

Advances in Mathematics: Scientific Journal **10** (2021), no.4, 1969–1982 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.4.11

# ON N(k)-CONTACT METRIC MANIFOLD ENDOWED WITH PSEUDO-QUASI-CONFORMAL CURVATURE TENSOR

B. Phalaksha Murthy, R. T. Naveen Kumar, P. Siva Kota Reddy<sup>1</sup>, and Venkatesha

ABSTRACT. In this paper, a few properties of N(k)-contact metric manifolds equipped with pseudo qausi-conformal curvature tensor were deeply studied. Firstly, it has been shown that a globally  $\phi$ -pseudo-quasi-conformally symmetric N(k)-contact metric manifold is turns into  $\phi$ -symmetric. Further, we describe 3dimensional N(k)-contact metric manifold, characterizing the locally  $\phi$ -pseudoquasi-conformally symmetric and pseudo-quasi-conformally  $\phi$ -recurrent structures. Finally, we pay a special attention to the existence of 3-dimensional case by giving suitable examples.

### 1. INTRODUCTION

In 1968, Yano and Sawaki [7] have originate and deeply studied a type of tensor field, called quasi-coformal curvature tensor C on a Riemannian manifold. As a generalization, recently Shaikh and Jana [5] have formulated the framework of pseudo-quasi-conformal curvature tensor which comprises the structures of concircular, projective, quasi-conformal and Weyl conformal curvature

<sup>&</sup>lt;sup>1</sup>corresponding author

<sup>2020</sup> Mathematics Subject Classification. 53C15, 53C25.

Key words and phrases. N(k)-Contact metric manifold, Pseudo-quasi-conformal curvature tensor, Scalar curvature, Einstein manifold.

Submitted: 13.03.2021; Accepted: 02.04.2021; Published: 07.04.2021.

tensors as a special cases given by:

(1.1) 
$$\tilde{C}(U,V)W = (p+d)R(U,V)W + q[g(V,W)QU - g(U,W)QV] + \left[q - \frac{d}{2n}\right][S(V,W)U - S(U,W)V] - \frac{r}{2n(2n+1)}\{p+4nq\}[g(V,W)U - g(U,W)V],$$

where  $U, V, W \in \chi(M)$ , S is the Ricci tensor, r is the scalar curvature, Q is the symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor S [1] called Ricci operator i.e., g(QV, W) = S(V, W) and p, q, d are real constants such that  $p^2 + q^2 + d^2 > 0$ .

In particular, if (1) p = 1, q = d = 0; (2) p = q = 0, d = 1; (3)  $p \neq 0, q \neq 0, d = 0$ ; (4)  $p = 1, q = \frac{-1}{2n-1}, d = 0$ ; then pseudo-quasi-conformal curvature tensor  $\tilde{C}$  reduces to the concircular curvature tensor; projective curvature tensor; quasi-conformal curvature tensor and conformal curvature tensor respectively. Also from (1.1), we can easily found that:

(1.2) 
$$(\nabla_X \tilde{C})(U, V)W = (p+d)(\nabla_X R)(U, V)W$$
  
  $+q[g(V, W)(\nabla_X Q)U - g(U, W)(\nabla_X Q)V]$   
  $+ \left[q - \frac{d}{2n}\right][(\nabla_X S)(V, W)U - (\nabla_X S)(U, W)V]$   
  $-\frac{dr(X)\{p+4nq\}}{2n(2n+1)}[g(V, W)U - g(U, W)V].$ 

Based on the above, the present paper is organized in the following way: In Section 2, we formulated the definitions and preliminary results that will be needed thereafter. In Section 3, we have proved that a globally  $\phi$ -pseudo-quasiconformally symmetric N(k)-contact metric manifold is either locally isometric to the Riemannian product  $E^{n+1}(0) \times S^n(4)$  [2] or the manifold always admits an  $\eta$  parallel Ricci tensor. In section 4, we study three dimensional Locally  $\phi$ -pseudo-quasi-conformally symmetric N(k)-contact metric manifold and it is shown that the manifold is locally  $\phi$ -pseudo quasi-conformally symmetric if and only if the scalar curvature is constant. In the next section we have shown that a 3-dimensional pseudo-quasi conformally  $\phi$ -recurrent N(k)-contact metric manifold is pseudo-quasi conformally  $\phi$ -symmetric if and only if the manifold is of constant scalar curvature. Finally, we gave an example of a 3-dimensional locally  $\phi$ -pseudo-quasi-conformally symmetric N(k)-contact metric manifold.

