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ON REDUCING DISCRETE EXTREMAL PROBLEMS TO THE PROBLEM OF
DECODING AND FINDING THE MAXIMUM UPPER LIMIT OF DISCRETE

MONOTONE FUNCTIONS

Anvar Kabulov1, I.H. Normatov, Erkin Urunbaev, and Sherzod Boltaev

ABSTRACT. The article examines algorithms for solving individual classes of
discrete extremal problems for finding the exact optimum by decoding and
finding the maximum upper zero of discrete monotone functions. Theorems
on reducing the studied classes of discrete extremal problems to the problem
of decoding and finding the maximum solution of discrete monotone functions
are proved.

1. INTRODUCTION

It is known that to construct algorithms for solving individual classes of dis-
crete extremal problems for finding the exact optimum, procedures are used for
decoding and finding the maximum upper zero of discrete monotone functions,
and methods are given for solving problems using procedures for decoding and
finding the maximum upper zero of discrete monotone functions. Methods for
solving problems of decoding and finding the maximum upper zero of discrete
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monotone functions of multivalued functions are investigated. A class of prob-
lems is considered that can be reduced to decoding a monotone function defined
on a finite structure, or finding the maximum upper zero of discrete monotone
functions. Theorems are proved and criteria are given for reducing to prob-
lems of decoding and finding the maximum upper zero of discrete monotone
functions.

2. STATEMENT OF THE PROBLEM

Let Eρ = {0, . . . , ρ− 1} and T ∗1 , . . . , T
∗
ω be rectangular tables with elements

from Eρ, containing n columns m1, . . . ,mω of rows each:

T 0
nm =

ω⋃
i=1

T ∗i ,
ω∑
i=1

mi = m.

We’ll call rows elements, and columns attributes. By defining ω tables, we
define a certain set of elements and divide them into ω classes: K1, . . . , Kω.

Thus, the element alij, l -y table is the value of the j-th feature in l the object l
class Kl. It is assumed that each reference is contained in only one class. Let
S1, . . . , Sm be the standard and be x1, . . . , xn the attributes. Then xj (Si) = αij -
the value on Si.

It is known that a set M = {xi1 , . . . , xir} is called a tester, and for any pair of
standards Si, Sj belonging to different classes, there is a sign xt ∈ M such that
xt (Si) 6= xt (Sj) . Obviously, in the case when m1 = . . . = mω = 1 the definitions
of the test and testers tables are the same. A tester is called a dead end if, after
removing any attribute from it, it ceases to be a tester. A tester is called minimal
if it contains the minimum number of attributes among all testers in the tables.

Let us assume that F (x1, . . . , xn) an arbitrary partial function of k-valued
logic M = {f1, . . . , fm} is a system of non-everywhere defined Boolean func-
tions fi (x1, . . . , xn) , i = 1, m.

It is known [1–3] that a set of variables M = {xi1 , . . . , xik} is called essential
for F (x̃) (M), if there is not everywhere a certain function ϕ = {xi1 , . . . , xik} of
k-valued logic M′ = {ϕ1, . . . , ϕn} (a system of Boolean functions ϕ (xi1 , . . . , xik),
i = 1, m) such that F = ϕ,

(
ϕi = fi, i = 1, m

)
.

An essential set M for F (M) is called a dead end if, after removing any vari-
able from it, it ceases to be essential for F (M). A deadlock M for F (M) is
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called minimal if it contains the minimum number of variables among all sets of
variables essential for F = ϕ,

(
ϕi = fi, i = 1, m

)
.

Let Tnm be a binary table containing n columns and m rows and ρi be the
weight i of the row ρi > 0, i = 1, m. We assume that rows i1, . . . , ik form
a column cover Tnm if j-s row Tnm there is at least one row for any column
i ∈ {i1, . . . , ik} such that the element αij in the table Tnm is a single one. M =

{i1, . . . , ik} table coverage Tnm is called deadlocked if it ceases to be coverage
after removing row R from it Tnm. M A table cover Tnm is called minimal if
k∑
j=1

ρij -is the minimum number among all sums of cover weights Tnm.

