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NUMERICAL QUENCHING FOR A NON-NEWTONIAN FILTRATION
EQUATION WITH SINGULAR BOUNDARY FLUX

Camara Gninlfan Modeste 1, N’Guessan Koffi, Coulibaly Adama, and Toure Kidjegbo Augustin

ABSTRACT. This paper concerns the study of the numerical approximation for
the following initial-boundary value problem.

ut =
(
|ux|p−2ux

)
x
+ (1− u)

−h
, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −u−q(1, t), t > 0,

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

where p ≥ 2, h > 0, q > 0, u0 : [0, 1] → (0, 1) and satisfies compatibility con-
ditions. We find some conditions under which the solution of a semidiscrete
form of above problem quenches in a finite time and estimate its semidiscrete
quenching time. We also establish the convergence of the semidiscrete quench-
ing time to the theoretical one when the mesh size tends to zero. Finally, we
give some numerical experiments for a best illustration of our analysis.

1. INTRODUCTION

In this paper, we consider the following boundary value problem

ut = (|ux|p−2ux)x + (1− u)−h, 0 < x < 1, t > 0,(1.1)
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ux(0, t) = 0, ux(1, t) = −u−q(1, t), t > 0,(1.2)

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,(1.3)

where p ≥ 2, h > 0, q > 0, u0 : [0, 1] → (0, 1) and satisfies some com-
patibility conditions such that u′

0(0) = 0, u′
0(1) = −u−q0 (1), u′

0(x) ≤ 0 and
(|u′

0(x)|p−2u′
0(x))

′
+ (1− u0(x))−h ≥ 0, 0 ≤ x ≤ 1.

The quenching behavior describes the phenomenon that there exists a finite
time Tq such that the solution of the problem (1.1)–(1.3) satisfied the following
definition

Definition 1.1. We say that the classical solution u of the problem (1.1)–(1.3)
quenches in a finite time if there exists a finite time Tq such that ‖u(., t)‖∞ < 1 for
t ∈ [0, Tq) but

lim
t→Tq
‖u(., t)‖∞ = 1,

where ‖u(., t)‖∞ = max
0≤x≤1

|u(x, t)|. The time Tq is called the quenching time of the

solution u.

The problem (1.1)–(1.3) may be rewritten in the following form

ut = (p− 1)|ux|p−2uxx + (1− u)−h, 0 < x < 1, t > 0,(1.4)

ux(0, t) = 0, ux(1, t) = −u−q(1, t), t > 0,(1.5)

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,(1.6)

where p ≥ 2, h > 0, q > 0, u0 : [0, 1] → (0, 1) and satisfies some com-
patibility conditions such that u′

0(0) = 0, u′
0(1) = −u−q0 (1), u′

0(x) ≤ 0 and
(p− 1)|u′

0(x)|p−2u′′
0(x) + (1− u0(x))−h ≥ 0, 0 ≤ x ≤ 1.

Equation (1.1) is known as the classical non-Newtonian filtration equation
that incorporates the effects of nonlinear reaction source and nonlinear bound-
ary outflux. Kawarada [8] first studied the quenching phenomenon for semilin-
ear heart equation ut = uxx + (1− u)−1. He obtained the results that, when the
solution reaches level u = 1, the reaction term and the time derivative blow up.
Since then, the theoretical study of quenching phenomena for semilinear para-
bolic equations have been the subject of investigations of many researchers(see
for examples [4–6,8,9,15–21] and the references therein). Concerning problem
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(1.1), Ying Yang proves under certain conditions that quenching occurs in finite
time and he shows that the only quenching point is x = 0. He has also estab-
lished the bounds for quenching rate and the lower bound for the quenching
time.

In this paper, we are interested in the numerical study of the phenomenon of
quenching using a semidiscrete form of (1.4)–(1.6). We give some conditions
under which the solution of the semidiscrete form of (1.4)–(1.6) quenches in
finite time and estimate its semidiscrete quinching time. We also prove that the
semidiscrete quenching time converges to the real one when the mesh size goes
to zero. This paper is organised as follows. In the next section, we give some
properties concerning our semidiscrete sheme. In section 3, under some condi-
tions, we prove that the solution of a semidiscrete form of (1.4)–(1.6) quenches
in a finite time and estimate its semidiscrete quenching time. In section 4, we
show that the quenching time converges to the theoretical one when the mesh
size goes to zero. Finally, in the last section, we give some numerical results to
illustrate our analysis.