### 2. PRELIMINARIES

An odd dimensional manifold M is said to conceded an almost contact structure if it admits a (1, 1)-tensor field  $\phi$ , a vector field  $\xi$  and a 1-form  $\eta$  satisfying

(2.1)  $\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi \xi = 0, \quad \eta \circ \phi = 0.$ 

An almost contact metric structure is said to be normal if the induced almost complex structure J on the product manifold  $M \times R$  characterized by

$$J(U, f\frac{d}{dt}) = (\phi U - f\xi, \eta(U)\frac{d}{dt})$$

is integrable, where U is tangent to M, t is the coordinate of R and f is a differentiable function on  $M \times R$ . Let g be a compatible Riemannian metric with almost contact structure  $(\phi, \xi, \eta)$ , i.e.,

$$g(\phi U, \phi V) = g(U, V) - \eta(U)\eta(V),$$

then *M* becomes an almost contact metric manifold equipped with an almost contact metric structure  $(\phi, \xi, \eta, g)$ . From (2.1) it can be easily seen that

$$g(V,\phi W) = -g(\phi V,W), \quad g(V,\xi) = \eta(V),$$

for all vector fields V, W. An almost contact metric structure becomes a contact metric structure if

$$g(V,\phi W) = d\eta(V,W),$$

for all vector fields V, W. Then the 1-form  $\eta$  is reduces to contact form and corresponding  $\xi$  is its characteristic vector field. Moreover, if  $\nabla$  denotes the Riemannian connection of g, then the following relation holds

(2.2) 
$$\nabla_V \xi = -\phi V - \phi h V.$$

Blair et al. [4] have developed the structure of  $(k, \mu)$ -nullity distribution of a Contact metric manifold M given by

$$\begin{split} N(k,\mu) &: p \to N_p(k,\mu) \\ N_p(k,\mu) &= \{ W \in T_p M / R(U,V) W = (kI + \mu h) [g(V,W)U - g(U,W)V] \}, \end{split}$$

for all  $U, V \in \chi(M)$ , where  $(k, \mu) \in R^2$ . A Contact metric manifold with  $\xi \in N(k, \mu)$  is called a  $(k, \mu)$ -contact metric manifold. If  $\mu = 0$ , the  $(k, \mu)$ -nullity

distribution weakened to k-nullity distribution. The k-nullity distribution N(k) of a Riemannian manifold is defined by [6]

$$N(k): p \to N_p(k) = \{ W \in T_p M / R(U, V) W = k[g(V, W)U - g(U, W)V] \},\$$

k being a constant. If the characteristic vector field  $\xi \in N(k)$ , then we call a contact metric manifold an N(k)-contact metric manifold [3]. If k = 1, then the manifold is Sasakian and if k = 0, then the manifold is locally isometric to the product  $E^{n+1}(0) \times S^n(4)$  for n > 1 and flat for n = 1 [2]. In an N(k)-contact metric manifold, the following relations hold:

(2.3) 
$$h^2 = (k-1)\phi^2,$$

1972

(2.4) 
$$R(\xi, U)V = k[g(U, V)\xi - \eta(V)U],$$

(2.5) 
$$S(U,V) = 2(n-1)g(U,V) + 2(n-1)g(hU,V),$$
$$+[2nk - 2(n-1)]\eta(U)\eta(V), n \ge 1,$$

$$+[2nk - 2(n - 1)]\eta(0)\eta(0)$$
(2.6)  $r = 2n(2n - 2 + k)$ 

(2.6) 
$$r = 2n(2n-2+k),$$

(2.7) 
$$S(\phi U, \phi V) = S(U, V) - 2nk\eta(U)\eta(V) - 4(n-1)g(hU, V),$$

(2.8) 
$$S(U,\xi) = 2nk\eta(U),$$

(2.9) 
$$(\nabla_U \eta)(V) = g(U + hU, \phi V).$$

Also in a 3-dimensional N(k)-contact metric manifold, the Riemannian curvature tensor R and Ricci tensor S satisfies the following relations:

(2.10) 
$$R(U,V)W = \left(\frac{r}{2} - 2k\right) [g(V,W)U - g(U,W)V] \\ + \left(3k - \frac{r}{2}\right) [\eta(V)\eta(W)U - \eta(U)\eta(W)V \\ + g(V,W)\eta(U)\xi - g(U,W)\eta(V)\xi],$$
  
(2.11) 
$$S(U,V) = \left(\frac{r}{2} - k\right) g(U,V) + \left(3k - \frac{r}{2}\right) \eta(U)\eta(V).$$

**Definition 2.1.** An N(k)-contact metric manifold is said to be globally  $\phi$ -pseudoquasi-conformally symmetric if the pseudo-quasi-conformal curvature tensor  $\tilde{C}$  satisfies the condition

(2.12) 
$$\phi^2((\nabla_X \tilde{C})(U, V)W) = 0$$

for all  $U, V, W, X \in \chi(M)$ . In particular, if we take  $U, V, W, X \in \chi(M)$  orthogonal to  $\xi$  then the manifold becomes locally  $\phi$ -pseudo-quasi-conformally symmetric.

# 3. Globally $\phi$ -Pseudo-Quasi-Conformally Symmetric N(k)-Contact METRIC MANIFOLDS

Let M be an globally  $\phi$ -pseudo-quasi-conformally symmetric N(k)-contact metric manifold, then it follows from (2.12) and (2.1) that

(3.1) 
$$-(\nabla_X \tilde{C})(U, V)W + \eta((\nabla_X \tilde{C})(U, V)W)\xi = 0.$$

In view of (1.1) in (3.1) and then by taking inner product with Y, we have

,

$$(3.2) \qquad -(p+d)(\nabla_X R)(U,V,W,Y) - \left(q - \frac{d}{2n}\right) \left[ (\nabla_X S)(V,W)g(U,Y) - \nabla_X S)(U,W)g(V,Y) \right] - q \left[ g(V,W)g((\nabla_X Q)U,Y) - g(U,W)g((\nabla_X Q)V,Y) \right] + \frac{dr(X)(p+4nq)}{2n(2n+1)} \left[ g(V,W)g(U,Y) - g(U,W)g(V,Y) \right] + (p+d)\eta \left( (\nabla_X R)(U,V)W \right) \eta(Y) + \left(q - \frac{d}{2n}\right) \left[ (\nabla_X S)(V,W)\eta(U) - (\nabla_X S)(U,W)\eta(U) \right] \eta(Y) + q \left[ g(V,W)\eta \left( (\nabla_X Q)U \right) - g(U,W)\eta \left( (\nabla_X Q)V \right) \eta(Y) - \frac{dr(X)(p+4nq)}{2n(2n+1)} \left[ g(V,W)\eta(U) - g(,W)\eta(V) \right] \eta(Y) = 0.$$

By considering  $U = Y = e_i$  in (3.2), where  $\{e_i, i = 1, 2, 3, 4, \dots, 2n+1\}$  is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over *i*, we get

$$(3.3) \quad \left\{ q - p - d - (2n - 1) \left( q - \frac{d}{2n} \right) \right\} (\nabla_X S)(V, W) + \left\{ -qg((\nabla_X Q)e_i, e_i) + \frac{2n - 1}{2n(2n + 1)} (p + 4nq)dr(X) + q\eta((\nabla_X Q)e_i)\eta(e_i) \right\} g(V, W) + (p + d)\eta((\nabla_X R)(e_i, V)W)\eta(e_i) - \left( q - \frac{d}{2n} \right) (\nabla_X S)(\xi, W)\eta(V) - q\eta((\nabla_X Q)V)\eta(W) + \frac{dr(X)}{2n(2n + 1)} (p + 4nq)\eta(V)\eta(W) = 0.$$

On plugging  $W = \xi$  in (3.3) and then by using (2.1), we obtain

(3.4) 
$$\left(p + (2n-1)q + \frac{d}{2n}\right)(\nabla_X S)(V,\xi) = \left(\frac{p + (2n-1)q}{2n+1}\right)dr(X)\eta(V).$$

Again plugging  $V = \xi$  in (3.4), we get dr(X) = 0 i.e., r is constat provided  $p + (2n - 1)q \neq 0$ .

Thus we can able to state the following result:

**Theorem 3.1.** A globally  $\phi$ -pseudo-quasi-conformally symmetric N(k)-contact metric manifold is a space of constant scalar curvature provided the pseudo-quasi conformal curvature tensor always reduces to either concircular curvature tensor or quasi-conformal curvature tensor  $(p + (2n - 1)q \neq 0)$ .

