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ON N(k)-CONTACT METRIC MANIFOLD ENDOWED WITH
PSEUDO-QUASI-CONFORMAL CURVATURE TENSOR

B. Phalaksha Murthy, R. T. Naveen Kumar, P. Siva Kota Reddy1, and Venkatesha

ABSTRACT. In this paper, a few properties of N(k)-contact metric manifolds
equipped with pseudo qausi-conformal curvature tensor were deeply studied.
Firstly, it has been shown that a globally φ-pseudo-quasi-conformally symmetric
N(k)-contact metric manifold is turns into φ-symmetric. Further, we describe 3-
dimensionalN(k)-contact metric manifold, characterizing the locally φ-pseudo-
quasi-conformally symmetric and pseudo-quasi-conformally φ-recurrent struc-
tures. Finally, we pay a special attention to the existence of 3-dimensional case
by giving suitable examples.

1. INTRODUCTION

In 1968, Yano and Sawaki [7] have originate and deeply studied a type of ten-
sor field, called quasi-coformal curvature tensor C on a Riemannian manifold.
As a generalization, recently Shaikh and Jana [5] have formulated the frame-
work of pseudo-quasi-conformal curvature tensor which comprises the struc-
tures of concircular, projective, quasi-conformal and Weyl conformal curvature
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tensors as a special cases given by:

C̃(U, V )W = (p+ d)R(U, V )W + q[g(V,W )QU − g(U,W )QV ](1.1)

+

[
q − d

2n

]
[S(V,W )U − S(U,W )V ]

− r

2n(2n+ 1)
{p+ 4nq}[g(V,W )U − g(U,W )V ],

where U, V,W ∈ χ(M), S is the Ricci tensor, r is the scalar curvature, Q is the
symmetric endomorphism of the tangent space at each point corresponding to
the Ricci tensor S [1] called Ricci operator i.e., g(QV,W ) = S(V,W ) and p, q, d
are real constants such that p2 + q2 + d2 > 0.

In particular, if (1) p = 1, q = d = 0; (2) p = q = 0, d = 1; (3) p 6= 0, q 6= 0, d =

0; (4) p = 1, q = −1
2n−1

, d = 0; then pseudo-quasi-conformal curvature tensor C̃
reduces to the concircular curvature tensor; projective curvature tensor; quasi-
conformal curvature tensor and conformal curvature tensor respectively. Also
from (1.1), we can easily found that:

(∇XC̃)(U, V )W = (p+ d)(∇XR)(U, V )W(1.2)

+q[g(V,W )(∇XQ)U − g(U,W )(∇XQ)V ]

+

[
q − d

2n

]
[(∇XS)(V,W )U − (∇XS)(U,W )V ]

−dr(X){p+ 4nq}
2n(2n+ 1)

[g(V,W )U − g(U,W )V ].

Based on the above, the present paper is organized in the following way: In
Section 2, we formulated the definitions and preliminary results that will be
needed thereafter. In Section 3, we have proved that a globally φ-pseudo-quasi-
conformally symmetric N(k)-contact metric manifold is either locally isometric
to the Riemannian product En+1(0) × Sn(4) [2] or the manifold always admits
an η parallel Ricci tensor. In section 4, we study three dimensional Locally
φ-pseudo-quasi-conformally symmetric N(k)-contact metric manifold and it is
shown that the manifold is locally φ-pseudo quasi-conformally symmetric if and
only if the scalar curvature is constant. In the next section we have shown
that a 3-dimensional pseudo-quasi conformally φ-recurrent N(k)-contact metric
manifold is pseudo-quasi conformally φ-symmetric if and only if the manifold
is of constant scalar curvature. Finally, we gave an example of a 3-dimensional
locally φ-pseudo-quasi-conformally symmetric N(k)-contact metric manifold.
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2. PRELIMINARIES

An odd dimensional manifold M is said to conceded an almost contact struc-
ture if it admits a (1, 1)-tensor field φ, a vector field ξ and a 1-form η satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0.(2.1)

An almost contact metric structure is said to be normal if the induced almost
complex structure J on the product manifold M ×R characterized by

