,4(T,R")satisfies the inequality condition. Then

X(t) <a+ /tA(s)m(s)At + Z Brz(ty),vt € T,

a a<tp<t
then
X(t)<a ] (1+Biealt,a),VteT.

a<ltp<t
We consider the linear Volterra integro-dynamical system (2.1) without im-
pulsive, then

2.2) za(t) = —i—ft s)As,t €1
' Z(to) =20

An n? xn? matrix is defined to be a real-valued function of ()(¢, s)and it is denoted
by

O(t,s) = [z1(t,8), 22(t, 8), - . ., 2n2(t, 8)]

where z(t,5),k = 1,2,3,...,n? are n’linearly independent solution of the sys-
tem (2.2). the principal matrix ()(¢,s) is known as the transition matrix if
0(t,0) = IL,2x,2 at t=0. and if z(¢t) = 0(¢, 0)zois a unique solution of the sys-
tem (2.2).

Lemma 2.3. Let ()(¢, s) be the transition matrix of the system (2.2), then
L O, 7) =0t )0 (r,s)07 (¢, 7) = O(7,1);
ii. 02 (t,s) = A@)0(t, s) + [' G(t, T)0(t, s)AT;
iii. 02+(t,5) = —0(t,0(s))A(s) — [}, G(t,o(7)0(r, 5)Ar.
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Theorem 2.1 (Theorem[19,variation of parameters). The solution of the system

(2.1)

23) {2@;_2 (1) + [} Glt.5)2(5) 85 + H (1), t € 0.T):

satisfying the initial condition z(ty) = zo, is
2(t) = O(t, to)z0 + /Ot O(t,o(r))H(t)AT,
Here, the principal matrix is ()(¢, s) then the solution of
P2 (t,s) = A(t)D(t, o(s)) + /t G(t,7)0(T, s)AT.

Definition 2.8. A function z(t) € PC(I,R"™)is known as the solution of the system
(2.1) if 2(t) satisfies z(ty) = 20, 2(t]) = [[n, @ Ri|z(tx), t € (tr, sklt, bk =1,2,...m
and z(t) is the solution of the following integral equations:

2.4) z(t) = 0(t, to)zo0 + /Ot O(t,o(7))f(7,z(T))Deltar,Vt € (0,t1]r

t
(2.5) z(t) = 0(t, sg)[In @ Rilz(ty) + / O(t,o(7))g(T)AT,
Sk
vVt € (Sk,tk+1]']1*, k=1,2,....m
For our convenience notations, we have

L= ¢
(tg)lgfle@( s)|].

Now, we consider the inequality conditions if € > 0, we have

ly2 () — -G (s)As — f(t,y(®) < e
(2.6) t e Uk:0(5k7tk+1]
y(td) — [In @ Ril2(ts) <€, t € (sp, tlrll, b =1,2,...m

Definition 2.9. [20] Equation (2.1) is Ulam-Hyers stable if there exists a real num-
ber Wz, .1,,.m) > 0 such that for ¢ > Oand for each solution y € PC,q(I,R)of
inequality (2.5), there exists a unique solution z € PC,4(I,R) of equations (2.1)
with

ly(t) = 2O < WiryLym)(€),VE € 1.
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Definition 2.10. [20] Equation (2.1) is generalizes Ulam-Hyers stable if there exists
a Wi Lym € CRT,RT), Wi, 1,.m)(0) = 0 such that for each solutions y €
PC.4(I,R)of inequality (2.4), there exists a unique solution z € PC,4(I,R) of
equations (2.1) with

ly(t) = 2Ol < WirsLg.m)(€), VE € 1.
Remark 2.1. Definition 2.9 = Definition 2.10.