2. PROPERTIES OF THE SEMIDISCRETE SCHEME

In this section, we give some lemmas which will be used later. We start by
the construction of the semidiscrete scheme. Let I ≥ 3 be a positive integer and
let s = 1/I. Define the grid xi = is, 0 ≤ i ≤ I. Approximate the solution u of
(1.4)–(1.6) by the solution Us = (U0, U1, . . . , UI)

T and approximate the initial
condition u0 of (1.4)–(1.6) by the initial condition ϕs = (ϕ0, ϕ1, . . . , ϕI)

T of the
following semidiscrete equations

dUi(t)

dt
= (p− 1)|δ0Ui(t)|p−2δ2Ui(t)(2.1)

+ (1− Ui(t))−h, 0 ≤ i ≤ I − 1, t ∈ [0, T sq ),

dUI(t)

dt
= (p− 1)|U−qI (t)|p−2δ2∗UI(t)(2.2)

+ (1− UI(t))−h, t ∈ [0, T sq ),

Ui(0) = ϕi > 0, 0 ≤ i ≤ I,(2.3)
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where

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

s2
, 1 ≤ i ≤ I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

s2
, δ2∗UI(t) = δ2UI(t)−

2

s
U−qI (t),

δ2UI(t) =
2UI−1(t)− 2UI(t)

s2
, δ0U0(t) = 0, δ0Ui(t) =

Ui+1(t)− Ui−1(t)
2s

,

1 ≤ i ≤ I − 1, 0 < ϕs < 1, ϕi+1 < ϕi, 0 ≤ i ≤ I − 1.. Here, [0, T sq ) is the maximal
time interval on which ‖Us(t)‖∞ < 1, where ‖Us(t)‖∞ = max

0≤i≤I
|Ui(t)|.

When the time T sq is finite, then we say that the solution Us(t) of (2.1)–(2.3)
quenches in a finite time, and the time T sq is called the quenching time of the
solution Us(t).

The following lemma is a semidiscrete form of the maximum principle.

Lemma 2.1. Let αs(t), as(t) ∈ C0([0, T sq ),RI+1) and let Vs(t) ∈ C1([0, T sq ),RI+1)

with αs(t) ≥ 0 such that

d

dt
Vi(t)− αi(t)δ2Vi(t) + ai(t)Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ [0, T sq ),(2.4)

Vi(0) ≥ 0, 0 ≤ i ≤ I.(2.5)

Then we have

Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ [0, T sq ).(2.6)

Proof. Let T0 be any quantity satisfying the inequality T0 < T sq and define the
vector Zs(t) = eλtVs(t) where λ is such that

ai(t)− λ > 0 for 0 ≤ i ≤ I, t ∈ [0, T0].

Let m = min
0≤i≤I,0≤t≤T0

Zi(t). Since, for i ∈ {0, . . . , I}, Zi(t) is a continuous function

on the compact [0, T0], there exists i0 ∈ {0, . . . , I} and t0 ∈ [0, T0] such that
m = Zi0(t0). We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,(2.7)

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

s2
≥ 0, 1 ≤ i0 ≤ I − 1,(2.8)
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δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

s2
≥ 0 if i0 = 0,(2.9)

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

s2
≥ 0 if i0 = I.(2.10)

From (2.4), we obtain the following inequality

dZi0(t0)

dt
− αi0(t0)δ2Zi0(t0) + (ai0(t0)− λ)Zi0(t0) ≥ 0.(2.11)

It follows from (2.7)–(2.11) that

(ai0(t0)− λ)Zi0(t0) ≥ 0,(2.12)

which implies that Zi0(t0) ≥ 0 because ai0(t0)− λ > 0. We deduce that Vs(t) ≥ 0

for t ∈ [0, T0] and the proof is complete. �

Another form of the maximum principle for semidiscrete equations is the com-
parison lemma below

Lemma 2.2. Let Vs(t), Ws(t) ∈ C1([0, T sq ),RI+1) and f, bs(t) ∈ C0(R×R,R) with
bs(t) ≥ 0 such that for t ∈ [0, T sq )

(2.13)
dVi(t)

dt
− bi(t)δ2Vi(t) + f(Vi(t)) <

dWi(t)

dt
− bi(t)δ2Wi(t) + f(Wi(t)),

0 ≤ i ≤ I,

Vi(0) < Wi(0), 0 ≤ i ≤ I.(2.14)

Then we have

Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈ [0, T sq ).