Next we consider the manifold of constant scalar curvature r, then from (3.4) it follows that

(3.5) 
$$(\nabla_X S)(V,\xi) = 0$$
, provided  $\left(p + (2n-1)q + \frac{d}{2n}\right) \neq 0.$ 

In view of (2.2), (2.8) and (2.9), equation (3.5) turns into

(3.6) 
$$k[g(X,\phi V) + g(hX,\phi V)] = 0$$

Which implies either k = 0 or

(3.7) 
$$g(X, \phi V) + g(hX, \phi V) = 0.$$

Replacing *X* by  $\phi X$  in (3.6) and then by using (2.5), we obtain

$$S(\phi X, \phi V) = o.$$

Now taking covariant derivative above expression with respect to Z gives

$$(\nabla_Z S)(\phi X, \phi V) = o.$$

This leads us to the following result:

**Theorem 3.2.** An N(k)-contact metric manifold is globally  $\phi$ -pseudo quasi-conformally symmetric, then either the manifold is locally isometric to the Riemannian product  $E^{n+1}(0) \times S^n(4)$  [2] or the manifold admits an  $\eta$  parallel Ricci tensor provided the pseudo-quasi conformal curvature tensor never reduces to conformal curvature tensor, that is:  $\left(\left(p + (2n-1)q + \frac{d}{2n}\right) \neq 0\right)$ . Finally, we describe a globally  $\phi$ -pseudo-quasi-conformally symmetric Einstein N(k)-contact metric manifold, that is,

$$S(U,V) = \alpha g(U,V),$$

for all  $U, V \in \chi(M)$ , where  $\alpha$  is constant and  $QU = \alpha U$ . Then it follows from (1.1) that

(3.8) 
$$\tilde{C}(U,V)W = (p+d)R(U,V)W + \left\{ \left( 2q - \frac{d}{2n} \right) \alpha - \frac{r(p+4nq)}{2n(2n+1)} \right\} [g(V,W)U - g(U,W)V].$$

Now taking covariant differentiation of (3.8) along *X*, we get

(3.9) 
$$(\nabla_X \tilde{C})(U, V)W = (p+d)(\nabla_X R)(U, V)W$$
  
 $-dr(X) \left[\frac{p+4nq}{2n(2n+1)}\right] [g(V, W)U - g(U, W)V].$ 

BY employing  $\phi^2$  on both sides of (3.9), we obtain

(3.10) 
$$\phi^{2}((\nabla_{X}\tilde{C})(U,V)W) = (p+d)\phi^{2}((\nabla_{X}R)(U,V)W) \\ -\frac{(p+4nq)dr(X)}{2n(2n+1)}[g(V,W)\phi^{2}U - g(U,W)\phi^{2}V].$$

Since the manifold is Einstein, the scalar curvature r is always constant and so dr(W) = 0. Hence the equation (3.10) turns into

(3.11) 
$$\phi^2\left((\nabla_X \tilde{C})(U, V)W\right) = (p+d)\phi^2\left((\nabla_X R)(U, V)W\right).$$

This leads us to the following result:

**Theorem 3.3.** An Einstein N(k)-contact metric manifold is globally  $\phi$ -pseudoquasi-conformally symmetric if and only if it is  $\phi$ -symmetric provided  $p + d \neq 0$ .

# 4. 3-DIMENSIONAL LOCALLY $\phi$ -PSEUDO-QUASI-CONFORMALLY SYMMETRIC N(k)-CONTACT METRIC MANIFOLD

Let us consider a 3-dimensional locally  $\phi$ -pseudo-quasi-conformally symmetric N(k)-contact metric manifold, that is:  $\phi^2((\nabla_X \tilde{C})(U, V)W) = 0$ , where  $U, V, W, X \in \chi(M)$  and orthogonal  $\xi$ .

