

Advances in Mathematics: Scientific Journal **10** (2021), no.4, 2005–2015 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.4.15

THE CONTINUOUS WAVELET TRANSFORM FOR A FOURIER-JACOBI TYPE OPERATOR

C.P. Pandey¹ and Jyoti Saikia

ABSTRACT. The Jacobi operator is generalized by considering a singular differential difference operator Λ on $(0, \infty)$ and harmonic analysis corresponding to generalized Fourier transform is also investigated. To construct and investigate Fourier-Jacobi wavelet transform on half line, tools of harmonic analysis related to Λ is used.

1. INTRODUCTION

The wavelet transform of a function $f \in L^2(R)$ of the wavelet $\phi \in L^2(R)$ is defined by

(1.1)
$$(Wa_{\phi}f)(k,h) = \int_{-\infty}^{\infty} f(p)\overline{\phi}_{k,h}(p)dp, k \in \mathbb{R}, h > 0.$$

where

(1.2)
$$\phi_{h,k}(p) = h^{-1/2} \phi(\frac{p-k}{h}).$$

In terms of translation τ_b defined by

$$\tau_k \phi(p) = \phi(p-k), k \in \mathbb{R}$$

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 42C40.

Key words and phrases. Fourier-Jacobi transform, Fourier -Jacobi wavelet transform, generalized wavelets, Continuous Wavelet Transform.

Submitted: 13.02.2021; Accepted: 01.03.2021; Published: 09.04.2021.

and dilation D_h defined by

$$D_h\phi(p) = h^{-1/2}\phi(\frac{p}{k}), h > 0,$$

we can write

(1.3)
$$\phi_{h,k}(p) = \tau_k D_k \phi(p).$$

It is known from (1.1),(1.2) and (1.3) that wavelet transform for a function is an integral transform and its kernel is dilated translate of wavelet ϕ .

The wavelet transform (1.1) can also express in convolution:

(1.4)
$$(Wa_{\phi}f)(k,h) = (f * g_{0,h})(k),$$

where

$$g(p) = \phi(-p).$$

2. Preliminaries

The generalized Legendre function $P_{\gamma}^{(\sigma_1,\sigma_2)}(y)$ defined by

(2.1)
$$P_{\gamma}^{(\sigma_1,\sigma_2)}(y) = \frac{(1+|y|)^{\sigma_2/2}}{\Gamma(1-\sigma_1)(|y|-1)^{\sigma_1/2}} \cdot F[\gamma + \frac{\sigma_2 - \sigma_1}{2} + 1, -\gamma + \frac{\sigma_2 - \sigma_1}{2}; 1 - \sigma_1; \frac{1-|y|}{2}], \quad y \in \mathbb{R}^n,$$

where F[u,v;w;z] denotes the Gauss hypergeometric function is a generalization of the Jacobi polynomial [7,p.343]. It reduces to the Jacobi polynomial $P_{\gamma}^{(\sigma_1,\sigma_2)}(y)$ for $\gamma = n$, a non-negative integer. Integral transforms along with generalized Legendre functions as kernels have been investigated by Braaksma and Meulenbeld [1]. Theory and application of these transforms can also be found in [2–8]. The convolution theory developed by Flensted-Jensen and Koornwinder [5] is basis for the present work. The following normalized form will be used in the sequel

(2.2)
$$R_{\gamma}^{(\sigma_1,\sigma_2)}(y) = P_{\gamma}^{(\sigma_1,\sigma_2)}(y) / P_{\gamma}^{(\sigma_1,\sigma_2)}(1), y \in \mathbb{R}^n.$$

Let ch(x) denote cosh(x) and sh(x) denote sinh(x). Then set

(2.3)
$$\phi_{\chi}(x) = R_{1/2(i\lambda-\rho)}^{(\sigma_1,\sigma_2)}(\sigma_1,\sigma_2)(ch2x).$$