Proof. Define the vector Zs(t) = Ws(t)− Vs(t). Let t0 be the first t > 0 such that
Zi(t) > 0 for t ∈ [0, t0), 0 ≤ i ≤ I, but Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , I}.
We remark that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

s2
≥ 0, 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

s2
≥ 0 if i0 = 0,

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

s2
≥ 0 if i0 = I.
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Therefore, we have

dZi0(t0)

dt
− bi0(t0)δ2Zi0(t0) + f(Wi0(t0))− f(Vi0(t0)) ≤ 0,

which contradicts the first strict inequality of the lemma and this ends the proof
�

Lemma 2.3. Let Vs(t), Ws(t) ∈ C1([0, T sq ),RI+1) and f, bs(t) ∈ C0(R×R,R) with
bs(t) ≥ 0 such that t ∈ [0, T sq )

(2.15)
dVi(t)

dt
− bi(t)δ2Vi(t) + f(Vi(t)) ≤

dWi(t)

dt
− bi(t)δ2Wi(t) + f(Wi(t)),

0 ≤ i ≤ I,

Vi(0) ≤ Wi(0), 0 ≤ i ≤ I.(2.16)

Then we have

Vi(t) ≤ Wi(t), 0 ≤ i ≤ I, t ∈ [0, T sq ).

The next lemma shows that when i is between 0 and I, then Ui(t) is positive
where Us(t) is the solution of the semidiscrete problem.

Lemma 2.4. Let Us be the solution of the problem (2.1)–(2.3). Then we have

Ui(t) > 0 for 0 ≤ i ≤ I, t ∈ [0, T sq ).(2.17)

Proof. Assume that there exists a time t0 ∈ [0, T sq ) such that Ui0(t0) = 0 for a
certain i0 ∈ {0, . . . , I}. We observe that

dUi0(t0)

dt
= lim

k→0

Ui0(t0)− Ui0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,

δ2Ui0(t0) =
Ui0+1(t0)− 2Ui0(t0) + Ui0−1(t0)

s2
> 0, 1 ≤ i0 ≤ I − 1,

δ2Ui0(t0) =
2U1(t0)− 2U0(t0)

s2
> 0 if i0 = 0,

δ2Ui0(t0) =
2UI−1(t0)− 2UI(t0)

s2
> 0 if i0 = I,

which implies that

dUi0(t0)

dt
− (p− 1)|δ0Ui0(t0)|p−2δ2Ui0(t0)− (1− Ui0(t0))−h < 0, 0 ≤ i0 ≤ I − 1,
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dUI(t0)

dt
− (p− 1)|U−qI (t0)|p−2δ2UI(t0) +

2(p− 1)

s
|U−qI (t0)|p−2U−qI (t0)

−(1− UI(t0))−h < 0,

But these inequalities contradict (2.1)–(2.2) and we are so proved that Ui(t) > 0,
0 ≤ i ≤ I, t ∈ [0, T sq ). �

Lemma 2.5. Let Us be the solution of the problem (2.1)–(2.3). Then we have

Ui+1(t) < Ui(t) for 0 ≤ i ≤ I − 1, t ∈ [0, T sq ).(2.18)

Proof. Introduce the vector Zs(t) defined as follows Zi(t) = Ui+1(t) − Ui(t) for
0 ≤ i ≤ I − 1. Let t0 be the first t>0 such that Zi(t) < 0 for t ∈ [0, t0) but
Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , I − 1}. Without loss of generality, we
may suppose that i0 is the smallest integer which satisfies the above equality. It
follows that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≥ 0, 0 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

s2
< 0, 1 ≤ i0 ≤ I − 2,

δ2Zi0(t0) =
Z1(t0)− 3Z0(t0)

s2
< 0 if i0 = 0,

δ2Zi0(t0) =
ZI−2(t0)− 3ZI−1(t0)

s2
< 0 if i0 = I − 1,

which implies that

dZi0(t0)

dt
= (p− 1)|δ0Ui0(t0)|p−2δ2Zi0(t0)

− (p− 1)(p− 2)|δ0Ui0(t0)|p−3δ2Ui0+1(t0)δ
0Zi0(t0)

+ h(1− θi0(t0))−h−1Zi0(t0) < 0 0 ≤ i0 ≤ I − 2

dZI−1(t0)

dt
= (p− 1)|U−qI (t0)|p−2δ2∗ZI−1(t0)