J(U, f
d

dt
) = (φU − fξ, η(U) d

dt
)

is integrable, where U is tangent to M , t is the coordinate of R and f is a
differentiable function on M × R. Let g be a compatible Riemannian metric
with almost contact structure (φ, ξ, η), i.e.,

g(φU, φV ) = g(U, V )− η(U)η(V ),

then M becomes an almost contact metric manifold equipped with an almost
contact metric structure (φ, ξ, η, g). From (2.1) it can be easily seen that

g(V, φW ) = −g(φV,W ), g(V, ξ) = η(V ),

for all vector fields V,W . An almost contact metric structure becomes a contact
metric structure if

g(V, φW ) = dη(V,W ),

for all vector fields V,W . Then the 1-form η is reduces to contact form and
corresponding ξ is its characteristic vector field. Moreover, if ∇ denotes the
Riemannian connection of g, then the following relation holds

∇V ξ = −φV − φhV.(2.2)

Blair et al. [4] have developed the structure of (k, µ)-nullity distribution of a
Contact metric manifold M given by

N(k, µ) : p→ Np(k, µ)

Np(k, µ) = {W ∈ TpM/R(U, V )W = (kI + µh)[g(V,W )U − g(U,W )V ]},

for all U, V ∈ χ(M), where (k, µ) ∈ R2. A Contact metric manifold with ξ ∈
N(k, µ) is called a (k, µ)-contact metric manifold. If µ = 0, the (k, µ)-nullity
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distribution weakened to k-nullity distribution. The k-nullity distribution N(k)

of a Riemannian manifold is defined by [6]

N(k) : p→ Np(k) = {W ∈ TpM/R(U, V )W = k[g(V,W )U − g(U,W )V ]},

k being a constant. If the characteristic vector field ξ ∈ N(k), then we call a
contact metric manifold an N(k)-contact metric manifold [3]. If k = 1, then the
manifold is Sasakian and if k = 0, then the manifold is locally isometric to the
product En+1(0) × Sn(4) for n > 1 and flat for n = 1 [2]. In an N(k)-contact
metric manifold, the following relations hold:

h2 = (k − 1)φ2,(2.3)

R(ξ, U)V = k[g(U, V )ξ − η(V )U ],(2.4)

S(U, V ) = 2(n− 1)g(U, V ) + 2(n− 1)g(hU, V ),(2.5)

+[2nk − 2(n− 1)]η(U)η(V ), n ≥ 1,

r = 2n(2n− 2 + k),(2.6)

S(φU, φV ) = S(U, V )− 2nkη(U)η(V )− 4(n− 1)g(hU, V ),(2.7)

S(U, ξ) = 2nkη(U),(2.8)

(∇Uη)(V ) = g(U + hU, φV ).(2.9)

Also in a 3-dimensional N(k)-contact metric manifold, the Riemannian curva-
ture tensor R and Ricci tensor S satisfies the following relations:

R(U, V )W =

(
r

2
− 2k

)
[g(V,W )U − g(U,W )V ](2.10)

+

(
3k − r

2

)[
η(V )η(W )U − η(U)η(W )V

+g(V,W )η(U)ξ − g(U,W )η(V )ξ
]
,

S(U, V ) =

(
r

2
− k

)
g(U, V ) +

(
3k − r

2

)
η(U)η(V ).(2.11)

Definition 2.1. An N(k)-contact metric manifold is said to be globally φ-pseudo-
quasi-conformally symmetric if the pseudo-quasi-conformal curvature tensor C̃ sat-
isfies the condition

φ2((∇XC̃)(U, V )W ) = 0(2.12)
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for all U, V,W,X ∈ χ(M). In particular, if we take U, V,W,X ∈ χ(M) orthogonal
to ξ then the manifold becomes locally φ-pseudo-quasi-conformally symmetric.

3. GLOBALLY φ-PSEUDO-QUASI-CONFORMALLY SYMMETRIC N(k)-CONTACT

METRIC MANIFOLDS

Let M be an globally φ-pseudo-quasi-conformally symmetric N(k)-contact
metric manifold, then it follows from (2.12) and (2.1) that

−(∇XC̃)(U, V )W + η((∇XC̃)(U, V )W )ξ = 0.(3.1)

In view of (1.1) in (3.1) and then by taking inner product with Y , we have

−(p+ d)(∇XR)(U, V,W, Y )−
(
q − d

2n

)[
(∇XS)(V,W )g(U, Y )(3.2)

−∇XS)(U,W )g(V, Y )
]
− q

[
g(V,W )g((∇XQ)U, Y )

−g(U,W )g((∇XQ)V, Y )
]
+
dr(X)(p+ 4nq)