Also, from [8] we know that $\phi_{\lambda}(t)$ is a solution of the IVP

(2.4)
$$\frac{1}{\Lambda(x)}\frac{d}{dx}(\Lambda(x)\frac{d}{dx}u(x)) = \Lambda u(x) = -(\chi^2 + \rho^2)u(x)$$

$$u(0) = 1, u'(0) = 0,$$

where

$$\Delta(x) = (e^x + e^{-x})^{2\sigma_2 + 1} (e^x + e^{-x})^{2\sigma_1 + 1} = 2^{2\rho} (shx)^{2\sigma_1 + 1} (chx)^{2\sigma_2 + 1}$$

 $\rho=\sigma_1+\sigma_2+1>0.$ Let $\phi_{\chi}(x)$ be the second kind Jacobi function is a solution of (2.1) such that

$$\Phi_{\chi}(x) = e^{(i\chi - \rho)x} [1 + o(1)] asx \to \infty.$$

Thus

(2.5)
$$\Phi_{\chi}(x) = (e^{x} + e^{-x})^{(i\chi - \rho)} F(\frac{\sigma_{2} - \sigma_{1} + 1 - i\chi}{2}, \frac{\rho - i\chi}{2}; 1 - i\chi; -\frac{1}{(shx)^{2}}).$$

We know that

(2.6)
$$\phi_{\chi}(x) = c(\chi)\Phi_{\chi}(x) + c(-\chi)\Phi_{\chi}(x).$$

Let us define L^q_{μ} , $1 \le q \le \infty$, as the class of measurable functions f on the half line for which $\|f\|_{q,\sigma_1} < \infty$, where

$$\|f\|_{q,\sigma_1} = (\int_0^\infty |f(x)|^q d\mu(y))^{1/q}, ifq < \infty,$$

and

$$|f||_{\infty,\sigma_1} = ||f||_{\infty} = esssup_{x\geq 0}|f(y)|.$$

The Fourier-Jacobi transform defined for a function $f\in L^1_{\sigma_1}$ is given by

(2.7)
$$F_j(f)(\chi) = \widehat{f}(\chi) = \int_0^\infty f(y)\phi_\chi(y)d\mu(y) = (2\pi)^{-1/2}\Lambda(y)dy,$$

and the inverse mapping is given by

(2.8)
$$g(y) = (2\pi)^{-1/2} \int_0^\infty \widehat{g}(\chi) \varphi_{\chi}(y) |c(\chi)|^2 d\chi = \int_0^\infty \widehat{g}(\chi) \varphi_{\chi}(y) dv(\chi),$$

where

$$dv(\chi) = (2\pi)^{-1/2} |c(\chi)|^2 d\chi$$

and

(2.9)
$$c(\chi) = \frac{2^{\rho - i\chi}\Gamma(i\chi)\Gamma(\sigma_1 + 1)}{\Gamma((\rho + i\chi)/2)\Gamma((\sigma_1 + \sigma_2 + 1 + i\chi)/2)}.$$

As in [5] he convolution is defined by

(2.10)
$$(f_1 * f_2)(y) = \int_0^\infty \int_0^\infty f_1(x) f_2(s) k(y, s, x) d\mu(x) d\mu(s),$$

where

$$K(x_1, x_2, x_3) = \frac{2^{(1/2)-2\rho}\Gamma(\sigma_1 + 1)(chx_1chx_2chx_3)^{\sigma_1 - \sigma_2 - 1}}{\Gamma(\sigma_1 + (1/2))(shx_1shx_2shx_3)^{2\sigma_1}} \times F(\sigma_1 + \sigma_2, \sigma_1 - \sigma_2; \sigma_1 + 1/2; \frac{1 - B}{2}),$$

with

$$B = \begin{cases} \frac{(chx_1)^2 + (chx_2)^2 + (chx_3)^2 - 1}{2}, |x_1 - x_2| < x_3 < x_1 + x_2 \\ 0, \text{otherwise.} \end{cases}$$