− q(p− 1)(p− 2)U
−q(p−2)−1
I (t0)δ

0U
−q(p−2)
I (t0)

+ h(1− ξI(t0))−h−1ZI−1(t0) < 0

where θi0(t0) ∈ (Ui0+1(t0), Ui0(t0)) and ξI(t0) ∈ (UI(t0), UI−1(t0)).
Therefore, we have a contradiction because of (2.1)–(2.2). This ends the

proof. �
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Lemma 2.6. Let Us be a solution of the problem (2.1)–(2.3) and the initial data

at (2.3) verifies some compatibility conditions. Then,
dUi(t)

dt
> 0 for 0 ≤ i ≤ I,

t ∈ (0, T sq ).

Proof. Consider the vector Zs(t) such that Zi(t) =
dUi(t)

dt
for 0 ≤ i ≤ I and

t ∈ (0, T sq ). Let t0 be the first t ∈ (0, T sq ) such that Zi(t) > 0 for t ∈ (0, t0), but
Zi0(t0) = 0 for a certain i0 ∈ {0, · · · , I}. Without loss of generality, we suppose
that i0 is the smallest integer checking the inequality above. We observe that:

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

s2
> 0, 1 ≤ i0 ≤ I − 1

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

s2
> 0, i0 = 0

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

s2
> 0, i0 = I.

Moreover, by a straightforward computation, we get

dZi0(t0)

dt
= (p− 1)(p− 2)δ0Ui0(t0)|δ0Ui0(t0)|p−2δ0Zi0(t0)δ2Ui0(t0)

+ (p− 1)|δ0Ui0(t0)|p−2δ2Zi0(t0)

+ h(1− Ui0(t0))−h−1Zi0(t0) < 0, 0 ≤ i0 ≤ I − 1

dZI(t0)

dt
= −q(p− 1)(p− 2)U

−q(p−2)−1
I ZI(t0)δ

2UI(t0) + (p− 1)U
−q(p−2)
I δ2ZI(t0)

+
2q(p− 1)2

s
U
−q(p−1)−1
I (t0)ZI(t0) + h(1− UI(t0))−h−1ZI(T0) < 0.

But these inequalities contradict (2.1)–(2.2) and this proof is complete. �

Lemma 2.7. Let Us ∈ RI+1 be such that ‖Us‖∞ < 1 and let h be a positive
constant. Then we have

δ2(1− Ui)−h ≥ h(1− Ui)−h−1δ2Ui, 0 ≤ i ≤ I.
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Proof. Let us introduce function f(x) = (1− x)−h. We observe that f is a convex
function for 0 ≤ x < 1. Using Taylor’s expansion, we get

f(U1) = f(U0) + (U1 − U0)f
′
(U0) +

(U1 − U0)
2

2
f ”(η0)

f(UI−1) = f(UI) + (UI−1 − UI)f
′
(UI) +

(UI−1 − UI)2

2
f ”(ηI)

f(Ui+1) = f(Ui) + (Ui+1 − Ui)f
′
(Ui) +

(Ui+1 − Ui)2

2
f ”(θi), 1 ≤ i ≤ I − 1

f(Ui−1) = f(Ui) + (Ui−1 − Ui)f
′
(Ui) +

(Ui−1 − Ui)2

2
f ”(ηi), 1 ≤ i ≤ I − 1,

where θi is an intermediate between Ui+1 and Ui and ηi the one between Ui and
Ui−1. The first and the second equalities imply that

δ2f(U0) = f
′
(U0)δ

2U0 +
(U1 − U0)

2

s2
f ”(η0)

δ2f(UI) = f
′
(UI)δ

2UI +
(UI−1 − UI)2

s2
f ”(ηI)

Combining the third and the last equalities, we see that

δ2f(Ui) = f
′
(Ui)δ

2Ui +
(Ui+1 − Ui)2

2s2
f ”(θi) +

(Ui−1 − Ui)2

2s2
f ”(ηi) 0 ≤ i ≤ I − 1,

Use the fact that f ′
(x) = h(1−x)−h−1, f ”(x) = h(h+1)(1−x)−h−2 and ‖Us‖∞ < 1

to complete the proof. �

3. QUENCHING IN THE SEMIDISCRETE PROBLEM

In this section, under some assumptions, we show that the solution Us of
(2.1)–(2.3) quenches in a finite time and estimate its semidiscrete quenching
time.