Let an alphabet of Boolean variables {x1, . . . , xn} . be given let us Consider
the set Ω of all ECS from k variables (0 ≤ k ≤ n, n ≥ 1) . Denote by the interval
(under the cube) in the cube Ek

n, corresponding to the e.q. NA.
For an arbitrary A = 1 e.c. in Ω (interval NA), we assign a set (α1, . . . , αn)

such that

αi =

{
σi, if i ∈ {i1, . . . , ik}

2 otherwise
,

moreover, the e.q. A = 1 corresponds to the set (2, . . . , 2) . Consider a structure
Sn, where S = {0, 1, 2} , 0 < 1, 0 < 2. Let’s encode the elements of the set
S : 0 → 2, 1 → 1, 2 → 0. We have 2 < 1, 2 < 0. This order induces a partial
order in the set Sn :

α̃ = (α1, . . . , αn) ≤ β̃ = (β1, . . . , βn) at α̃i ≤ β̃i, i = 1, n.

It is easy to see that the sets Uj of the structure level Sn correspond to an e.q.
of rank j to a set Ω, and chains {α̃i1 , . . . , α̃ik} in the set Mij, j = 1, k of e.q.
such that NMj1

⊂ NMj2
⊂ . . . ⊂ NMjk

.

Let f (x1, . . . , xn) be functions of the logic algebra and F (x1, . . . , xn) be a par-
tial Boolean function defined using sets M1,M2, M1 ∩M2 6= ∅.

We introduce functions g (y1, . . . , yn) g̃ (y1, . . . , yn) y ∈ {0, 1, 2} , defined on
sets α̃of sets Sn. Let α̃ corresponds to the e.q. Ain Ω :

g (α̃) =

{
0, if − invalide.c.for f,

1 , otherwise,

g (α̃) =

{
1, if NL ∩M1 6= ∅, NL ∩M2 6= ∅,
0, otherwise.
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It is not difficult to prove that g (y1, . . . , yn) , (g̃ (y1, . . . , yn)) is is a monotone
function, i.e., for any sets α̃ and β̃ in Sn such that α̃ ≤ β̃ is valid: g (α̃) ≤
g
(
β̃
)
,
(
g̃ (α̃) ≤ g̃

(
β̃
))

, the lower units g (α̃) ,
(
g̃
(
β̃
))

correspond to the max-

imum intervals N in Nf , (E2
n\M2, N ∩M2, N ∩M1 6= ∅). Moreover, the set of

all lower units g (ỹ) , (g̃ (ỹ)) defines the set of all maximum intervals N in
Nf , (E2

n\M2, N ∩M1 6= ∅) .
Consider the discrete problem Zs ∈ {Zs} , (Z ′s ∈ {Z ′s}) of finding all the ex-

trema (global extremum) F of an object’s functional S ∈ {S} . It is obvious that
the set {Zs} , ({Z ′s}) corresponds one-to-one to the population {S} . For exam-
ple, if S there is a partially-defined function of k-valued logic F (x1, . . . , xn), then
ZF ∈ {ZF} , (Z ′F ∈ {Z ′F}) it is formed as a problem of finding all sets (mini-
mum set) of variables essential for F (x1, . . . , xn) ∈ {Fn} , where {Fn}-is the set
of all partially-defined functions of k- valued logic that depend on n-variables.
Let the object S correspond to a monotone function ϕs (y1, y2, . . . , yn) ∈ M,

defined on a finite structure M̃ . Moreover, the upper zeros of the function
ϕscorrespond one-to-one to the extrema F of the object’s functional S. We will
assume that the problem Zscorresponds to the problem of decoding ϕsand Z ′S
searching for M. V. N. ϕs We will talk about the complete set management {Zs}
problem of decoding if for any function f from Mn there exists Mn from {ZS}
such that ϕS = f . We denote by {fα} the set (class) of monotone functions from
Mn, which α̃ ∈ M have a maximum upper zero. We assume that the problem
Z ′s corresponds to a class {fα̃} if ϕs ∈ {fα̃} . In the case when for any set α̃ ∈Mn

there exists Z ′s such that ϕs ∈ {fα̃}, then we will talk about the complete reduc-
tion of the set {Z ′s} to the search for the m.v.n. functions in Mn. Otherwise, the
data is considered incomplete.