2n(2n+ 1)

[
g(V,W )g(U, Y )

−g(U,W )g(V, Y )
]
+ (p+ d)η

(
(∇XR)(U, V )W

)
η(Y )

+

(
q − d

2n

)[
(∇XS)(V,W )η(U)− (∇XS)(U,W )η(U)

]
η(Y )

+q
[
g(V,W )η

(
(∇XQ)U

)
− g(U,W )η

(
(∇XQ)V

)
η(Y )

−dr(X)(p+ 4nq)

2n(2n+ 1)

[
g(V,W )η(U)− g(,W )η(V )

]
η(Y ) = 0.

By considering U = Y = ei in (3.2), where {ei, i = 1, 2, 3, 4, · · · , 2n + 1} is an
orthonormal basis of the tangent space at each point of the manifold, and taking
summation over i, we get{

q − p− d− (2n− 1)

(
q − d

2n

)}
(∇XS)(V,W ) +

{
− qg

(
(∇XQ)ei, ei

)
(3.3)

+
2n− 1

2n(2n+ 1)
(p+ 4nq)dr(X) + qη

(
(∇XQ)ei

)
η(ei)

}
g(V,W )

+(p+ d)η
(
(∇XR)(ei, V )W

)
η(ei)−

(
q − d

2n

)
(∇XS)(ξ,W )η(V )

−qη
(
(∇XQ)V

)
η(W ) +

dr(X)

2n(2n+ 1)
(p+ 4nq)η(V )η(W ) = 0.
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On plugging W = ξ in (3.3) and then by using (2.1), we obtain

(3.4)
(
p+ (2n− 1)q +

d

2n

)
(∇XS)(V, ξ) =

(
p+ (2n− 1)q

2n+ 1

)
dr(X)η(V ).

Again plugging V = ξ in (3.4), we get dr(X) = 0 i.e., r is constat provided
p+ (2n− 1)q 6= 0.

Thus we can able to state the following result:

Theorem 3.1. A globally φ-pseudo-quasi-conformally symmetricN(k)-contact met-
ric manifold is a space of constant scalar curvature provided the pseudo-quasi con-
formal curvature tensor always reduces to either concircular curvature tensor or
quasi-conformal curvature tensor (p+ (2n− 1)q 6= 0).

Next we consider the manifold of constant scalar curvature r, then from (3.4)
it follows that

(∇XS)(V, ξ) = 0, provided
(
p+ (2n− 1)q +

d

2n

)
6= 0.(3.5)

In view of (2.2), (2.8) and (2.9), equation (3.5) turns into

k
[
g(X,φV ) + g(hX, φV )

]
= 0.(3.6)

Which implies either k = 0 or

g(X,φV ) + g(hX, φV ) = 0.(3.7)

Replacing X by φX in (3.6) and then by using (2.5), we obtain

S(φX, φV ) = o.

Now taking covariant derivative above expression with respect to Z gives

(∇ZS)(φX, φV ) = o.

This leads us to the following result:

Theorem 3.2. An N(k)-contact metric manifold is globally φ-pseudo quasi-confor-
mally symmetric, then either the manifold is locally isometric to the Riemannian
product En+1(0) × Sn(4) [2] or the manifold admits an η parallel Ricci tensor
provided the pseudo-quasi conformal curvature tensor never reduces to conformal
curvature tensor, that is:

((
p+ (2n− 1)q + d

2n

)
6= 0

)
.
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Finally, we describe a globally φ-pseudo-quasi-conformally symmetric Einstein
N(k)-contact metric manifold, that is,

S(U, V ) = αg(U, V ),

for all U, V ∈ χ(M), where α is constant and QU = αU . Then it follows from
(1.1) that

C̃(U, V )W = (p+ d)R(U, V )W(3.8)

+

{(
2q − d

2n

)
α− r(p+ 4nq)

2n(2n+ 1)

}
[g(V,W )U − g(U,W )V ].

Now taking covariant differentiation of (3.8) along X, we get

(∇XC̃)(U, V )W = (p+ d)(∇XR)(U, V )W(3.9)

−dr(X)

[
p+ 4nq

2n(2n+ 1)

]
[g(V,W )U − g(U,W )V ].