Theorem 3.1. Let Us be the solution of (2.1)–(2.3) and assume that there exists
a constant A > 0 such that the initial data at (2.3) satisfies

(3.1) (p− 1)|δ0ϕi|p−2δ2ϕi + (1− ϕi)−h ≥ A(1− ϕi)−h, 0 ≤ i ≤ I − 1

(3.2) (p− 1)|ϕ−qI |
p−2δ2ϕI −

2(p− 1)

s
ϕ
−q(p−1)
I + (1− ϕI)−h ≥ A(1− ϕI)−h.
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Then, there exists a finite time T sq such that Us quenches in this time and we have
the following estimate

(3.3) T sq ≤
(1− ‖ϕs‖∞)h+1

A(h+ 1)
.

Proof. Let [0, T sq ) be the maximal time interval on which ‖Us‖∞ < 1. Our objectif
is to show that T sq is finite and satisfies the inequality (3.3). Introduce the
function Js(t) such that

Ji(t) =
dUi(t)

dt
− A(1− Ui(t))−h, 0 ≤ i ≤ I.

A straightforward computation gives

dJi(t)

dt
− (p− 1)|δ0Ui(t)|p−2δ2Ji(t) =

d2Ui(t)

dt2
− hA(1− Ui(t))−h−1

dUi(t)

dt

−(p− 1)|δ0Ui(t)|p−2δ2(
dUi(t)

dt
) + A(p− 1)|δ0Ui(t)|p−2δ2(1− Ui(t))−h.

From Lemma 2.7, we have δ2(1 − Ui(t))
−h ≥ h(1 − Ui(t))

−h−1δ2Ui(t), which
implies that

dJi(t)

dt
− (p− 1)|δ0Ui(t)|p−2δ2Ji(t)

≥ d2Ui(t)

dt2
− hA(1− Ui(t))−h−1

dUi(t)

dt

− (p− 1)|δ0Ui(t)|p−2δ2(
dUi(t)

dt
)

+ hA(p− 1)|δ0Ui(t)|p−2(1− Ui(t))−h−1δ2Ui(t).

Using (2.1), we arrive at

dJi(t)

dt
− (p− 1)|δ0Ui(t)|p−2δ2Ji(t) ≥ h(1− Ui(t))−h−1Ji(t),

0 ≤ i ≤ I − 1, t ∈ [0, T sq ),

dJI(t)

dt
− (p− 1)|U−qI |

p−2δ2JI(t)− h(1− UI)−h−1JI(t)

≥ 2q(p− 1)2

s
U
−q(p−1)−1
I g(UI(t)),
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where g(UI(t)) =
dUI(t)

dt
+

Ah

q(p− 1)s
UI(t)(1 − UI(t))−h−1. It is not hard to see

that

dJi(t)

dt
− (p− 1)|δ0Ui(t)|p−2δ2Ji(t)− h(1− Ui(t))−h−1Ji(t) ≥ 0,

0 ≤ i ≤ I − 1, t ∈ [0, T sq ),

dJI(t)

dt
− (p− 1)|U−qI |

p−2δ2JI(t)− h(1− UI)−h−1JI(t) ≥ 0, t ∈ [0, T sq ).

From (3.1) and (3.2), we see that Js(0) ≥ 0. We deduce from Lemma 2.1 that
Js(t) ≥ 0, for t ∈ [0, T sq ), which implies that

dUi(t)

dt
≥ A(1− Ui(t))−h, 0 ≤ i ≤ I, t ∈ [0, T sq ).

These estimate may be rewritten in the following form

(1− Ui(t))hdUi(t) ≥ Adt, 0 ≤ i ≤ I, t ∈ [0, T sq ).

Integrating the above inequalities over the interval (t, T sq ), we get

T sq − t ≤
(1− Ui(t))h+1

A(h+ 1)
, 0 ≤ i ≤ I, t ∈ [0, T sq ).(3.4)

From Lemma 2.5, we have ‖ϕs‖∞ = U0(0), taking t = 0 and i = 0 in (3.4), we
obtain the desired result

T sq ≤
(1− ‖ϕs‖∞)h+1

A(h+ 1)
.

�

Remark 3.1. The inequalities (3.4) imply that

T sq − t0 ≤
(1− Us(t0))h+1

A(h+ 1)
, t0 ∈ [0, T sq ).