Then $K(x_1, x_2, x_3)$ satisfies the following properties:

- (i) In all the variables $K(x_1, x_2, x_3)$ is symmetric;
- (ii) $K(x_1, x_2, x_3) \ge 0$;
- (iii) $\int_0^\infty K(x_1, x_2, x_3) d\mu(x_3) = 1.$

Also it has been shown that in [5] that

(2.11)
$$\varphi_{\chi}(x_1)\varphi_{\chi}(x_2) = \int_0^\infty \varphi_{\chi}(x_3)K(x_1, x_2, x_3)d\mu(x_3).$$

Appling (1.2) and (1.3), we have

(2.12)
$$K(x_1, x_2, x_3) = \int_0^\infty \varphi_{\chi}(x_1) \varphi_{\chi}(x_2) \varphi_{\chi}(x_3) dv(\chi)$$

An inner product on $L^2(\mu)$ is defined by

$$\langle f_1, f_2 \rangle = \int_0^\infty f_1(x) \overline{f_2(x)} d\mu(x).$$

Similar definition is given to $L^q(\mu)$. From [5] we have the following

Lemma 2.1. Let $1 \le q < 2, \frac{1}{q} + \frac{1}{s} = 1$ and $f \in L^q(\mu)$. Then

(2.13) $|\widehat{f}(\chi)| \le \|f\|_q \|\varphi_\chi\|_s.$

If $f \in L^1(\mu)$, $\hat{f}(\mu)$, is continuous in $\overline{D_1}$ and for all $\chi \in \overline{D_1}$ (2.14) $|\hat{f}(\chi)| \le ||f||_1$.

Theorem 2.1. Let q, s, r satisfy $\frac{1}{q} + \frac{1}{s} = 1 + \frac{1}{r}$; $1 \le q, s, r \le \infty$ for $f_1 \in L^q(\mu)$ and $f_2 \in L^s(\mu), f_1 * f_2 \in L^r(\mu)$ and $||f_1 * f_2||_r \le ||f_1||_q ||f_2||_s$. Moreover, for $f_1, f_2 \in L^1(\mu)$ we have

(2.15)
$$(f_1 * f_2)(\chi) = \widehat{f}_1(\chi) \widehat{f}_1(\chi).$$

For any $f_1 \in L^2(\mu)$, the below Parseval identity holds for the Fourier-Jacobi transform:

$$\int_{0}^{\infty} |f_1(x)|^2 d\mu(x) = \int_{0}^{\infty} |\widehat{f_1}(x)|^2 d\nu(x).$$

The Fourier- Jacobi translation τ_b of $\varphi \in L^q(\mu)$ defined by

(2.16)
$$\tau_b \varphi(y) = \varphi(y, b) = \int_0^\infty \varphi(z) K(y, b, z) d\mu(z), 0 < y, b < \infty,$$

maps $\tau_b(y)$ defined on the positive half of the real axis into the function $\varphi(y,b)$ defined on the upper half of the positive half plane. τ_b is also called generalized translation. Using Höder's inequality it can be shown that

$$\|\tau_b f_1\|_{L^q(\mu)} \le \|f_1\|_{L^q(\mu)}$$

and the map $y \to \tau_b f_1$ is continuous for all $f_1 \in L^q(\mu), q \in [1, \infty)$.