3. CRITERIA FOR REDUCING DISCRETE MONOTONE FUNCTIONS TO PROBLEMS OF

DECODING AND FINDING THE MAXIMUM UPPER ZERO

In this section, we prove the criteria for reducing to problems of decoding
and finding the maximum upper zero of discrete monotone functions problems
about optimal coverage of columns of a binary table by rows, finding minimum
tests, table testers, optimal continuation of partially defined logical functions,
and so on. Let ϕ (n) be the Shannon function [17–19] for solving the problem
of decoding monotone functions in a class σ. The theorem [5–16] holds.
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Theorem 3.1. If there is a complete reduction of the population {ZS} to the prob-
lem of decoding Mn, then the reduction of the population {Z ′S} to the search for
m.v.n. functions in Mn is complete.

Proof. Obviously, the complete reduction of the population {Zs} to the decoding
problem means that for any function from Mn, there exists Zs from {Zs}, for
which ϕs = f.

Therefore, for any set α̃ ∈ Mn, there exists such Z ′s that ϕs ∈ {fα̃}. Conse-
quently, it is possible {Z ′s} to assert a complete reduction of the functions in
Mn.

The theorem is proved. �

Let f (x1, . . . , xn) be a Boolean function, {Zf} and be a class Z of prob-
lems for constructing abbreviated mathematical functions for all Boolean func-
tions f (x) . Consider a monotone function g (y1, . . . , yn) in Sn, corresponding to
f (x1, . . . , xn).

Theorem 3.2. Reducing the class {Z} to a decryption task is incomplete.

Proof. It follows from the fact that for a monotone function ψ (y1, . . . , yn) in Sn

such that

ψ (α̃) =

 1, if α̃ ∈
n⋃
i=j

Ui, i < j < n

0 − otherwise

there Zf is no out of {Zf} that ψ ≡ ϕf . �

Similarly, it is proved that the reduction of the class {Zf} of problems Zf
for constructing abbreviated partial functions of F , k-valued logic to the decod-
ing problem is incomplete. Let F (x1, . . . , xn) be an arbitrary non universally
defined function of k-valued logic, Z ′f let be the problem of finding the mini-
mum set of variables essential for F and ϕF let be a monotone Boolean function
corresponding F to. Let’s assume that αi1 , . . . , αik- zero coordinates of the set
(α1, . . . , αn) ∈ E2

n. Let’s put

ϕT =

{
0, if {xi1 , . . . , xik} - test table
1 − otherwise
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Theorem 3.3. For the Shannon function µ (n) of searching for the maximum upper
zero in the class {ϕF}n of all monotone Boolean functions ϕF , corresponding F ∈
{F}n to is valid µ (n) = C

[n/2]+1
n .

Proof. It follows from the statement of theorem 3.1 and [5–15] that for any
f ∈ Mn there is such F (x1, . . . , xn), that ϕF = f. It is easy to see that the
statement of theorem 4 is also valid in relation to the problem of finding the
minimum k- values of tables. �

Let Tnm = ‖αij‖min be a binary table consisting of m rows and n columns.
Task Z ′T in {Z ′T}, corresponding {T} to, is to find the minimum test of the
table. Let ϕT be a monotone Boolean function corresponding T . Let’s assume
that (αi1 , . . . , αik)the null coordinates of the set (αi1 , . . . , αik) ∈ E2

n are. Let

ϕT =

{
0, if {xi1 , . . . , xik} - test of the table T
1 − otherwise

Theorem 3.4. The reduction Z ′T to the search for the maximum upper zero func-
tions in Mn is incomplete.

Proof. It is known [17–19] that if xi1 , . . . , xik is a table test T , then t ≥ ]log2m[+1.
Therefore, if for a set α̃ in E2

n norm |α̃| > n− ]log2m[− 1, then there is {Z ′T̃} ∈
{Z ′T} no such set that, ϕT ∈ {fα̃} . Consequently, the reduction {Z ′}to the
search for the m.v.n of functions in M is incomplete. �

The theorem is proved. Let the problem Z ′T consist in finding the mini-
mum coverage of matrix columns E = ‖αij‖min by rows and ϕT be a monotone
Boolean function such that

ϕT (α1, . . . , αm) =

{
0, if {i1, . . . , ik} - th rows forms colums coverage T
1 − otherwise

Theorem 3.5. The reduction Z ′T to the search for the maximum upper zero func-
tions in Mn is complete.