BY employing φ2 on both sides of (3.9), we obtain

φ2
(
(∇XC̃)(U, V )W

)
= (p+ d)φ2

(
(∇XR)(U, V )W

)
(3.10)

−(p+ 4nq)dr(X)

2n(2n+ 1)
[g(V,W )φ2U − g(U,W )φ2V ].

Since the manifold is Einstein, the scalar curvature r is always constant and so
dr(W ) = 0. Hence the equation (3.10) turns into

φ2
(
(∇XC̃)(U, V )W

)
= (p+ d)φ2

(
(∇XR)(U, V )W

)
.(3.11)

This leads us to the following result:

Theorem 3.3. An Einstein N(k)-contact metric manifold is globally φ-pseudo-
quasi-conformally symmetric if and only if it is φ-symmetric provided p+ d 6= 0.

4. 3-DIMENSIONAL LOCALLY φ-PSEUDO-QUASI-CONFORMALLY SYMMETRIC

N(k)-CONTACT METRIC MANIFOLD

Let us consider a 3-dimensional locally φ-pseudo-quasi-conformally symmetric
N(k)-contact metric manifold, that is: φ2

(
(∇XC̃)(U, V )W

)
= 0, where

U, V,W,X ∈ χ(M) and orthogonal ξ.
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By considering (2.11) and (2.10) in (1.1), we get

C̃(U, V )W =

(
r

6
− k

)(
2p+ 2q +

3d

2

)
[g(V,W )U − g(U,W )V ](4.1)

+

(
3k − r

2

)
(p+ q + d)[g(V,W )η(U)ξ − g(U,W )η(V )ξ]

+

(
3k − r

2

)(
p+ 2q − d

2

)
[η(V )η(W )U − η(U)η(W )V ].

Now taking covariant differentiation of (4.1) along X, yields

(∇XC̃)(U, V )W =
dr(X)

6

(
2p+ 2q +

3d

2

)
[g(V,W )U − g(U,W )V ](4.2)

−dr(X)(p+ q + d)

2
[g(V,W )η(U)ξ − g(U,W )η(V )ξ]

−dr(X)

2

(
p+ 2q − d

2

)
[η(V )η(W )U − η(U)η(W )V ]

+

(
3k − r

2

)
(p+ q + d)

[
g(V,W )(∇Xη)(U)ξ

+g(V,W )η(U)∇Xξ − g(U,W )(∇Xη)(V )ξ

−g(U,W )η(V )∇Xξ
]

+

(
3k − r

2

)(
p+ 2q − d

2

)[
(∇Xη)(V )η(W )U

+(∇Xη)(W )η(V )U − (∇Xη)(U)η(W )V

−(∇Xη)(W )η(U)V
]
.

Since X, Y , Z and W orthogonal to ξ, we have from (4.2) that

(∇XC̃)(U, V )W =
dr(X)

6

(
2p+ 2q +

3d

2

)
[g(V,W )U − g(U,W )V ](4.3)

+

(
3k − r

2

)
(p+ q + d)

[
g(V,W )(∇Xη)(U)ξ

−g(U,W )(∇Xη)(V )ξ
]
.

Operating φ2 on both sides of (4.3), gives

φ2
(
(∇XC̃)(U, V )W

)
=

dr(X)(4p+ 4q + 3d
)

12
[g(V,W )φ2U(4.4)

−g(U,W )φ2V
]
.
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Since φ2
(
(∇XC̃)(U, V )W

)
= 0, we have dr(W ) = 0 provided

(
4p+ 4q + 3d

)
6= 0

and hence the scalar curvature r is constant.

Conversely, if the scalar curvature r is constant i.e., dr(W ) = 0 then from
(4.4), we get φ2

(
(∇XC̃)(U, V )W

)
= 0.

Thus, we can state the following theorem:

Theorem 4.1. A 3-dimensional N(k)-contact metric manifold is locally φ-pseudo
quasi-conformally symmetric if and only if the scalar curvature is constant.

5. 3-DIMENSIONAL PSEUDO-QUASI-CONFORMALLY φ-RECURRENT

N(k)-CONTACT METRIC MANIFOLD

Definition 5.1. AnN(k)-contact metric manifold is said to be pseudo-quasi-confor-
mally φ-recurrent if

φ2
(
(∇W C̃)(X, Y )Z

)
= A(W )C̃(X, Y )Z,(5.1)

holds for all X, Y, Z,W ∈ χ(M).

