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EULERIAN GRAPH OF SOME SPECIAL IDEALIZATION RINGS

Manal Al-Labadi!, Eman Mohammad Almuhur, Amani Shatarah, Anwar Alboustanji,
Nosaiba M. Omer!, Nazneen Khan, and Raeesa Bashir

ABSTRACT. Let R be a ring with unity and let M be an R-module. Let R(+)M
be the idealization of the ring R by the R-module M. In this article, we study
the Eurelian property of zero-divisor graphs. We investigate when some special
idealization rings are Eulerian graphs.

1. INTRODUCTION.

In this article, all rings are a commutative ring with unity.

The notation of the zero-divisor graph of a commutative ring was introduced
by I. Beck in [8], who linked some algebraic properties of G with combinatorial
properties of its zero-divisor graph. Also, the context of coloring zero-divisor
graph studied by D. D. Anderson and M. Naseer in [5]. The definition of zero-
divisor graphs in its present form was given by Anderson and Livingston in [6,
Theorem 2.3].

A zero-divisor graph of ring R is the graph I'(R) whose vertices are the nonzero
zero-divisors of R, with r and s adjacent if » # s and rs = 0. In [6], Anderson
and Livingston proved that the graph I'(R) is connected with diameter at most
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3. The zero divisor graph of a commutative ring has been studied extensively by
several authors [5, 7].

For each R, let Z(R) be the set of all zero-divisors of R and Reg(R) = R\ Z(R).

Let M be an R- module. Consider R(+)M = {(r1, n1) : m € R, n; € M} and
let (r1, ny) and (rq, ny) be two elements of R(+)M. Define (ry, ny) + (r2,n2) =
(r1+ 19, n1 4+ ng) and (r1,nq)(r2, n2) = (r1719, 109 + 1901 ). Under this definition
R(+)M becomes a commutative ring with unity. Call this ring the idealization
ring of M in R. For more details, one can look in [9].

M. Al-Labadi in [2] studied zero-divisor graph of idealization ring I'(Z,,(+)Z,,).
M. Al-Labadi in [1, 3, 4] has studied the properties of the zero-divisor graph of
idealization ring when is a Planar graph and when is divisor graph.

Let G be a graph with the vertex set V(G). The degree of a vertex v in a graph
G is the number of edges incident with u. The degree of a vertex u is denoted
by deg(u). The complete graph of order m is denoted by K, is a graph with m
vertices in which any two distinct vertices are adjacent. Recall that a graph G is
connected if there is a path between every two distinct vertices. For every pair
of distinct vertices x; and z; of G, let d(x1, z5) be the length of the shortest path
from z; to x, and if there is no such a path we define d(zy, z2) = oc.

2. WHEN THE GRAPH I'(R(+)M) 1s EULERIAN ?

In this section, we introduce when I'(R(+)M) is Eulerian graph, where
R(+)M is called the idealization ring R by the R—module M.

Definition 2.1. A graph is called Eulerian graph if there exists a closes trial con-
taining every edge of the graph.

Proposition 2.1. [10] A connected finite graph is Eulerian if and only if the degree
of each vertex of the graph is even.

Al-Labadi [2] presented the following lemma when R is an integral domain.

Lemma 2.1. For R is an integral domain and M is an R—module. Then we have
the following:
1. If R be an integral domain such that Z, is an R—module with ann(Zy) = 0,
then R = Z,.
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2. If R be an integral domain such that Z5 is an R—module with ann(Zy) = 0,
then R = Zs.

Theorem 2.1. Let R be an integral domain and M = Z; be an R—module. Then
we have the following:

1. If ann(Z,) = 0, then I'(R(+)Z>) = {(0, 1)} is an empty graph.

2. If ann(Zy) # 0, then I'(R(+)Z,) is not an Eulerian graph.

Proof. We have the following:

1: If ann(Z;) = 0, then I'(Zy(+)Z,) = {(0,1)} is an empty graph.

2: If ann(Zy) # 0, then I'(R(+)Z,) = {(0, 1), (1;,0), (r;,1) - 7, r; € R}. So,
all vertices adjacent to the vertex (r,0) € R(+)Zy is N((r,0)) = {(0,1)}.
So, the degree of the vertex (r,0) is deg((r,0)) = 1 which is an odd
number.

g

Theorem 2.2. Let R be an integral domain and M = Z3 be an R—module. Then
we have the following:
1. If ann(Z3) = 0, then I'(R(+)Zs) is not an Eulerian graph.
2. If ann(Z3) # 0 and |ann(M)| =odd, then T'(R(+)Zs) is an Eulerian graph.
3. If ann(Z3) # 0 and |ann(M)| =even, then I'(R(+)Z3) is not an Eulerian
graph.

Proof. We have the following:

1: If ann(Z3) = 0, then I'(R(+)Z3) = {(0,1),(0,2)} that is not Eulerian
graph.

2: If ann(Zs) # 0 and |ann(M)| =odd, then I'(R(+)Z3) = {(0, 1), (0,
2),(r,m) : r € ann(Z3) and m € Z3}. So, all vertices are even degree
with N((0,m)) = {(0,n) : n € Z3\ {0,m}} J{(r,m) : r € ann(Z3), m €
Z3} i.e deg(0,m) = 1 + 3|ann(Z3)| =even number. Also, N((r,m)) =
{(0,1),(0,2)} = 2 which is an even number.

3: Ifann(Z;) # 0 and |ann(M )| =even, then I'(R(+)Z3) = {(0, 1), (0,2), (r,m) :
r € ann(Zs) and m € Zs}. So, all the vertex adjacent to the ver-
tex (0,1) is N((0,1)) = {(0,2),(r,m) : r € ann(Z3) and m € Z3} i.e,
deg((0,1)) = 1 + 3|lann(Z;3)| = odd number.
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We have the following theorem when [M| > 4. d

Theorem 2.3. Let R be an integral domain and [M| > 4 be an R—module. Then
['(R(+)M) is not an Eulerian graph.

Proof. We have the following:

1. If |M*| =even, then we have all vertices adjacent to the vertex (r,0) € R(+)M
is N((r,0)) = {(0,m) : m € M}, where r € ann(M). So, the degree of the
vertex (r,0) is deg((r,0) = |[M"| which is an odd number.

2. If [IM*| =odd, then we have all vertices adjacent to the vertex (0, m) € R(+)M
is N((0,m)) = {(0,n) : n € M*} | J{(r,n) : r € ann(M),n € M}. So, the degree
of the vertex (0, m) is deg((0, m) = |M*{(0, m)}|+ |ann(M)|/M||M*| =odd+even,
which is an odd number. 0

Possible applications of this study can be found in problems of [11, 12].
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