By considering (2.11) and (2.10) in (1.1), we get

$$(4.1)\tilde{C}(U,V)W = \left(\frac{r}{6} - k\right) \left(2p + 2q + \frac{3d}{2}\right) [g(V,W)U - g(U,W)V] \\ + \left(3k - \frac{r}{2}\right) (p + q + d) [g(V,W)\eta(U)\xi - g(U,W)\eta(V)\xi] \\ + \left(3k - \frac{r}{2}\right) (p + 2q - \frac{d}{2}) [\eta(V)\eta(W)U - \eta(U)\eta(W)V].$$

Now taking covariant differentiation of (4.1) along X, yields

$$\begin{aligned} (4.2) \nabla_X \tilde{C})(U,V)W &= \frac{dr(X)}{6} \left( 2p + 2q + \frac{3d}{2} \right) [g(V,W)U - g(U,W)V] \\ &- \frac{dr(X)(p+q+d)}{2} [g(V,W)\eta(U)\xi - g(U,W)\eta(V)\xi] \\ &- \frac{dr(X)}{2} \left( p + 2q - \frac{d}{2} \right) [\eta(V)\eta(W)U - \eta(U)\eta(W)V] \\ &+ \left( 3k - \frac{r}{2} \right) (p+q+d) [g(V,W)(\nabla_X \eta)(U)\xi \\ &+ g(V,W)\eta(U)\nabla_X \xi - g(U,W)(\nabla_X \eta)(V)\xi \\ &- g(U,W)\eta(V)\nabla_X \xi] \\ &+ \left( 3k - \frac{r}{2} \right) \left( p + 2q - \frac{d}{2} \right) [(\nabla_X \eta)(V)\eta(W)U \\ &+ (\nabla_X \eta)(W)\eta(V)U - (\nabla_X \eta)(U)\eta(W)V \\ &- (\nabla_X \eta)(W)\eta(U)V]. \end{aligned}$$

Since X,Y, Z and W orthogonal to  $\xi,$  we have from (4.2) that

(4.3) 
$$(\nabla_X \tilde{C})(U, V)W = \frac{dr(X)}{6} \left(2p + 2q + \frac{3d}{2}\right) [g(V, W)U - g(U, W)V] + \left(3k - \frac{r}{2}\right) (p + q + d) [g(V, W)(\nabla_X \eta)(U)\xi - g(U, W)(\nabla_X \eta)(V)\xi].$$

Operating  $\phi^2$  on both sides of (4.3), gives

(4.4) 
$$\phi^2((\nabla_X \tilde{C})(U, V)W) = \frac{dr(X)(4p+4q+3d)}{12}[g(V, W)\phi^2 U -g(U, W)\phi^2 V].$$

Since  $\phi^2((\nabla_X \tilde{C})(U, V)W) = 0$ , we have dr(W) = 0 provided  $(4p + 4q + 3d) \neq 0$ and hence the scalar curvature r is constant.

Conversely, if the scalar curvature r is constant i.e., dr(W) = 0 then from (4.4), we get  $\phi^2((\nabla_X \tilde{C})(U, V)W) = 0$ .

Thus, we can state the following theorem:

**Theorem 4.1.** A 3-dimensional N(k)-contact metric manifold is locally  $\phi$ -pseudo quasi-conformally symmetric if and only if the scalar curvature is constant.

5. 3-DIMENSIONAL PSEUDO-QUASI-CONFORMALLY 
$$\phi$$
-RECURRENT  $N(k)$ -CONTACT METRIC MANIFOLD

**Definition 5.1.** An N(k)-contact metric manifold is said to be pseudo-quasi-conformally  $\phi$ -recurrent if

(5.1) 
$$\phi^2((\nabla_W \tilde{C})(X,Y)Z) = A(W)\tilde{C}(X,Y)Z,$$

holds for all  $X, Y, Z, W \in \chi(M)$ .

In particular if A(W) = 0, then pseudo-quasi-conformally  $\phi$ -recurrent N(k)contact metric manifold reduces to pseudo-quasi-conformally  $\phi$ -symmetric. Let us consider an pseudo-quasi conformally  $\phi$ -recurrent N(k)-contact metric manifold, then it follows from (5.1) that

(5.2) 
$$-(\nabla_X \tilde{C})(U, V)W + \eta \big( (\nabla_X \tilde{C})(U, V)W \big) \xi = A(X)\tilde{C}(U, V)W,$$

from which we can easily seen that

(5.3) 
$$-g((\nabla_X \tilde{C})(U, V)W, Y) + \eta((\nabla_X \tilde{C})(U, V)W)\eta(Y)$$
$$= A(X)g(\tilde{C}(U, V)W, Y).$$