Proof. Let α̃ be an arbitrary set E2
m and i1, . . . , ik be zero coordinates α̃. Let’s

build a binary table Tα̃. Let n = m’s say. U1, . . . , Um Select the table rows in such
a way that �
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Ui1 = (1 . . . 0 . . . 00 . . . 0)

Ui2 = (0 . . . 1 . . . 00 . . . 0)

. . . . . . . . . . . . . . . . . . . . . . . . .

Uik = (0 . . . 0 . . . 01 . . . 0) .

Moreover, the remaining lines Tα̃ are pairwise different and the first coordi-
nates take the value zero. It is easy to see that the set α̃ is the m.v.n. of the
function ϕTᾱ and ϕTᾱ ∈ Mm. So for any α̃ ∈ E2

m there exists a table Tα̃such
that ϕTᾱ ∈ {fα̃}. The theorem is proved. Let M = {f1, . . . , fm} be a system
of functions fi (1, . . . , n) , i = 1, m of the logic algebra. The problem Z ′m is to
find the minimum set of variables essential for M and ϕm- a monotone Boolean
function corresponding M to. For example, αi1 , . . . , αik-zero coordinates of the
set (α1, . . . , αm) ∈ E2

m. Let’s put

ϕm (α̃) =

{
0, if {xi1 , . . . , xik}−existsfor ,

1 otherwise.

Theorem 3.6. The reduction Z ′m to the search for the maximum upper zero func-
tions in Mn is complete.

Proof. Let α̃1 be an arbitrary setE2
n i1, . . . , ik of zero coordinates α̃1 and α̃2, . . . , α̃m

be pairwise distinct sets of the intervalNα̃1 in E2
n spanned by the sets α̃1. We con-

struct a system M = {f1, . . . , fm} of functions fi (1, . . . , n) , i = 1, m such that
on all sets β̃ ∈ E2

n, containing (k − 1) zeros, fi
(
β̃
)

= 0, fi (α̃) = 1, i = 1, m.

On the other sets E2
n, the system functions M are not defined. It is not dif-

ficult to notice that {xi1 , . . . , xik} is the minimal set essential for M, and the
set α̃1 of is the m.v.n. of a functionϕm, so ϕm ∈ {fα̃1}in Mn. The theorem is
proved. Let fc = A1 ∨ . . . ∨ Am be an abbreviated d.n.f. of a Boolean function
f (1, . . . , n) The task Z ′f is to construct the shortest d.n.f. f (1, . . . , n) Let ϕf be a
monotone function Mn corresponding f (1, . . . , n) to and αi1 , . . . , αikcoordinates
of (αi1 , . . . , αik) ∈ E2

n:

ϕf =

 0, if

(
k

f → ∨
j=1

)
≡ 1,

1 otherwise.

�
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Theorem 3.7. Information {Z ′f} for the finding maximum upper zero functions
in Mn is incomplete.

Proof. It is known [17–19] that for the maximum value Ik (n)- the length of
the shortest d.b.f. of Boolean functions f = {x1, x2, . . . , xn}- the equality holds
Ik (n) = 2n−1. Therefore, if for any set α̃ and E2

n |z| < 2n−1, then there is no
problem Z ′f such that ϕf ∈ {fZ} . �

Consequently, the reduction {Z ′f}to the search for the m. v. n. of the function
in Mn is incomplete. The theorem is proved. Let M be a system of M inequali-
ties. The task Z ′m is to find the maximum joint subsystem of the system M. Let
be a monotone function of the logic algebra corresponding to. Let’s assume that
the unit coordinates of the set are.

Theorem 3.8. The reduction Z ′m to the search for the maximum upper zero func-
tions in Mn is complete.

Proof. Let the system Mq, (1 ≤ q ≤ m) have the form xi ≥ 0, i = 1, q, x1 + . . .+

xq = −Cj, j = 1, m− q + 1, where Ṅ1, . . . , Ṅm−q+1 are real positive integers,
and for q = m, Mm =

{
xi ≥ 0, i = 1, m

}
.

It is easy to see that if for a set α̃ ∈ E2
m |α̃| ∈ q, then for the problem Z ′Mq

of finding the maximum joint subsystem Mq, the occurrence occurs ϕM ∈ {fα̃}.
So q = 1, m, somehow for sets α̃1, . . . , α̃m ∈ E2

m, |α̃| = i you can build systems
M1, . . . ,Mm, for which ϕM ∈ {fα̃} ∈Mn, i = 1, m. �

The theorem is proved. Thus, from the statements of the proved theorems, it
follows that solutions of the listed discrete extremal problems can be reduced to
solving problems of decoding or searching for monotone functions Mn.