This remark is crucial to prove the convergence of the semidiscrete quenching
time.
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4. CONVERGENCE OF THE SEMIDISCRETE QUENCHING TIME

In this section, under some assumptions, we show that the semidiscrete quench-
ing time converges to the real one when the mesh size goes to zero. We denote
by

us(t) = (u(x0, t), u(x1, t), . . . , u(xI , t))
T and ‖Us(t)‖∞ = max

0≤i≤I
|Ui(t)|.

We first prove the following theorem on the convergence of the semidiscrete
scheme which will then allow us to prove the main theorem of this section,
namely the convergence of the semidiscrete quenching time.

Theorem 4.1. Assume that the problem (1.4)–(1.6) has a solution u ∈ C4,1([0, 1]×
[0, T ]) such that supt∈[0,T ] ‖u(., t)‖∞ = λ < 1. Suppose that the initial data at (2.3)
satisfies

‖ϕs − us(0)‖∞ = o(1) as s→ 0,(4.1)

Then, for s sufficiently small, the problem (2.1)–(2.3) has a unique solution
Us ∈ C1([0, T ],RI+1) such that

max
0≤t≤T

‖Us(t)− us(t)‖∞ = O(‖ϕs − us(0)‖∞ + s) as s→ 0,(4.2)

where T < min{Tq, T sq }.

Proof. Let ρ > 0 be such that ρ+ λ < 1. Let M > 0 such that

h(1− ρ− λ)−h−1 < M.(4.3)

The problem (2.1)–(2.3) has for each s, a unique solution Us ∈ C1([0, T ],RI+1).
Let t(s) the greatest value of t > 0 such that

‖Us(t)− us(t)‖∞ < ρ for t ∈ (0, t(s)).(4.4)

The relation (4.1) implies that t(s) > 0 for s small enough. Let t∗(s) = min{t(s),
T}. By the triangular inequality, we obtain

‖Us(t)‖∞ ≤ ‖u(., t)‖∞ + ‖Us(t)− us(t)‖∞ for t ∈ (0, t∗(s)),

which implies that

‖Us(t)‖∞ ≤ λ+ ρ, for t ∈ (0, t∗(s)).(4.5)

Let es(t) = Us(t)− us(t) be the error of discretization.
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Using Taylor’s expansion, we have for t ∈ (0, t∗(s)), αi(t) = (p− 1)|δ0Ui(t)|p−2,
βI(t) = (p− 1)|U−qI (t)|p−2

d

dt
e0(t)− α0(t)δ

2e0(t) = h(1− θ0(t))−h−1e0(t) +
s

3
α0(t)uxxx(x̃0, t),

d

dt
ei(t)− αi(t)δ2ei(t) = h(1− θi(t))−h−1ei(t) +

s2

12
αi(t)uxxxx(x̃i, t),

1 ≤ i ≤ I − 1,

d

dt
eI(t)− βI(t)δ2eI(t) = h(1− ξI(t))−h−1eI(t) +

2

s
βI(t)f

′
(ξI(t))eI(t)

− s

3
βI(t)uxxx(x̃I , t),

where θi(t) is an intermediate value between u(xi, t) and Ui(t) for i ∈ {0, . . . , I−
1} and ξI(t) is an intermediate value between u(xI , t) and UI(t). Since u ∈ C4,1,
using (4.5), there existes a constant K > 0 such that

d

dt
e0(t)− α0(t)δ

2e0(t) ≤
M

s
|e0(t)|+Ks(4.6)

d

dt
ei(t)− αi(t)δ2ei(t) ≤M |ei(t)|+Ks2, 1 ≤ i ≤ I − 1,(4.7)

d

dt
eI(t)− βI(t)δ2eI(t) ≤

M

s
|eI(t)|+Ks.(4.8)

Consider the vector Ws(t) such that

Wi(t) = e(L+1)t(‖ϕs − us(0)‖∞ +Ks), 0 ≤ i ≤ I.

A direct calculation yields

d

dt
W0(t)− α0(t)δ

2W0(t) >
M

s
|W0(t)|+Ks,(4.9)

d

dt
Wi(t)− αi(t)δ2Wi(t) > M |Wi(t)|+Ks2, 1 ≤ i ≤ I − 1,(4.10)

d

dt
WI(t)− βI(t)δ2WI(t) >

M

s
|WI(t)|+Ks,(4.11)

W0(t) > e0(t), WI(t) > eI(t), t ∈ (0, t∗(s))(4.12)

Wi(0) > ei(0), 0 ≤ i ≤ I.(4.13)
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Applying comparison Lemma 2.2, we arrive at

Wi(t) > ei(t) for t ∈ (0, t∗(s)), 0 ≤ i ≤ I.