By considering the expressions (1.1), (2.8) and (2.10) in (5.3) and then contracting over U and Y, we get

(5.4) 
$$-(4p+4q+3d)\left(\frac{dr(X)}{6}\right)g(V,W) + \left(3k-\frac{r}{2}\right)\left(-p-2q+\frac{d}{2}\right)(\nabla_X\eta)(V)\eta(W) + \left(3k-\frac{r}{2}\right)(-p-3q+2d)(\nabla_X\eta)(W)\eta(V)$$

B. P. Murthy, R. T. Naveen Kumar, P. S. K. Reddy, and Venkatesha

$$+\left(\frac{dr(X)}{6}\right)\left(2p+2q+\frac{3d}{2}\right)[g(V,W)-\eta(V)\eta(W)] \\ = A(X)\left\{\left(\frac{r}{2}-k\right)(4p+4q+3d)g(V,W) + \left(3k-\frac{r}{2}\right)(2p+4q-d)\eta(V)\eta(W) + \left(3k-\frac{r}{2}\right)(p+q+d)[g(V,W)-\eta(V)\eta(W)]\right\}.$$

On plugging  $W = \xi$ , above equation turns into

(5.5) 
$$-(4p+4q+3d)\left(\frac{dr(X)}{6}\right)\eta(V) + \left(3k-\frac{r}{2}\right)\left(-p-2q+\frac{d}{2}\right)(\nabla_X\eta)(V)$$
$$= A(X)\left\{\left(\frac{r}{2}-k\right)(4p+4q+3d) + \left(3k-\frac{r}{2}\right)(2p+4q-d)\right\}\eta(V).$$

Again plugging  $V = \xi$  in (5.5), we obtain

(5.6) 
$$A(X) = \frac{-(4p+4q+3d)}{6[r(p+2d)+2k(p+4q-3d)]}dr(X).$$

This leads us to the following result:

**Theorem 5.1.** In a 3-dimensional pseudo-quasi conformally  $\phi$ -recurrent N(k)contact metric manifold, the 1-form A is given by the expression (5.6).

If we consider the manifold of constant scalar curvature r, then dr(W) = 0. Hence from equation (5.6), we have

(5.7) 
$$A(W) = 0.$$

By using (5.7) in (5.1), we get

(5.8) 
$$\phi^2((\nabla_W \tilde{C})(X,Y)Z) = 0.$$

Thus we can state the following theorem:

**Theorem 5.2.** A 3-dimensional pseudo-quasi conformally  $\phi$ -recurrent N(k)-contact metric manifold with constant scalar curvature always turns into an pseudo-quasi conformally  $\phi$ -symmetric manifold.

Conversely, we assume that if the pseudo-quasi conformally  $\phi$ -recurrent N(k)contact metric manifold becomes pseudo-quasi conformally  $\phi$ -symmetric manifold i.e., A(W) = 0, then we have obtained from the expression (5.6) that

dr(X) = 0 which implies that r is constant. This leads us to the following theorem:

**Theorem 5.3.** If a 3-dimensional pseudo-quasi conformally  $\phi$ -recurrent N(k)contact metric manifold is pseudo-quasi conformally  $\phi$ -symmetric, then the manifold is of constant scalar curvature r.

Now from Theorem 5.3. and Theorem 5.4., we can able to conclude that:

**Theorem 5.4.** A 3-dimensional pseudo-quasi conformally  $\phi$ -recurrent N(k)- contact metric manifold is pseudo-quasi conformally  $\phi$ -symmetric if and only if the manifold is of constant scalar curvature r.

### 6. EXAMPLES

**Example 1.** Let us consider 3-dimensional Riemannian manifold  $M = \{(x_1, x_2, x_3) \in \mathbb{R}^3\}$ , where  $(x_1, x_2, x_3)$  is the standard coordinate in  $\mathbb{R}^3$ . Let  $E_1$ ,  $E_2$ ,  $E_3$  are the vector fields in  $\mathbb{R}^3$  satisfying the expressions

(6.1)  $[E_1, E_2] = (1 - \alpha)E_3, \quad [E_2, E_3] = 2E_1, \quad [E_3, E_1] = (1 + \alpha)E_2,$ 

where  $\alpha \neq \pm 1$  is a real number.

