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ITERATIVE AGGREGATION-DISAGGREGATION METHOD FOR A
TRANSIENT HEAT CONDUCTION EQUATION OF COPPER

Mohamed Laaraj and Karim Rhofir1

ABSTRACT. In this paper we study the behavior of iterative aggregation-dis-
aggregation method for a system of differential equations resulting from dis-
cretisation of one dimensional transient heat conduction equation of copper
using finite difference method. For that, we apply the Backward-Euler method
to the system previously obtained and associat a fixed point application. We
define the iterative aggregation-disaggregation method and study its behavior.
The Gauss-Seidel and SOR variants are presented. A numerical study of these
methods is given at the end to complete this work.

1. INTRODUCTION

Mathematical models arising in many branches of science and engineering
very often are expressed in terms of partial differential equations (PDEs). These
are classified as elliptic, hyperbolic, and parabolic. The heat transfer problem is
a class of PDE which plays a very important role in many interpretation of physi-
cal phenomenas and which is among the most studied problems in research and
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teaching (see [2] and a references cited). In this article, we propose a numeri-
cal technique to obtain the solution of the transient heat conduction equation of
copper. The choice of copper is due to its many characteristics such as its ability
to conduct heat as well as electrical condictivity. It is a metal that is flexible and
often used in our society [6], [11]. Another candidate for the proposed tech-
nique is the bio-heat transfer problem, which describes the exchange magnitude
of heat transfer between tissue and blood. This problem is initially proposed by
Pennes [15] and widely used to solve the temperature distribution for thermal
therapy [13, 19, 20]. The human body involves multiple internal physical and
physiological phenomena but also interactions with the environment by preserv-
ing or transmitting heat. Often this transmission is between blood and tissue.

The majority of heat transfer problem in engineering practice are transient
in nature, and we are often led to make a discretization in time and space,
which gives solutions at differents times. In this work, we limit our inetret to
a heat conduction equation of copper using finite difference method for space
discretization and the Backward-Euler method for time discretization. There-
fore, we have to solve an algebraic system at each time step, either with direct
or iterative methods.

The iterative aggregation-disaggregation (IAD) method is an efficient tool for
solving linear systems, computing the stationary distribution of a finite Markov
chain and eigenvalue problems [3, 4, 8]. The basic idea is that at each step
of these methods, the linear system is replaced with a smaller system which
called restriction or aggregation step, this smaller linear system is solved and
its solution is used to improve the current iterate in the original system which
called prolongation or disaggregation step. It is a method in which the princi-
ple is the exchange of information from distant parts of the system in a single
step instead of propagating it through the iterations. The idea of aggregation
appeared naturally in input-output economic models [17], and was extended
to other linear systems and the problem of finding the stationary distibution of
markov chains; see [10]. In [18], the authors give a relationship between the
IAD method and the two-stage multigrid method, and study their convergences.
And in [1], to give the mathematical modelling of safety related systems re-
specting some European Standards for the railway transport, the authors use
Markov’s models to meet these standards. In their modeling, they use the ag-
gregation/disaggregation method to compute some characteristics of Markov
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chains. Our aim is to extend the application of the IAD method to the class of
heat transfer problem.

This paper is organized as follows. In Section 2 we sgive a problem state-
ment for solving a simple heat transfer equation by using finite differences and
backward-Euler discretization methods in space and time. In Section 3 we de-
fine the IAD method for this problem type and study there convergence and
some variants are also considered. In Section 4, to compare the different meth-
ods we give some numerical results to solve the heat conduction equation of
copper. Finally, the findings are summarized in the conclusion.

2. PROBLEM STATEMENT

For the transient problem, the one dimensional time dependent governing dif-
ferential equation is used as the basic mathematical model for the heat transfer
which is given by

(2.1) ρc
∂T

∂t
=

∂

∂x
(k
∂T

∂x
) +Q,

where T is a temperature, ρ the density, c the heat capacity, k thermal conduc-
tivity, x distance and t the time. If the thermal conductivity, density and heat
capacity are constant over the model domain, the equation can be simplified to

(2.2)
∂T

∂t
= α

∂2T

∂x2
,

where α = k
ρc

is the thermal diffusivity and for the copper metal α = 1.14. The
boundary and initial conditions are expressed as:

(2.3)


T (0, t) = Ta x = 0, ∀t > 0,

T (L, 0) = Tb x = L, ∀t > 0,

T (0, t) = f(x) 0 < x < L, t = 0.

The first step in the discretization procedure is to replace the domain [0, L] ×
[0, tf ] by a set of mesh points. Here we apply equally spaced mesh points

xi = i∆x = ih, i = 0, . . . , N,

and

tk = k∆t = kτ, k = 0, . . . , n.
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Moreover, T ki denotes the mesh function that approximates T (xi, tk) for i =

0, . . . , N and k = 0, . . . , n. Requiring the PDE (2.1) to be fullfilled at a mesh
point (xi, tk) leads to the equation.