In particular if A(W ) = 0, then pseudo-quasi-conformally φ-recurrent N(k)-
contact metric manifold reduces to pseudo-quasi-conformally φ-symmetric.
Let us consider an pseudo-quasi conformally φ-recurrent N(k)-contact metric
manifold, then it follows from (5.1) that

−(∇XC̃)(U, V )W + η
(
(∇XC̃)(U, V )W

)
ξ = A(X)C̃(U, V )W,(5.2)

from which we can easily seen that

−g
(
(∇XC̃)(U, V )W,Y

)
+ η

(
(∇XC̃)(U, V )W

)
η(Y )(5.3)

= A(X)g
(
C̃(U, V )W,Y

)
.

By considering the expressions (1.1), (2.8) and (2.10) in (5.3) and then con-
tracting over U and Y , we get

−(4p+ 4q + 3d)

(
dr(X)

6

)
g(V,W )(5.4)

+

(
3k − r

2

)(
− p− 2q +

d

2

)
(∇Xη)(V )η(W )

+

(
3k − r

2

)
(−p− 3q + 2d)(∇Xη)(W )η(V )
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+

(
dr(X)

6

)(
2p+ 2q +

3d

2

)
[g(V,W )− η(V )η(W )]

= A(X)

{(r
2
− k)(4p+ 4q + 3d)g(V,W )

+
(
3k − r

2

)
(2p+ 4q − d)η(V )η(W )

+

(
3k − r

2

)
(p+ q + d)[g(V,W )− η(V )η(W )]

}
.

On plugging W = ξ, above equation turns into

−(4p+ 4q + 3d)

(
dr(X)

6

)
η(V ) +

(
3k − r

2

)(
− p− 2q +

d

2

)
(∇Xη)(V )(5.5)

= A(X)

{(r
2
− k)(4p+ 4q + 3d) +

(
3k − r

2

)
(2p+ 4q − d)

}
η(V ).

Again plugging V = ξ in (5.5), we obtain

A(X) =
−(4p+ 4q + 3d)

6[r(p+ 2d) + 2k(p+ 4q − 3d)]
dr(X).(5.6)

This leads us to the following result:

Theorem 5.1. In a 3-dimensional pseudo-quasi conformally φ-recurrent N(k)-
contact metric manifold, the 1-form A is given by the expression (5.6).

If we consider the manifold of constant scalar curvature r, then dr(W ) = 0.
Hence from equation (5.6), we have

A(W ) = 0.(5.7)

By using (5.7) in (5.1), we get

φ2
(
(∇W C̃)(X, Y )Z

)
= 0.(5.8)

Thus we can state the following theorem:

Theorem 5.2. A 3-dimensional pseudo-quasi conformally φ-recurrentN(k)-contact
metric manifold with constant scalar curvature always turns into an pseudo-quasi
conformally φ-symmetric manifold.

Conversely, we assume that if the pseudo-quasi conformally φ-recurrent N(k)-
contact metric manifold becomes pseudo-quasi conformally φ-symmetric man-
ifold i.e., A(W ) = 0, then we have obtained from the expression (5.6) that
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dr(X) = 0 which implies that r is constant.
This leads us to the following theorem:

Theorem 5.3. If a 3-dimensional pseudo-quasi conformally φ-recurrent N(k)-
contact metric manifold is pseudo-quasi conformally φ-symmetric, then the mani-
fold is of constant scalar curvature r.

Now from Theorem 5.3. and Theorem 5.4., we can able to conclude that:

Theorem 5.4. A 3-dimensional pseudo-quasi conformally φ-recurrent N(k)- con-
tact metric manifold is pseudo-quasi conformally φ-symmetric if and only if the
manifold is of constant scalar curvature r.

6. EXAMPLES

Example 1. Let us consider 3-dimensional Riemannian manifoldM = {(x1, x2, x3) ∈
R3}, where (x1, x2, x3) is the standard coordinate in R3. Let E1, E2, E3 are the vec-
tor fields in R3 satisfying the expressions

[E1, E2] = (1− α)E3, [E2, E3] = 2E1, [E3, E1] = (1 + α)E2,(6.1)

where α 6= ±1 is a real number.
Let g be the Riemannian metric described by

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1,

g(E1, E2) = g(E1, E3) = g(E2, E3) = 0.