Definition 2.1. A function $\omega \in L^q(\mu)$ is a Fourier-Jacobi wavelet, satisfies the condition of admissibility

(2.17)
$$0 < C_{\omega}^{\chi} = \int_0^\infty |F_j(\omega)(\chi)|^2 \frac{d\chi}{\chi} < \infty.$$

Definition 2.2. Let $\omega \in L^2(\mu)$ be a Jacoi wavelet, then for a suitable function f on $L^2(\mu)$ the continuous Fourier-Jacobi wavelet transform is defined by

(2.18)
$$J^{\chi}_{\omega}(f)(\sigma_1, \sigma_2) = \int_0^\infty f(y) \overline{\omega^{\chi}_{\sigma_1, \sigma_2}(y)} d\mu(y)$$

where $\sigma_1 > 0, \sigma_2 \ge 0$,

(2.19)
$$\omega^{\mu}_{\sigma_1,\sigma_2}(y) = \int_0^\infty K(\sigma_2, y, z) \omega(\sigma_1, z) d\mu(z)$$

and $\omega_{\sigma_1}(y) = \omega(\sigma_1, y)$.

Theorem 2.2. Let a Fourier-Jacobi wavelet is $\omega \in L^2(\mu)$. Then

(i) For all $f \in L^2(\mu)$ then Plancherel formula we have

$$\int_0^\infty |f(y)|^2 d\mu(y) = \frac{1}{C_\omega} \int_0^\infty \int_0^\infty \int_0^\infty |J_\omega^\mu(f)(\sigma_1, \sigma_2)|^2 d\mu(\sigma_2) d\mu(\sigma_1).$$

(ii) Assume that $||F_j(\omega)||_{\infty} < \infty$. For $f \in L^2(\mu)$ and $0 < \varepsilon_1 < \varepsilon_2 < \infty$, the function

$$f^{\varepsilon_1,\varepsilon_2}(y) = \frac{1}{C_\omega} \int_0^\infty \int_0^\infty J_\omega^\mu(f) \omega^\mu_{\varepsilon_1,\varepsilon_2}(y) d\mu(\sigma_2) d\mu(\sigma_1),$$

belongs to $L^2(\mu)$ and satisfies $\lim_{\varepsilon_1 \to 0, \varepsilon_2 \to \infty} ||f^{\varepsilon_1, \varepsilon_2} - f||_{2,\mu} = 0.$ (iii) For $f \in L^1(\mu)$ such that $F_{\chi}(f) \in L^1(\mu)$, we have

$$f(y) = \frac{1}{C_{\omega}^{\chi} \int_{0}^{\infty}} (\int_{0}^{\infty} J_{\omega}^{\mu}(f) \omega_{\varepsilon_{1},\varepsilon_{2}}^{\mu}(y) d\mu(\sigma_{2})) d\mu(\sigma_{1}),$$

for almost all $y \ge 0$.

3. Harmonic analysis related to Fourier-Jacobi operator Λ

Let the map N be defined by $Nf(y) = \Lambda(y)f(y)$. Let $L^q(\mu), 1 \le q \le \infty$, be the class of measurable function f on the half line for which $||f||_{q,\mu} = ||M^{-1}f||_{q,\mu} < \infty$.

Generalized Fourier transform

For $\chi \in \mathbb{C}$ and $y \in \mathbb{R}$,

(3.1)
$$\phi_{\chi}(y) = \Lambda(y)\varphi_{\chi}(y)$$

The generalized Fourier transform defined for a function $f_1 \in L^1(\mu)$ is given by

(3.2)
$$F_{\Lambda}(f_1)(\chi) = \int_0^\infty f_1(y)\phi_{\chi}(y)d\mu(y).$$

Theorem 3.1. Let $f_1 \in L^1(\mu)$ such that $F_{\Lambda}(f_1) \in L^1(\mu)$. Then for almost all y > 0,

$$f_1(y) = \int_0^\infty F_\Lambda(f_1)(\chi)\phi_\chi(y)d\nu(\chi).$$

Proof. By (3.1),(3.2) and Proposition 2.1(ii) we have

$$\int_0^\infty (f_1)(\chi)\phi_\chi(y)d\nu(\chi) = \Lambda(y)\int_0^\infty F_{\sigma_1+2n}(M^{-1}f_1)(\chi)\varphi_\chi(y)d\nu(\chi)$$
$$= \Lambda(y)M^{-1}f_1(y) = f_1(y).$$

Theorem 3.2.