Using (2.3) and the Backward-Euler method, the problem (2.2) can be written
in the following form : for k = 0, . . . , n− 1,

(2.4)
T k+1 − T k

τ
= BT k+1,

where B is the corresponding matrice to a finite difference tree point discretiza-
tion applied to problem (2.1). In this case, the matrix B have the form

(2.5) B =
α

h2


−2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2

 .

Let decompose B as:
B = D + L+ U,

where D, L and U are the diagonal, upper and lower matrices of B. Then, the
problem (2.4) can be written as:

(2.6) (I − τD)T k+1 = τ(L+ U)T k+1 + T k.

We associate a fixed point mapping F to the previous equation, defined by:
for k = 0, · · · , n− 1

(2.7)

{
T p+1,k+1 = F (T p,k+1)

T 0,k+1 = T k
,

such that
(I − τD)T p+1,k+1 = τ(L+ U)T p,k+1 + T k,

then

T p+1,k+1 = (I − τD)−1τ(L+ U)T p,k+1 + (I − τD)−1T k

= AT p,k+1 + b = F (T p,k+1),

with

(2.8)

{
A = (I − τD)−1τ(L+ U)

b = b(T k) = (I − τD)−1T k
.
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Let:

- T ∗ is the unique solution of (2.2) upon the time interval [0, T ],
- T be an approximation of T ∗(t), ∀t ∈ [0, tf ].

3. AGGREGATION-DISAGGREGATION METHOD

The idea of the aggregation-disaggregation method is as follow: consider a
partition g = {. . . , gj, . . .} , where j ∈ {1, . . . ,m} of {1, . . . , N} (m < N); the
subsets gj being disjoint and each one being not empty. We introduce the linear
or affine mappings:

(3.1)


R ∈ L(RN ;Rm) is a restriction or aggregation mapping.
Pu ∈ L(Rm;RN) or a (Rm;RN)

(the set of affine mapping from Rm to RN) is a prolongation
or disaggregation mapping depending on T

satisfying the following two properties:

(1) R ◦ PT = I (the identity matrix).
(2) ΠT = PT ◦R is a projection (Π2

T
= ΠT ).

The discretization matrix B is such that Bi,i < 0 and Bi,j ≥ 0 for i, j =

1, . . . , N ; then A defined in (2.8) is a nonnegative operator. Let e = (1, · · · , 1)t ∈
RN(where (.)t design the transpose vector), and for v ∈ RN , we define the
operator R by Rv = etv and the operator PTT = T

etT
. And for v > 0, we define

the vectorial norm by:

‖B‖v = inf
{
β / vt |B| ≤ βvt

}
,

|B| absolute value of components of B. (‖x‖v = vt |x| is a norm on L1 with
weight vector v).

Algorithm 1 (Aggregation-disaggregation). For k = 0, · · · , n−1, given an initial
condition u0,k+1 and a convergence parameter ε,

(1) Solve the aggregated equation

(3.2) zp −RAPT p,k+1zp = Rb(T k).

(2) Disaggregatte and iterate according to the formula

(3.3) T p+1,k+1 = APT p,k+1zp + b(T k).
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(3) Test if
∥∥up+1,k+1 − up,k+1

∥∥ < ε (or other stopping criteria). If yes, break;
otherwise k := k + 1 and go to step (1).

In order to study the algorithm convergence, we can write the original prob-
lem (2.7), for k = 0, · · · , n and p = 1, 2, 3, . . . , in the form

(3.4) vp+1 = Avp + b,

where ∀p > 0, up,k+1 = vp, and the aggregation-disaggregation system in the
form

(3.5) vP+1 = AS(vp) + b,

where

S(vP ) = Pvp(I −RAPvp)−1Rb.

Using the properties of operators R, P, and as T ∗,k+1 solution of problem then
T ∗,k+1 − AT ∗,k+1 = b and S(T ∗,k+1) = PT ∗,k+1(I −RAPT ∗,K+1)−1Rb = T ∗,k+1.

Theorem 3.1. For k = 0, · · · , n− 1, starting with v0 = T 0,k+1, for p = 1, 2, 3, . . . ,

the fixed point iteration: F (vp) = vp+1 such that

vp+1 = AS(vp) + b

is localy convergent ie ∃UT ∗,k+1 such that ∀v0 ∈ UT ∗,k+1 , the sequence (vp) converge
to T ∗,k+1.

Proof. The matrix A can be expressed as follow:

A =
τα

h2 + 2τα


0 1 0 · · · 0

1 0 1

0 1
. . . . . . ...