Let η be the 1-form associating with the vector field ξ = E1 is given by

η(W ) = g(W,E1),(6.2)

for any W ∈ χ(M). Let φ be the (1,1)-tensor field given by

φ(E1) = 0, φ(E2) = E3, φ(E3) = −E2.(6.3)

Moreover, we also have the following conditions:

hE1 = 0, hE2 = αE2, hE3 = −αE3

By using Koszul’s formula, we can easily find the following:

∇E1E1 = 0, ∇E1E2 = 0, ∇E1E3 = 0,

∇E2E1 = −(1 + α)E3, ∇E2E2 = 0, ∇E2E3 = (1 + α)E1,

∇E3E1 = (1− α)E1, ∇E3E2 = −(1− α)E1, ∇E3E3 = 0.
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By considering above expressions, we found that

∇Xξ = −φX − φhX, for E1 = ξ.

Therefore, the manifold is said to be a contact metric manifold with the contact
metric structure (φ, ξ, η, g).

Now the components of Riemannian Curvature tensor are given by

R(E1, E2)E2 = (1− α2)E1, R(E1, E3)E3 = (1− α2)E1,

R(E1, E2)E1 = −(1− α2)E2, R(E2, E3)E3 = −(1− α2)E2,

R(E3, E1)E1 = (1− α2)E3, R(E3, E2)E2 = −(1− α2)E3.

By virtue of above relations of the Riemannian curvature tensor, we conclude that
the manifold is a N(1 − α2)-contact metric manifold. Hence the Ricci tensor S is
given by

S(E1, E1) = 2(1− α2), S(E2, E2) = 0, S(E3, E3) = 0.

Hence the scalar curvature of the manifold is obtained as

r = S(E1, E1) + S(E2, E2) + S(E3, E3) = 2(1− α2),

which is always constant. Thus from the Theorem 4.1. and Theorem 5.5., we
conclude that the given three dimensional N(k)-contact metric manifold is Locally
φ-pseudo-Quasi-Conformally symmetric and pseudo-quasi conformally φ-recurrent.

Example 2. Next we consider 3-dimensional Riemannian manifoldM = {(x1, x2, x3) ∈
R3}, where (x1, x2, x3) is the standard coordinate in R3. Let E1, E2, E3 are the vec-
tor fields in R3 satisfying the expressions

[E1, E2] = 2E3 +
2

x1
E1, [E2, E3] = 2E1, [E3, E1] = 0.(6.4)

Let g be the Riemannian metric described by

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1,

g(E1, E2) = g(E1, E3) = g(E2, E3) = 0.

Let η be the 1-form associating with the vector field ξ = E3 is given by

η(W ) = g(W,E3),(6.5)

for any W ∈ χ(M). Let φ be the (1,1)-tensor field given by

φ(E1) = E2, φ(E2) = −E1, φ(E3) = 0.(6.6)
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Moreover, we also have the following conditions:

hE1 = −E1, hE2 = E2, hE3 = 0.

By using Koszul’s formula, we can easily find the following:

∇E1E1 = − 2
x1
E2, ∇E1E2 =

2
x1
E1, ∇E1E3 = 0,

∇E2E1 = −2E3, ∇E2E2 = 0, ∇E2E3 = 2E1,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

By considering above expressions, we found that

∇Xξ = −φX − φhX, for E3 = ξ.

Therefore, the manifold is said to be a contact metric manifold with the contact
metric structure (φ, ξ, η, g).

Now the components of Riemannian Curvature tensor are given by

R(E1, E2)E2 =
4

x1
E3 −

4

x21
E1, R(E1, E3)E3 = 0,

R(E1, E2)E1 =
4

x21
E2, R(E2, E3)E3 = 0,

R(E3, E1)E1 = 0, R(E3, E2)E2 =
4

x1
E1.

By virtue of above relations of the Riemannian curvature tensor, we conclude that
the manifold is a N

(
− 4

x1

)
-contact metric manifold. Hence the Ricci tensor S is

given by

S(E1, E1) = −
4

x21
, S(E2, E2) = −

4

x21
, S(E3, E3) = 0.

Hence the scalar curvature of the manifold is obtained as

r = S(E1, E1) + S(E2, E2) + S(E3, E3) = −
8

x21
,

which is always constant. Thus from the Theorem 4.1. and Theorem 5.5., we
conclude that the given three dimensional N(k)-contact metric manifold is locally
φ-pseudo-quasi-conformally symmetric and pseudo-quasi conformally φ-recurrent.
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