In the same way, we also prove that

Wi(t) > −ei(t) for t ∈ (0, t∗(s)), 0 ≤ i ≤ I,

which implies that

Wi(t) > |ei(t)| for t ∈ (0, t∗(s)), 0 ≤ i ≤ I.

We deduce that

‖Us(t)− us(t)‖∞ ≤ e(M+1)T (‖ϕs − us(0)‖∞ +Ks), t ∈ (0, t∗(s)).

To complete the proof of this theorem, we have to show that for s sufficiently
small t∗(s) = T . But if it is not true, for some s, as small as we like, t∗(s) < T

and by (4.2) we obtain
%

2
= ‖Us(t∗(s))− us(t∗(s))‖∞(4.14)

≤ e(M+1)T (‖ϕs − us(0)‖∞ +Ks).

Since the term on the right hand side of the above inequality goes to zero as s
tends to zero, we deduce that

%

2
≤ 0, which is impossible. �

Theorem 4.2. Suppose that the solution u of (1.4)–(1.6) quenches in a finite time
Tq such that u ∈ C4,1([0, 1]× [0, Tq)) and the initial condition at (2.3) satisfies

‖ϕs − us(0)‖∞ = ◦(1) s→ 0.

Under the assumptions of Theorem 3.1, the solution Us of the problem (2.1)–(2.3)
quenches in a finite time T sq and

lim
s→0

T sq = Tq.

Proof. Let γ > 0. There exists a constant R > 0 such that

(1− z)h+1

A(h+ 1)
≤ γ

2
, z ∈ [0, R].(4.15)

Since u(., t) quenches in a finite time Tq, there exists a time T1 < Tq such that

|T1 − Tq| <
γ

2
and 0 ≤ ‖u(., t)‖∞ ≤

R

2
for t ∈ [T1, Tq]. Setting T2 =

T1 + Tq
2

, it is
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not hard to see that ‖u(., t)‖∞ < 1 for t ∈ [0, T2]. From Theorem 4.1, we have

‖Us(T2)− us(T2)‖∞ ≤
R

2
. Applaying the triangle inequality, we get

‖Us(T2)‖∞ ≤ ‖Us(T2)− us(T2‖∞ + ‖us(T2)‖∞ ≤ R.

From Theorem 3.1, Us quenches in a finite time T sq . We deduce from Remark
3.1 and (4.15) that

|T sq − Tq| ≤ |T sq − T2|+ |T2 − Tq| ≤
(1− ‖Us(T2)‖∞)h+1

A(h+ 1)
+
γ

2
≤ γ.

This inequality gives the desired result. �

5. NUMERICAL EXPERIMENTS

In this section, we study the quenching phenomenon using full discrete schemes
(explicit and implicit) of (1.4)–(1.6). At first, we approximate the solution u of

(1.4)–(1.6) by the solution U
(n)
s =

(
U

(n)
0 , U

(n)
1 , · · · , U (n)

I

)T
of the following ex-

plicit scheme

U
(n+1)
i − U (n)

i

∆ten
= (p− 1)|δ0U (n)

i |p−2δ2U
(n)
i

+ (1− U (n)
i )−h, 0 ≤ i ≤ I − 1,

U
(n+1)
I − U (n)

I

∆ten
= (p− 1)|(U−q)(n)I |

p−2δ2U
(n)
I + (p− 1)|(U−q)(n)I |

p−2(
−(U−q)

(n)
I

s
)

+ (1− U (n)
I )−h,

U
(0)
i = ϕi > 0, 0 ≤ i ≤ I,

where n ≥ 0, δ0U (n)
0 = 0, δ0U (n)

i =
U

(n)
i+1 − U

(n)
i−1

2s
, δ2U (n)

i =
U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

s2
,

for 1 ≤ i ≤ I − 1,

δ2U
(n)
I =

2

s2

(
U

(n)
I−1 − U

(n)
I

)
,

∆ten = min

(
s2

2(p− 1) max {a(j − 1, 1)}
, τ(1− ‖U (n)

s ‖h+1
∞ )