4. THE CONCEPT OF A TEST AND ITS RELATION TO A SYSTEM OF BOOLEAN

EQUATIONS

Let’s define a table 1 elements consisting of rows (objects) and columns (at-
tributes), and αij ∈ {0, 1, . . . , k − 1} , k ≥ 1, j = 1, n, i = 1, m.

To describe and construct tests, it is convenient to use the logic algebra tool.
Let T = {i1, . . . , it} be a certain test. Consider Si, Sj from table 1. Since is
a T test, there is a feature xil ∈ T, (1 ≤ l ≤ t) such that αiil 6= αjil. This fea-
ture, therefore, is included in Tij−the set of all the features on which objects
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S
x x1 x2 · · · xn

S1 a11 a12 · · · a1n

S2 a21 a22 · · · a2n

· · · · · · · · · · · · · · ·

Sm am1 am2 · · · amn
TABLE 1. Description of the table

Si and Sj differ. Thus, T is the result of selecting the features of all sets Tij,
where i, j = 1, m, (i 6= j) . It should be noted that the choice principle used in
education T complicates the construction of the test.

Let’s start with the description of building tests. To do this, we use the appa-
ratus for solving systems of logical equations. In fact, let Tij =

{
xij1 , . . . , x

ij
kji

}
.

Let’s write the set Tij as an equation

(4.1) g (x1, . . . , xn) = 1, where g (x1, . . . , xn) = xij1 ∨ . . . ∨ x
ij
kji
.

It is clear that solutions (α1, . . . , αn) of equation 4.1, which (αi1 , . . . , αik) , k <

t has unit coordinates, will mean that the features xi1 , . . . , xik belong to a set Tij,
i.e. it distinguishes objects Si, Sj. Let’s construct a system of logical equations
4.2:

(4.2)

x121 ∨ x122 ∨ . . . . . . ∨ x12k12
= 1

x131 ∨ x132 ∨ . . . . . . ∨ x13k13
= 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··
x1m1 ∨ x1m2 ∨ . . . . . . ∨ x1mk1m

= 1

x231 ∨ x232 ∨ . . . . . . ∨ x23k23
= 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··
x2m1 ∨ x2m2 ∨ . . . . . . ∨ x2mk2m

= 1

x
(m−1)m
1 ∨ x(m−1)m2 ∨ . . . . . . ∨ x(m−1)mk(m−1)m

= 1

where xiji ∈ Tij. We assume that xi ji are variables of the algebra of logic. Then
the system of equations 4.2 is a system of logical equations.

It is easy to see that system 4.2 is compatible, so to solve it, we use

(4.3) ∧
i 6=j

(
xij1 ∨ . . . ∨ x

ij
ikij

)
= 1, i, j = 1, m.



1946 A. Kabulov, I.H. Normatov, E. Urunbaev, and Sh. Boltaev

Assuming xijl ∧ x
ij
l = xijl , xijl ∨ Ax

ij
l = xijl we reduce expression 4.3 to the

form

(4.4)
q
∨
j=1

(
xi1 ∧ . . . ∧ xikj

)
= 1

moreover, the sum will not contain any extra terms.
It is easy to see that each term xi1 , . . . , xijof equation 4.4 on a binary set

(α1, . . . , αn),
(
αi1 , . . . , αikj

)
with unit coordinates takes the value of one, so such

a set (α1, . . . , αn) is a solution of equation 4.4 and system 4.2.

Theorem 4.1. Let K =
{
xi1 , . . . , xikj

}
be a sum and statement of equation 4.4.

Then the set K of features forms a dead-end test (table 1), and the number of terms
of the statement in 4.4 is equal to the number of all dead-end tests. The validity
of the theorem follows from the fact that the term contains elements from each
bracket

(
xij1 ∨ . . . ∨ x

ij
ikij

)
4.3.

Note 1. The question of finding tests is reduced to constructing a set that has at
least one element in common with each set in expression 4.3.

Note 2. The term statement in equation 4.4, which contains the minimum number
of elements, corresponds to the minimum test in table 1.