... . . . 0 1

0 · · · 1 0

 .

Let consider m = 1, then{
A ≥ 0

etA = ‖A‖e = τα
h2+2τα

= β < 1
.

As the operators R defined by et and Pvp by vp

etvp
, then

RPvp = 1,
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and

Πvp = PvpR =
vpet

etvp
; Π2

vp = Πvp.

Therefore, the aggregate equation is given by

R(I − A)Pvpz
p = Rb = etb = et(I − A)

vp

etvp
zp,

then

zp =
etb

1− etAvp

etvp

,

and

S(vp) = Pvpz
p =

vp

etvp
zp.

Substitute

zp = Rvp − y

R(I − A)Pvp(Rvp − y) = Rb

and

S(vp) = vp − Pvpy

= vp − Pvp
(
(R(I − A)Pvp)−1R(I − A)PvpRv

k+1 − (R(I − A)Pvp)−1Rb
)

= vp − Πvp(I − A)Πvp

1− etAvp

etvp

vp +
Πvpb

1− etAvp

etvp

= vp − Πvp(I − A)vp

1− etAvp

etvp

+
Πvpb

1− etAvp

etvp

=

(
I − Πvp(I − A)

1− etAvp

etvp

)
vk+1 +

Πvpb

1− etAvp

etvp

.

We know that A verify[
etAvp

etvp
≤ β ie

‖Avp‖e
‖vp‖e

≤ β

1− etAvp

etb
≤ 1− β

,

also

S(vp) =

(
I − Πvp(I − A)

1− etAvp

etvp

)
vp +

Πvpb

1− etAvp

etvp

,

then

AS(vp) + b = J(vp)vp +N(vp)b,
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with

J(vp) = A

(
I − Πvp(I − A)

1− etAvp

etvp

)
,

N(vp) = I +
AΠvp

1− etAvp

etvp

.

Let

T ∗,k+1 = J(vp)T ∗,k+1 +N(vp)b

J(vp)u∗,k+1 +N(vp)b = A

(
I − Πvp(I − A)

1− etAvp

etvp

)
u∗,k+1 +

AΠvp

1− etAvp

etvp

b+ b

= Au∗,k+1 − AΠvp

1− etAvp

etvp

b+
AΠvp

1− etAvp

etvp

b+ b

= u∗,k+1,

then

F (vp)− F (T ∗,k+1) = AS(vp) + b− T ∗,k+1 = J(vp)(vp − T ∗)

‖J(vp)‖e =

∥∥∥∥∥A
(
I − Πvp(I − A)

1− etAvp

etvp

)∥∥∥∥∥
e

≤ ‖A‖e

∥∥∥∥∥I − Πvp(I − A)

1− etAvp

etvp

∥∥∥∥∥
e

et

(
I − Pvpe

t(I − A)

1− etAvp

etvp

)
= et − et(I − A)

1− etAvp

etvp

= et − et − etA
1− etAvp

etvp

≤ et − et − etA
1− β

.

However,

etA ≤ et,

then

et − etA ≥ 0,

and therefore
et − etA

1− β
≥ 0.
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Then

et − et − etA
1− β

≤ et,

and we can then deduct ∥∥∥∥∥I − Πvp(I − A)

1− etAvp

etvp

∥∥∥∥∥
e

≤ 1,

and finally
‖J(vp)‖e ≤ ‖A‖e ≤ β < 1

and ∥∥F (vp)− F (T ∗,k+1)
∥∥
e
≤ β

∥∥vp − T ∗,k+1
∥∥
e
.

For m > 1, we follow the same previous steps, so we conclude, for k =

0, 1, 2, . . .∃B(T ∗,k+1, r), r > 0 such that

∀v0 ∈ B(T ∗,k+1, r), (vp) converge to th solution T ∗,k+1.

�

3.1. Some IAD variants.
In this section, we give some variants of the IAD applied to heat transfer

problem:

3.1.1. Gauss-Seidel IAD variant. For solving (2.4), we use an other decomposi-
tion as follow: For k = 0, · · · , n− 1,

(3.6) (I − τ(D + L))T k+1 = τUT k+1 + T k + τK3.

We associate a fixed point mapping TGS to the previous equation, defined by:
for k = 0, · · · , n− 1,

(3.7)

{
T p+1,k+1 = FGS(T p,k+1)

T 0,k+1 = T k
,

where
FGS(T p,k+1) = AT p,k+1 + b(T k),

with

(3.8)

{
A = τ(I − τ(D + L))−1U

b(T k) = (I − τ(D + L))−1(T k
.