)
,

with τ = const ∈ (0, 1) and a(j − 1, 1) =

(
|U (n)

j+1 − U
(n)
j−1|

2s

)p−2

for 2 ≤ j ≤ I.
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Now, approximate the solution u of (1.4)–(1.6) by the solution U
(n)
s = (U

(n)
0 ,

U
(n)
1 , · · · , U (n)

I )T of the following implicit scheme

U
(n+1)
i − U (n)

i

∆tn
= (p− 1)|δ0U (n+1)

i |p−2δ2U (n+1)
i

+ (1− U (n)
i )−h, 0 ≤ i ≤ I − 1,

U
(n+1)
I − U (n)

I

∆tn
= (p− 1)|(U−q)(n)I |

p−2δ2U
(n+1)
I

+ (p− 1)|(U−q)(n)I |
p−2(
−(U−q)

(n)
I

s
)

+ (1− U (n)
I )−h,

U
(0)
i = ϕi > 0, 0 ≤ i ≤ I,

where n ≥ 0, δ0U (n+1)
i = 0,

δ0U
(n+1)
i =

U
(n+1)
i+1 − U (n+1)

i−1

2s
,

δ2U
(n+1)
i =

U
(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

s2
,

δ2U
(n+1)
I =

2

s2

(
U

(n+1)
I−1 − U (n+1)

I

)
,

∆tn = τ(1− ‖U (n)
s ‖h+1

∞ )

with τ = const ∈ (0, 1). In the following tables, in rows, we present the nu-
merical quenching times, numbers of iterations, the CPU times and the orders
of the approximations corresponding to meshes of 16, 32, 64, 128, 256, 512,
1024. The numerical time T n =

∑n−1
j=0 ∆tj is computed at the first time when

∆tn = |T n+1 − T n| ≤ 10−16. The order(s) of the method is computed from

s0 =
log((T4s − T2s)/(T2s − Ts))

log(2)
.

For the numerical value, we take:

ϕi = 0.5 +
1

6π
cos

(
π(is)

2

)
− 1

3
(is)4.5 ,

for i = 0, · · · , I, τ =
s2

2
.
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TABLE 1. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with

the explicit Euler method for q = −
(

log(
13

8
)/ log(

1

6
)

)
p = 2

h = 7

I T n n CPU time s0

16 0.000200417708905 1545 0.156 -
32 0.000199393432328 5829 0.296 -
64 0.000199138064753 21900 0.578 2.003
128 0.000199074266382 81926 4.528 2.000
256 0.000199058318375 304993 29.687 2.000
512 0.000199054326936 1129121 219.891 2.000

1024 0.000199053310654 4153077 1842.141 2.000

TABLE 2. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with

the implicit Euler method for q = −
(

log(
13

8
)/ log(

1

6
)

)
p = 2

h = 7

I T n n CPU time s0

16 0.000200417708905 1545 0.141 -
32 0.000199393432328 5829 0.703 -
64 0.000199138064753 21900 30.375 2.003

128 0.000199074266382 81926 293.984 2.000
256 0.000199058318375 304993 4457.843 2.000
512 0.000199054326936 1129121 71839.984 2.000
1024 0.000199053310654 4153077 927158.782 2.000

Remark 5.1. The two tables show that the solution of the problem quenches in a
finite time. We estimate this time at 2.10−4.

In the following, we also give some plots to illustrate our analysis. For the
different plots, we used both explicit and implicit schemes in the case where

I = 16 and (q, p, h) =

(
−
(

log(
13

8
)/ log(

1

6
)

)
, 2, 7

)
.
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In the figures 1 and 2, we can appreciate the quenching of the discrete solu-
tion, the figures 3 and 4 show that the decrease of the discrete solution and in
the figures 5 and 6, we observe that the discrete solution quenches at the finite
time T sq = 2.10−4.

FIGURE 1. Evolution
of the discrete solu-
tion (explicit
scheme).

FIGURE 2. Evolution
of the discrete solu-
tion (implicit
scheme).

FIGURE 3. Evolution
of the discrete solu-
tion according to the
node (explicit
scheme).

FIGURE 4. Evolution
of the discrete solu-
tion according to the
node (implicit
scheme).
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FIGURE 5. Evolution
of the norm of the
discrete solution ac-
cording to the time
(explicit scheme).

FIGURE 6. Evolution
of the norm of the
discrete solution ac-
cording to the time
(implicit scheme).
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