5. TESTERS AND BOOLEAN EQUATION SYSTEMS

Let Eρ = {0, 1, . . . , ρ− 1}, T ∗1 , T ∗2 , . . . , T ∗ω be rectangular tables with elements
from Eρ. Let T = {xi1 , xi2 , . . . , xit} be a certain tester. Consider Si = kl. Since
T - is a tester, there is an attribute xi ∈ T such that αiil = αjil. Let’s denote
by the set of all attributes on which objects Si and Sj classeskρ and kl differ,
respectively. Obviously, there T is a result of choosing features from all sets T lρij ,
where i = 1,mρ.

To form testers, we use the device for solving systems of logical equations. We
assume that x1, x2, . . . , xn they are Boolean variables.

Let’s say T lρij = {xj1 , xj2 , . . . , xjn}, (q ≤ t). As in the case of tests, we write the
set as a logical equation T lρij as a logical equation where gijlρ (x1, x2, . . . , xn) =

1, gijlρ (x1, x2, . . . , xn) = xj1 ∨ xj2 ∨ . . .∨ xjq Let be a system of logical equations
gijlρ (x1, x2, . . . , xn) = 1 where i = 1,ml, j = 1,mρ, lρ = 1, ω, i 6= j, ρ 6= 1.
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Similarly to tests, the system L is reduced to the form

(5.1)
q
∨
i=1

g̃ (x1, x2, . . . , xn) = 1

Let equation 5.1 be represented as

(5.2)
q
∨
t=1

(
xi1 ∨ xi2 ∨ . . . ∨ xikj

)
= 1

Where xij ∈ (x1, x2, . . . , xn). Then the following occurs.

Theorem 5.1. Aggregates Lj =
{
xi1 , xi2 , . . . , xikj

}
, j = 1, q form dead-end testers

of the reference table, and their number is equal to the number of terms i = 1, p in
equation 5.2.

CONCLUSION

Solutions of some classes of discrete extremal problems are investigated. The-
orems are proved on reducing the studied classes of discrete extremal prob-
lems, such as optimal coverage of columns of a binary table by rows, search
for minimal tests, table testers, optimal continuation of partially defined logical
functions, etc.to the problem of decoding and finding the maximum number of
discrete monotone functions.

REFERENCES

[1] YU.I. ZHURAVLEV: On separability of subsets of vertices of an n-dimensional unit cube,
Trudy MI an SSSR, 51, (1958).

[2] E.V. DYUKOVA, YU.I. ZHURAVLEV: Monotone dualization problem and its generaliza-
tions: asymptotic estimates of the number of solutions, Computational Mathematics and
Mathematical Physics, 58(12), (2018), 2064–2077.

[3] E.V. DYUKOVA, YU.I. ZHURAVLEV, P.A. PROKOFIEV: The Logical markers in the clas-
sification problem case, Computational Mathematics and Mathematical Physics, 57(11)
(2017), 1906–1927.

[4] N.N. BONDARENKO, YU.I. ZHURAVLEV: Algorithm for choosing conjunctions for log-
ical recognition methods, Computational Mathematics and Mathematical Physics, 52(4)
(2012), 649–652.

[5] I.H. NORMATOV: Principle of independence of continuation of functions multivalued logic
from coding, Journal of Physics: Conference Series, 1210(1) (2019), 012107.



1948 A. Kabulov, I.H. Normatov, E. Urunbaev, and Sh. Boltaev

[6] A.V. KABULOV, I.H. NORMATOV: About problems of decoding and searching for the max-
imum upper zero of discrete monotone functions, Journal of Physics: Conference Series,
1260(10) (2019), 102006.

[7] A.V. KABULOV, E. URUNBAYEV, A.O. ASHUROV: Logical method for constructing the op-
timal corrector of fuzzy heuristic algorithms, 2019 International Conference on Information
Science and Communications Technologies (ICISCT), (2019), 1–4.

[8] A.V. KABULOV, I.H. NORMATOV, A.O. ASHUROV: Computational methods of mini-
mization of multiple functions, Journal of Physics: Conference Series, 1260(10) (2019),
102007.

[9] A.V. KABULOV, E. URUNBAYEV, I.H. NORMATOV, A.O. ASHUROV: Synthesis methods
of optimal discrete corrective functions, Advances in Mathematics: Scientific Journal, 9(9)
(2020), 6467–6482.