Lemma 3.1. For k = 0, · · · , n − 1, for p = 1, 2, 3, . . . , the fixed point iteration
FGS(vp) = vp+1, starting with v0, is localy convergent.
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Proof. We use the same raisoning as that of the previous theorem, we easily
show that the fixed point TGS is locally convergent. �

3.1.2. SOR IAD variant. Let ω ∈ ]0, 1[ , and define the fixed point mapping F SOR

corresponding to the fixed point mapping T by:

(3.9) ∀v ∈ RN , F SOR(v) = ωv + (1− ω)F (v).

Lemma 3.2. If T is locally convergent with respect to the norm ‖.‖e , then T SOR is
also locally convergent with respect to the norm ‖.‖e.

Proof. By Theorem 3.1, ∃B(T ∗,k+1, r) such that∥∥F (vp)− F (T ∗,k+1)
∥∥
e
≤ α

∥∥vp − T ∗,k+1
∥∥
e
,

∀v0 ∈ B(T ∗,k+1, r). Then∥∥F SOR(vp)− F SOR(T ∗,k+1)
∥∥
e

=
∥∥ω (vp − T ∗,k+1

)
+ (1− ω)

(
F (vp)− F (u∗,k+1)

)∥∥
e

≤ ω
∥∥vp − T ∗,k+1

∥∥
e

+ (1− ω)
∥∥F (vp)− F (u∗,k+1)

∥∥
e

≤ ω
∥∥vp − T ∗,k+1

∥∥
e

+ (1− ω)β
∥∥vp − T ∗,k+1

∥∥
e

≤ (ω + (1− ω)β)
∥∥vp − T ∗,k+1

∥∥
e

then (ω + (1− ω)β) < 1 and F SOR is locally convergent. �

4. NUMERICAL RESULTS AND DISCUSSION

In this section, we give a numerical conparison of two examples of one dimen-
sional heat conduction equation of copper with and without iterative aggregation-
disaggregation method (IAD method). We use implicit finite difference method
and backward-Euler discretization schemes developed as in Eq.(2.4), Eq.(3.7)
and Eq.(3.9).

Example 1. Let consider the heat conduction equation of the Copper:

(4.1)


∂T

∂t
= α

∂2T

∂x2
0 ≤ x ≤ 1, t ≥ 0

T (0, t) = T (1, t) = 0 ∀t > 0,

T (x, 0) = 40− 3x 0 < x < 1, t = 0.
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Example 2. Let consider the heat conduction equation of the Copper:

(4.2)


∂T

∂t
= α

∂2T

∂x2
0 ≤ x ≤ 1, t ≥ 0

T (0, t) = T (1, t) = 0 ∀t > 0,

T (x, 0) = −sin(3πx) + 1
4
sin(6πx) 0 < x < 1, t = 0.

Using Matlab and applying the IAD method, then the result show as follows.
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FIGURE 1. Temperature distributions at several times: left exam-
ple1, right example2

We have noticed that all the figures associated with the Jacobi, Gauss-Seidel,
and SOR variants coincide for the two examples treated here Figure1.

Figure2, gathers the variations of the iterations over time for the different
methods proposed in this paper with and without the IAD method.

5. CONCLUSION

All the simulation part of this paper is carried out on Matlab. We have dealt
with a one-dimensional transient heat conduction model. For the resolution of
the thermal conduction equation of copper, we applied a finite difference dis-
cretization as well as an backward-Euler method. Next, we applied the iterative
aggregation-disaggregation (IAD) method with Gauss-Seidel and SOR variants.
The numerical examples used in the simulation showed the efficiency of the
proposed method. We can therefore conclude, that the application of the IAD
method makes it possible to accelerate the convergence, not only by a reduction
in the number of iterations but also by reduction in execution time. Finally, we



1994 M. Laaraj and K. Rhofir

0 5 10 15 20 25 30 35 40 45 50

time

0

100

200

300

400

500

600

700

800

In
n

e
r 

it
e

ra
ti
o

n
 n

u
m

b
re

 v
a

ri
a

ti
o

n

WithoutIAD

WithIAD

0 10 20 30 40 50 60 70 80 90 100

time

0

50

100

150

200

250

300

350

In
n

e
r 

it
e

ra
ti
o

n
 n

u
m

b
re

 v
a

ri
a

ti
o

n

WithoutIAD

WithIAD

0 10 20 30 40 50 60 70 80 90 100

time

0

50

100

150

200

250

300

350

In
n

e
r 

it
e

ra
ti
o

n
 n

u
m

b
re

 v
a

ri
a

ti
o

n

WithoutIAD

WithIAD

FIGURE 2. Comparison with and without IAD for example1; Vari-
ations of iterations over times: Jacobi, Gauss-Seidel and SOR
(w=1.5).

note that this method is easy to implement and allows an acceleration of con-
vergence and can be applied to a set of class of elliptic and parabolic problems.
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