Remark 2.2. A function y € PC(I,R™) is a solution of inequality (2.5) if and
only if there is H € PC(I,R”Q) and a sequence Uy, k = 1,2,3,...,m, such that

(1) HH(t)H <e VteUk O(Sk,tk“) )and ||Hy|| < e,Vk =1,2,...,m

(2) y2(t) = )+, G (s)As+ f(t,y(t)+H(t),t € (s, trsr)r) k=
0,1,...,
(3) y(t;) - []n X Rk]y(tk) + Hk7t S (8k7tk+l>T)7 k= 07 17 cee, M

Indeed, by the above remarks, we have that

y2(t) = OENNE (s)As + f(t,y(t)) + H(?),
t e (Sk,tk+1]'ﬂ‘,l€ =0, 17 o.M
y(t;) = [In X Rk]y(tk> + Hk7 le (Slmtk-i—l]Ta k= 17 27 s,

then
y(t) = 0(t,0)20 + /Ot O(t, o(T))(f(t.y(r)) + H(t))AT,Vt € (0, ]

y(ﬁ:) = [In ® Rk]y(tk> + Hkat S (tka Sk]Ta k= 17 27 U

[y () = O(F, s1) ([1n @ RiJy(te) — / 0, o(7))f (7, y(r)A|],

<0G i)l H ] +/ 10, (M) H(E)||AT| < Me(1+T).

Also, for t € [0,t,], we have

|y (t) — O(t, si)20 — /0 O, o(1))f(r,y(T))AT|| < MeT.
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Similarly, for t € (sk,tgs1]r, k =1,2,...,m, we have
ly(£5) = [In ® Rely(te)l] < e.

For Ulam’s-type stability of the system (2.1), we need the following conditions.
C1: The non-linear function f : J; X R — R”Q, Ji = Ujeo(Sks tres]r is contin-
uous and there exists a @ ve constant such that

Hf(t72> _f(tay)H S MfHZ—yH,VZ,y < Rn27t S Jl-

Also, there exista @ ve constant Ly such that || f(t,z)|| < Ly, ¥t € J, and z € R™.
C2: The non-linear function gy : I, x R™ — R™ are continuous and there exists

a @ ve constant such that L, .k =1,2,...,m, such that

(L@ Rz (t) — (Lo Rily(t)l| < My, |lz=yll,V2,y € RVt € Ik = 1,2,....m.

Also, there exista @ ve constant L, such that ||([1, ® Rg|z(ty)|| < L,,Vt € I} and
z e R™,

3. EXISTENCE AND ULAM’S TYPE STABILITY

Now, we developed the existence and Ulam’s type stability for the system (2.1)
by using Banach fixed points theorem.

Theorem 3.1. If the conditions (C1) - (C2) are satisfied, then system (2.1) has a
unique solution.

Proof LetD C PC such that D = {z € PC(I,R™) : ||z]|pc < 7}, where v =
max(LL, + LL;T, L||z|| + LL;T, Ly).
Now, the operator G : D — D, we have

(3.1) (G2)(t) = 0(t,0)z0 + /Ot O(t, o)) f(r,z(7))AT,Vt € [0,14].

(3.2) (G2)(t) = gk(t, D(tx, s—1)([In @ Rz (tx) +/ O(te, o(r))f (7, 2(7)) A7),
Vt € (lfk,sk]qr,k,‘ =1,2,...,m.
(3.3) (G=z)(t) = 0(¢, sk)([fn®Rk]z(tk)+/ O(t,o(1))f(,2(T))AT),Vt € (ty, sklT,

k=1,2,...,m.
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We have to prove G : D — D by using the Banach fixed points theorem. Now,
forVt € (tg, Sps1lm, k= 1,2,...,m, and z € D, we have

1(G2) O] < 0C, si)[|([n @ Ri]z(tx)]] + /: 10, o (DI f (7, 2(7))I|AT)
< LL,+ LLs(t — si). k
Therefore,
(3.4 1(G2)(D)l|lpc < LLg + LL;T.

Now, for ¢ € (0,t;,] and z € D, we have

1(G2) D] < 1102, 0)]]]] ]| +/0 10t o (T)I1f (7, 2(7))]| AT,
< L||Zo|| +LLft

Therefore,

(3.5) (G2)()llpc < Lilz0l| + LL;T.
Similarly, for ¢ € (¢, sk]r,k = 1,2,...,m; and z € D, we have
(3.6) 1(G2) (1)l < Ly.