Let g be the Riemannian metric described by

$$g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1,$$
  
 $g(E_1, E_2) = g(E_1, E_3) = g(E_2, E_3) = 0.$ 

Let  $\eta$  be the 1-form associating with the vector field  $\xi = E_1$  is given by

(6.2) 
$$\eta(W) = g(W, E_1),$$

for any  $W \in \chi(M)$ . Let  $\phi$  be the (1,1)-tensor field given by

(6.3) 
$$\phi(E_1) = 0, \quad \phi(E_2) = E_3, \quad \phi(E_3) = -E_2$$

Moreover, we also have the following conditions:

 $hE_1 = 0, \qquad hE_2 = \alpha E_2, \qquad hE_3 = -\alpha E_3$ 

By using Koszul's formula, we can easily find the following:

$$\begin{aligned}
\nabla_{E_1} E_1 &= 0, & \nabla_{E_1} E_2 &= 0, & \nabla_{E_1} E_3 &= 0, \\
\nabla_{E_2} E_1 &= -(1+\alpha) E_3, & \nabla_{E_2} E_2 &= 0, & \nabla_{E_2} E_3 &= (1+\alpha) E_1, \\
\nabla_{E_3} E_1 &= (1-\alpha) E_1, & \nabla_{E_3} E_2 &= -(1-\alpha) E_1, & \nabla_{E_3} E_3 &= 0.
\end{aligned}$$

By considering above expressions, we found that

 $\nabla_X \xi = -\phi X - \phi h X$ , for  $E_1 = \xi$ .

Therefore, the manifold is said to be a contact metric manifold with the contact metric structure  $(\phi, \xi, \eta, g)$ .

Now the components of Riemannian Curvature tensor are given by

$$R(E_1, E_2)E_2 = (1 - \alpha^2)E_1, \qquad R(E_1, E_3)E_3 = (1 - \alpha^2)E_1,$$
  

$$R(E_1, E_2)E_1 = -(1 - \alpha^2)E_2, \qquad R(E_2, E_3)E_3 = -(1 - \alpha^2)E_2,$$
  

$$R(E_3, E_1)E_1 = (1 - \alpha^2)E_3, \qquad R(E_3, E_2)E_2 = -(1 - \alpha^2)E_3.$$

By virtue of above relations of the Riemannian curvature tensor, we conclude that the manifold is a  $N(1 - \alpha^2)$ -contact metric manifold. Hence the Ricci tensor S is given by

$$S(E_1, E_1) = 2(1 - \alpha^2),$$
  $S(E_2, E_2) = 0,$   $S(E_3, E_3) = 0.$ 

Hence the scalar curvature of the manifold is obtained as

 $r = S(E_1, E_1) + S(E_2, E_2) + S(E_3, E_3) = 2(1 - \alpha^2),$ 

which is always constant. Thus from the Theorem 4.1. and Theorem 5.5., we conclude that the given three dimensional N(k)-contact metric manifold is Locally  $\phi$ -pseudo-Quasi-Conformally symmetric and pseudo-quasi conformally  $\phi$ -recurrent.

**Example 2.** Next we consider 3-dimensional Riemannian manifold  $M = \{(x_1, x_2, x_3) \in R^3\}$ , where  $(x_1, x_2, x_3)$  is the standard coordinate in  $R^3$ . Let  $E_1$ ,  $E_2$ ,  $E_3$  are the vector fields in  $R^3$  satisfying the expressions

(6.4) 
$$[E_1, E_2] = 2E_3 + \frac{2}{x_1}E_1, \quad [E_2, E_3] = 2E_1, \quad [E_3, E_1] = 0.$$

Let g be the Riemannian metric described by

$$g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1,$$
  
 $g(E_1, E_2) = g(E_1, E_3) = g(E_2, E_3) = 0.$ 

Let  $\eta$  be the 1-form associating with the vector field  $\xi = E_3$  is given by

(6.5)  $\eta(W) = g(W, E_3),$ 

for any  $W \in \chi(M)$ . Let  $\phi$  be the (1,1)-tensor field given by

(6.6)  $\phi(E_1) = E_2, \qquad \phi(E_2) = -E_1, \qquad \phi(E_3) = 0.$ 

Moreover, we also have the following conditions:

 $hE_1 = -E_1, \quad hE_2 = E_2, \quad hE_3 = 0.$ 

By using Koszul's formula, we can easily find the following:

$$\begin{aligned} \nabla_{E_1} E_1 &= -\frac{2}{x_1} E_2, \quad \nabla_{E_1} E_2 &= \frac{2}{x_1} E_1, \quad \nabla_{E_1} E_3 &= 0, \\ \nabla_{E_2} E_1 &= -2E_3, \quad \nabla_{E_2} E_2 &= 0, \quad \nabla_{E_2} E_3 &= 2E_1, \\ \nabla_{E_3} E_1 &= 0, \quad \nabla_{E_3} E_2 &= 0, \quad \nabla_{E_3} E_3 &= 0. \end{aligned}$$

By considering above expressions, we found that

$$\nabla_X \xi = -\phi X - \phi h X$$
, for  $E_3 = \xi$ .

Therefore, the manifold is said to be a contact metric manifold with the contact metric structure  $(\phi, \xi, \eta, g)$ .

Now the components of Riemannian Curvature tensor are given by

$$R(E_1, E_2)E_2 = \frac{4}{x_1}E_3 - \frac{4}{x_1^2}E_1, \qquad R(E_1, E_3)E_3 = 0$$
  

$$R(E_1, E_2)E_1 = \frac{4}{x_1^2}E_2, \qquad R(E_2, E_3)E_3 = 0,$$
  

$$R(E_3, E_1)E_1 = 0, \qquad R(E_3, E_2)E_2 = \frac{4}{x_1}E_1.$$

By virtue of above relations of the Riemannian curvature tensor, we conclude that the manifold is a  $N\left(-\frac{4}{x_1}\right)$ -contact metric manifold. Hence the Ricci tensor S is given by

$$S(E_1, E_1) = -\frac{4}{x_1^2}, \qquad S(E_2, E_2) = -\frac{4}{x_1^2}, \qquad S(E_3, E_3) = 0.$$

Hence the scalar curvature of the manifold is obtained as

$$r = S(E_1, E_1) + S(E_2, E_2) + S(E_3, E_3) = -\frac{8}{x_1^2},$$

which is always constant. Thus from the Theorem 4.1. and Theorem 5.5., we conclude that the given three dimensional N(k)-contact metric manifold is locally  $\phi$ -pseudo-quasi-conformally symmetric and pseudo-quasi conformally  $\phi$ -recurrent.

#### B. P. Murthy, R. T. Naveen Kumar, P. S. K. Reddy, and Venkatesha

## Acknowledgements

The authors would like to thank the referees for their invaluable comments and suggestions which led to the improvement of the manuscript.

### References

- [1] R.L. BISHOP, S.I. GOLDBERG: On conformally at space with commuting curvature and Ricci transformations, Can. J. Math., 24(5) (1972), 799-804.
- [2] D.E. BLAIR: Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
- [3] D.E. BLAIR, J.S. KIM, M.M. TRIPATHI: On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42 (2005), 883-892.
- [4] D.E. BLAIR, T. KOUFOGIORGOS, B.J. PAPANTONIOU: Contact metric manifolds satisfying a nullity condition, Israel J. Math., **91** (1995) 189-214.
- [5] A.A. SHAIKH, S.K. JANA: A pseudo-quasi-conformal curvature tensor on a Riemannian manifold South East Asian J. Math. Math. Sci., 4(1) (2005), 15-20.
- [6] S. TANO: Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40 (1988), 441-448.
- [7] K. YANO, S. SAWAKI: *Riemannian manifolds admitting a conformal transformation group* J. Differ. Geom., **2** (1968), 161-184.

DEPARTMENT OF MATHEMATICS GOVERNMENT SCIENCE COLLEGE CHITRADURGA-577 501, KARNATAKA, INDIA. *Email address*: pmurthymath@gmail.com

DEPARTMENT OF MATHEMATICS SIDDAGANGA INSTITUTE OF TECHNOLOGY TUMAKURU-572 103, KARNATAKA, INDIA. *Email address*: rtnaveenkumar@gmail.com

DEPARTMENT OF MATHEMATICS SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING JSS SCIENCE AND TECHNOLOGY UNIVERSITY MYSURU-570 006, KARNATAKA, INDIA. *Email address*: pskreddy@jssstuniv.in; pskreddy@sjce.ac.in

DEPARTMENT OF MATHEMATICS KUVEMPU UNIVERSITY SHANKARAGHATTA-577 451, SHIMOGA, KARNATAKA, INDIA. *Email address*: vensmath@gmail.com