(i) For every $f_1 \in L^1(\mu) \bigcap L^1(\mu)$ the Plancherel formula we have

$$\int_0^\infty |f_1(y)|^2 d\mu(y) = \int_0^\infty |F_\Lambda(f_1)(\chi)|^2 d\nu(\chi)$$

(ii) Unique isometric isomorphism from $L^2(\mu)$ onto $L^2(\mu)$ is extend by generalized Fourier transform F_{Λ} . And its inverse transform is given by

$$F_{\Lambda}^{-1}(f_2)(y) = \int_0^\infty f_2(\chi)\phi_{\chi}(y)d\nu(\chi),$$

where the integral is converges in $L^2(\mu)$.

Proof. Let $f_1 \in L^1(\mu) \bigcap L^1(\mu)$. By (3.1) we have

$$\int_0^\infty |F_\Lambda(f_1)(\chi)|^2 d\nu(\chi) = \int_0^\infty |F_\chi(M^{-1}f_1)(\chi)|^2 d\nu(\chi)$$
$$= \int_0^\infty |M^{-1}f_1(y)|^2 d\mu(y) = \int_0^\infty |f_1(y)|^2 d\mu(y)$$

which concludes that (i) and (ii) can be proved in standard manner.

4. GENERALIZED CONVOLUTION PRODUCT

Definition 4.1. Define the generalized translation operator T^y , $0 \le y$, by the relation

(4.1)
$$T^{y}f_{1}(b) = \tau_{\chi}^{y}(M^{-1}f_{1})(b), 0 \le b,$$

where τ^y_{χ} is the Jacobi translation operator.

Definition 4.2. The generalized convolution product of two functions f_1 and f_2 on half line is defined by

(4.2)
$$f_1 * f_2(y) = \int_0^\infty T^y f_1(b) f_2(b) d\mu(b), 0 \le y.$$

Proposition 4.1.

- (i) Let f be in $L^q(\mu), 1 \leq q \leq \infty$. Then $\forall 0 \leq y$, the function $T^y f_1 \in L^q(\mu)$, and $\|T^y f_1\|_{q,\mu} \leq \Lambda \|f_1\|_{q,\mu}$.
- (ii) For $f_1 \in L^q(\mu), q = 1 \text{ or } 2$, we have

$$F_{\Lambda}(T^{y}f_{1})(\chi) = \phi_{\chi}(y)F_{\Lambda}(f_{1})(\chi)$$

(iii) Let $q, s \in [1, \infty]$ such that $\frac{1}{q} + \frac{1}{s} = 1$. If $f_1 \in L^q(\mu)$ and $f_2 \in L^s(\mu)$ then $\int_0^\infty T^y f_1(b) f_2(b) d(b) = int_0^\infty f_1(b) T^y f_2(b) d(b).$ (i) Let $q = 1, 1, \dots, n \in \mathbb{N}$

- (iv) Let $q, s, r \in [1, \infty]$ such that $\frac{1}{q} + \frac{1}{s} 1 = \frac{1}{r}$. If $f_1 \in L^q(\mu)$ and $f_2 \in L^s(\mu)$ then $f_1 \sharp f_2 \in L^r(\mu)$ and $\|f_1 \sharp f_2\|_{r,\mu} \le \|f_1\|_{q,\mu} \|f_2\|_{s,\mu}$.
- (v) For $f_1 \in L^1(\mu)$ and $f_2 \in L^q(\mu), q = 1$ or 2, we have

$$F_{\Lambda}(f_1 \sharp f_2) = F_{\Lambda}(f_1) F_{\Lambda}(f_2).$$

5. GENERALIZED WAVELETS

Definition 5.1. A generalized wavelet is a function $\phi \in L^q(\mu)$ satisfying the condition off admissibility