Subsequent to summing the inequalities (3.4) -(3.6), we have

1(Gz) ()] pc < -
Therefore, G : D — D, for any z,y € D,t € (t, si|t,k =1,2,...,m, we get
1(G2) () = (Gu) I < (10, s)[[[[[Ln ® Rilz(te) — [In ® Rily(te)l|

T / 108Gt ()£, 2(r)) — F(ry(r))]| A
< LM, ||=(6) — y(E)]| + LM, / 2(r) — y(r)||Ar

t
< LMy calte, si)l|z — yllpe + LMyl — yllrc / eo(r i) AT
Sk

LMpgeq(r, si)||z — yllpc
5 .

< LMy, eq(tr, si)l|z — yllpc +

Therefore,

(3.7) 1G2)(1) - Gy)D)lre < [—Mu_ | LMy

9k _
€Q<T7Sk) + 0O ]HZ yHPC'
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Next, any z,y € D,t € ([0, ], we get

1(G2)(t) = (Gu)(®)]] < /Ot 10, () f (7, 2(7)) = f(r,y(T)[|AT)

' LM 0 _
SL]\/[f||2’—y||130/ eq(r,0)AT < rea(T,0)|]2 yHPC)‘
0

Q
Therefore,
LM
(3.8) 1(G2)(t) — (Gy)(B)]] < Qsz —yllpc-
Similarly, for ¢ € (ty, sk]r, k = 1,2,..., m, we have

1(G2)(8) = (Gy) D]
< My, (|0Ctx, -0l ® Ri]2(tk) — [In @ Rely(ts)|

+/ 10k, o (P)If (7, 2(r)) = f (7, y(T))|AT)

< LMy, (My, [12(t) — y(t0)I] + Mf/ [12(7) = y(7)[|AT)

t
< LMy, (Mg, eq(te—1,tx)l|z — yllpc + My||z — y||PC/ (T, tk)AT)
Sk—1

My (1 — eq(sk—1,tk)|2 — yHPC))

< LMy, (Mg, ea(ti-1, si)llz = yllpo +

- Q
Therefore,
LM92k LMfMgk
B9 GO~ @Wlre < [ + Tl — vl

Subsequent to summing the inequalities (3.7) -(3.9), we get

1(G2)(1) = (Gy)(Dl[pc < Mpl|z = yllpe,

. LMy, LM;  LMg, LM Mg,
where My = maxi<renm (7% + 00 mtrte ) ).

Hence, the system (2.1) has a uniquely solution by Banach fixed points theo-

rem. O

Theorem 3.2. If the conditions (C1) - (C2) are satisfied, then the system (2.1) is
Hyer-Ulam’s type stable.

Proof We consider the y € PC(I,R"*)be the solution of inequality (2.5) and
z € PC(I,R") be a unique solution of the system (2).
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Therefore by Lemma 2.9. if z(tg) = 2o,

z(t) = 0(t,0)z +/O O(t,o(m))f(r, z(1))AT,Vt € [0,t4].

If 2(6) = [[n ® Ri)z(te), k= 1,2,...,m,

t
(3.10) 2(t) = 0(t, s) I, © R]z(ti) + / Ot o(r))f (7, 2(7))AT,
Vt € [sk, tkri]T, K = 1,2,...,m. Now, for t € [sg, tgi1]T,k = 1,2,...,m, we have
ly() = =[] < [ly(t) = O(t, si)[In @ Ry]=(tx)

/@ta T))AT||

+/@@Jﬁﬁﬁﬁwﬁﬁ—ﬂﬂdﬂﬁﬁﬂ

Sk

< Le(1+T) + LM, [ly(t) — 2(6)1 + LMf/ ly(7) = z(7)[|AT

< Le(L+T) + ) LMy, [ly(t7) — =(t)| + LMf/ ly(7) = 2(7)[|AT.