[10] A.V. KABULOV, I.H. NORMATOV, S. BOLTAEV, I. SAYMANOV: Logic method of classifica-
tion of objects with non-joining classes, Advances in Mathematics: Scientific Journal, 9(10)
(2020), 8635–8646.

[11] I.H. NORMATOV, E. KAMOLOV: Development of an algorithm for optimizing the techno-
logical process of kaolin enrichment, 2020 IEEE International IOT, Electronics and Mecha-
tronics Conference (IEMTRONICS) (2020), 1–4.

[12] A.V. KABULOV, I.H. NORMATOV, A. SEYTOV, A. KUDAYBERGENOV: Optimal Manage-
ment of Water Resources in Large Main Canals with Cascade Pumping Stations, 2020 IEEE
International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (2020), 1–4.

[13] A.V. KABULOV, I.H. NORMATOV, A.A. KARIMOV: Algorithmization control of complex
systems based on functioning tables, Journal of Physics: Conference Series, 1441(1) (2020),
012141.

[14] A.V. KABULOV, I.H. NORMATOV, A.A. KARIMOV: Algorithmization control of complex
systems based on functioning tables, Journal of Physics: Conference Series, 1441(1) (2020),
012141.

[15] A.V. KABULOV, I.H. NORMATOV, A.O. ASHUROV: About the problem of minimal tests
searching, Advances in Mathematics: Scientific Journal, 9(12) (2020), 10419–10430.

[16] A.V. KABULOV, I.H. NORMATOV, A.A. KARIMOV, E.R. NAVRUZOV: Algorithm of con-
structing control models of complex systems in the language of functioning tables, Advances
in Mathematics: Scientific Journal, 9(12) (2020), 10397–10417.

[17] N.N. KATERINOCHKINA: Search for the maximum upper zero of a monotone function of the
logic algebra, DAN SSSR, 3 (1975), 224.

[18] N.A. SOLOVYOV : Tests, The science, Novosibirsk, (1978), 187.
[19] V. GOGOLEV: Some estimates of disjunctive normal forms of logic algebra functions, In sat.

Problems of Cybernetics. Moscow, Russia. The science., 19 (1967), 75–94.
[20] A.V. KABULOV, E. URUNBOEV, I. SAYMANOV: Object recognition method based on logical

correcting functions, 2020 International Conference on Information Science and Commu-
nications Technologies, ICISCT. Tashkent, Uzbekistan. (2020), 1–5.



ON REDUCING DISCRETE EXTREMAL PROBLEMS TO THE PROBLEM OF DECODING 1949

DEPARTMENT OF INFORMATION SECURITY

NATIONAL UNIVERSITY OF UZBEKISTAN NAMED AFTER MIRZO ULUGBEK

UNIVERSITY STREET, 4, 100174 TASHKENT, UZBEKISTAN.
Email address: anvarkabulov@mail.ru

DEPARTMENT OF APPLIED MATHEMATICS AND INTELLECTUAL TECHNOLOGIES

UNIVERSITY OF NATIONAL UNIVERSITY OF UZBEKISTAN NAMED AFTER MIRZO ULUGBEK

TASHKENT CITY, UNIVERSITY STREET 4, 100174, UZBEKISTAN.
Email address: ibragim_normatov@mail.ru

DEPARTMENT OF MATHEMATICAL MODELING AND COMPLEX PROGRAMMING

SAMARKAND STATE UNIVERSITY

UNIVERSITY BOULEVARD 15, 140104 SAMARKAND, UZBEKISTAN.
Email address: urunbayeverkin@mail.ru

DEPARTMENT OF APPLIED MATHEMATICS AND INTELLECTUAL TECHNOLOGIES

UNIVERSITY OF NATIONAL UNIVERSITY OF UZBEKISTAN NAMED AFTER MIRZO ULUGBEK

TASHKENT CITY, UNIVERSITY STREET 4, 100174, UZBEKISTAN.
Email address: sherzodboltaev@gmail.com


	1. Introduction
	2. Statement of the problem
	3. Criteria for reducing discrete monotone functions to problems of decoding and finding the maximum upper zero
	4. The concept of a test and its relation to a system of Boolean equations
	5. Testers and Boolean equation systems
	Conclusion
	References