(5.1)
$$0 < C_{\phi} = \int_0^\infty |F_{\Lambda}(f_2)(\chi)|^2 \frac{d\nu(\chi)}{\chi} < \infty.$$

For $f_2 \in L^2(\mu)$ and $(h,k) \in (0,\infty) \times (0,\infty)$ put

(5.2)
$$\phi_{h,k}(y) = \int_0^\infty \phi(hz) K(k,y,z) d\mu(z).$$

Proposition 5.1. For all h > 0 and $0 \le k$ we have

(5.3)
$$\phi_{h,k}(y) = k\Lambda(y)(M^{-1}\phi)_{h,k}^{\mu}(y).$$

Proof. Using (2.13), (2.14) and (3.1) we can easily prove that

$$\phi_{h,k}(y) = k\Lambda(y)(M^{-1}\phi)^{\mu}_{h,k}(y)$$

Definition 5.2. Let a generalized wavelet be $f_2 \in L^2(\mu)$. We define for regular functions f on the half line, the generalized continuous Fourier-Jacobi wavelet transform is given by

(5.4)
$$L_{\phi}(f_1)(h,k) = \int_0^{\infty} f_1(y) \overline{\phi_{h,k}(y)} d\mu(y),$$

or

$$L_{\phi}(f_1)(h,k) = f_1 * \overline{\phi_h}(k),$$

where the generalized convolution product * is given (4.2).

Proposition 5.2. We have

(5.5)
$$L_{\phi}(f_1)(h,k) = S^{\mu}_{M^{-1}f_2}(M^{-1}f_1)(h,k).$$

Proof. From (2.6), (3.1) and (5.4) we deduce that

$$L_{\phi}(f_{1})(h,k) = \int_{0}^{\infty} f_{1}(y)\overline{\phi_{h,k}(y)}d\mu(y)$$

=
$$\int_{0}^{\infty} (M^{-1}f_{1})(y)\overline{(M^{-1}\phi)_{h,k}^{\mu}(y)}d\mu(y) = S_{M^{-1}f_{2}}^{\mu}(N^{-1}f_{1})(h,k),$$

which concludes the proof.

Theorem 5.1. (Plancherel formula) Let $\phi \in L^2(\mu)$. be a generalized wavelet. For every $f_1 \in L^2(\mu)$. we have Plancherel formula

$$\int_0^\infty |f_1(y)|^2 d\mu(y) = \frac{1}{C_\phi} \int_0^\infty \int_0^\infty |L_\phi(f_1)(h,k)|^2 d\mu(k) \frac{d\mu(h)}{h}.$$

Proof. By (2.19) and (5.4) we have

$$\int_{0}^{\infty} \int_{0}^{\infty} |L_{\phi}(f_{1})(h,k)|^{2} d\mu(k) \frac{d\mu(h)}{h}$$

=
$$\int_{0}^{\infty} \int_{0}^{\infty} |S_{M^{-1}f_{2}}^{\mu}(M^{-1}f_{1})(h,k)|^{2} d\mu(k) \frac{d\mu(h)}{h}$$

=
$$C_{M^{-1}f_{2}}^{\mu} \int_{0}^{\infty} |M^{-1}f_{1}(y)|^{2} d\mu(y) = C_{\phi} \int_{0}^{\infty} |f_{1}(y|^{2} d\mu(y).$$

Which concludes the proof.