k=1

Similarly, for ¢ € [0, ¢,], we have

ly(t) — 2(0)]] < Ily(t) to%—/@ta M)A
< |ly(t) — 0(t,0)yo — /@ta 7))AT|]
(3.12) +HA®uaT F(ryy(m)) — £, 2(r)) A

t
< LT+ LMf/ ly(7) — 2(7)|| A7
0

< Le(L+T) + ) LMy [ly(t7) — =(t)]| + LMf/O ly(7) = 2(7)[|AT.
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Similarly, for ¢ € [sy, txo1]T, K = 1,2,...,m, we can easily find that

ly(t) — 20| < [ly(t) — [In @ Ri]z(te)]
< |ly(t) = [I @ ReJy(t)l| + [I[In © Ri]y(tr) — [In © Ri]z(ty)]]
(3.13) < e+ My, |ly(ty) — ()]

m t
S Le(L+T)+ Y LM, |ly(t]) — 2(t)]| + LMf/0 y(7) — 2(7)[|AT.
k=1
From the inequality conditions (3.11) -(3.13), we have

ly(t) = z(]] < Le(1 +T) + ZL Ny D) — 2D
(3.14)

LM, / ly(r) — =(r)|| AT

Now, we set ||y(t) — z(t)|| = ((t), then

C(t) < Le(1+T) +ZLM%C tk)+LMf/g

k=1

By Lemma 2.9, we can find that

ly(t) = 2] < Le(1 +T) + H (14 LM, )es(T', o)

<WMfMgkm) e,tel,

where W, vy, ) = L (1+T) + [[iL, (1 + LM,, )es(T, to) > 0 and 8 = LM;.
Then, the system (2) is Hyer-Ulam’s type stable.

Additionally, if we put W, u,, ) (€) = Wy aay, )€ Wy, )(0) = 0
Therefore, the system (2) is generalized Ulam-Hyers stable. O

Example 1. Consider the following matrices with impulsive on T,(0,3/5,4/5,1 €
T),

(=12 0 (=12 0 (=45 0 (o0
P_< 0 —1/2)’Q_< 0 —1/2)’L1_( 0 —4/5>’L2_<0 0)

1) 0 10 11
Ft, 2(t)) = 2 | €50 Dy = - Xy =
(t,2(1)) =z ( 0 c08Taa(t), ET g o) e 11
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The Volterra integro-dynamical systems with Sylvester matrix impulsive on time
scales are

A(t) = A)2(t) + [o G(t, 8)2(s)As + f(t, Z(t)),t € (0,1]x
(t5) = (In ® Ri)z(tx), t € (0, 1]r
(to) =1

N

where A(t) = [~1+ u(t)/4]1,G(t, 5) = S T and (I ® Ry) = <554

et +2
coszy1(t)
1 0
fa)= o |
c0S295(t)

Then, V[0, 1]T € R, we have ||f(t,z) — f(t.y)l| < &Iz —yll and [|(T, ® Ri)y(t;) —
(I, ® R)z(t)] < %Hz — y|| Hence, the conditions C; — Cy are holds with
L =et'—5/4e® +1/4 My = LM, = L Also forty = 0,51 = 3/5,t; =
4/5,ty =T =1,Q = 25

Mp = max LM, LMy LM;k LMy Mg,
1<k<0" eq(ty, Sk) Q 7 eq(t, ty—1) Q

) = 0.00047 < 1
holds. Thus, from Theorem 3.1 has a Ulam Hyer’s stable solution which is unique.

<108

&

w

X (-X)-5/4"exp(4 * X/5)-X+5/4
- N

(=]

S
=
=
&
o
o
3
&
3

FIGURE 1. Ulam hyer’s stability
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4. CONCLUSION

We investigated positive non-linear functional analysis and also, we have
flourishing developed the existence and Ulam’s type stability for a Sylvester ma-
trix impulsive Volterra integro-dynamical system (2.1) by using Banach fixed
point theorem on T. To illustrate the application of obtained results, we have
given an example.
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