Theorem 5.2. (Calderon's formula) Let a generalized wavelet be $\phi \in L^2(\mu)$ such that $||F_{\Lambda}(\phi)||_{\infty} < \infty$. Then for $f_1 \in L^2(\mu)$ and $0 < \varepsilon_1 < \varepsilon_1 < \infty$, then the function

$$f^{\varepsilon_1,\varepsilon_2} = \frac{1}{C_{\phi}} \int_{\varepsilon_1}^{\infty} \int_0^{\infty} L_{\phi}(f_1)(h,k) \phi_{\varepsilon_1,\varepsilon_2}(y) d\mu(k) \frac{d\mu(h)}{h}$$

belongs to $L^2_{\sigma_1,n}$ and satisfies $\lim_{\varepsilon_1 \to 0, \varepsilon_2 \to \infty} \|f_1^{\varepsilon_1, \varepsilon_2} - f_1\|_{2,\mu} = 0.$

Proof. By (2.19), (3.2) and (5.4) we have

$$f_1^{\varepsilon_1,\varepsilon_2}(y) = \frac{\Lambda(y)}{C_{M^{-1}f_2}^{\mu}} \int_{\varepsilon_1}^{\infty} \int_0^{\infty} S_{M^{-1}f_2}^{\chi}(M^{-1}f_1)(h,k)(M^{-1}f_2)_{h,k}^{\mu}(y)d\mu(k)\frac{d\mu(h)}{h}.$$

Theorem 5.3. Let a generalized wavelet be $\phi \in L^2(\mu)$. If $f_1 \in L^1(\mu)$ and $F_{\Lambda}(f_1) \in L^2(\mu)$ then we have

$$f_1(y) = \frac{1}{C_\omega} \int_0^\infty \left(\int_0^\infty L_\omega(f_1)(h,k)\phi_{h,k}d\mu(k)\right) \frac{d\mu(h)}{h}$$

for almost all $0 \leq y$.

Proof. By (2.16), (3.1) and (5.4) we have

$$\frac{1}{C_{\omega}} \int_{0}^{\infty} (\int_{0}^{\infty} L_{\omega}(f_{1})(h,k)\phi_{h,k}d\mu(k)) \frac{d\mu(h)}{h}$$

= $\frac{\Delta(y)}{C_{M^{-1}f_{2}}^{\mu}} \int_{0}^{\infty} (\int_{0}^{\infty} S_{N^{-1}\phi}^{\mu}(M^{-1}f_{1})(h,k)(M^{-1}f\phi)_{h,k}^{\mu}(y)d\mu(k)) \frac{d\mu(h)}{h},$

and the result follows from Theorem 2.2.

REFERENCES

- [1] Y. MEYER: Wavelets and Operators, Cambridge University Press, Cambridge, 1992.
- [2] M.A. MOUROU, K. TRIMECHE : Inversion of the Weyl integral transform and the Radon transform on Rⁿ using generalized wavelets, Monatshefte fur Mathematik, **126** (1998), 73-83.
- [3] M.A. MOUROU, K. TRIMECHE: Calderon's formula associated with a differential operator on $(0, \infty)$ and inversion of the generalized Abel transform, Journal of Fourier Analysis and Applications, 4 (1998), 229-245.
- [4] M.A. MOUROU: Inversion of the dual Dunkl-Sonine integral transform on ℝ using Dunkl wavelets, SIGMA, 5 (2009), 1-12.
- [5] K. TRIMECHE: Generalized wavelets and hypergroups, Gordon and Breach Publishing group, 1997.
- [6] K. TRIMECHE: *Generalized Harmonic Analysis and wavelet Packets*, Gordon and Breach Science Publishers, 2001.
- [7] B.L.J. BRAAKSMA, B. MEULENBELD: Integral transforms with generalised Legendre functions as kernels, Composito Mathematica, 18 (1967), 235-287.
- [8] M. FLENSTED, JENSEN, T. KOORNWINDER: *The convolution structure for Jacobi function expansions*, Ark. Math, **11** (1973), 245-262.

THE CONTINUOUS WAVELET TRANSFORM FOR A FOURIER-JACOBI TYPE OPERATOR 2015

DEPARTMENT OF MATHEMATICS NORTH EASTERN REGIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY NIRJULI, 791109, ARUNACHAL PRADESH INDIA. *Email address*: drcppandey@gmail.com

DEPARTMENT OF MATHEMATICS NORTH EASTERN REGIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY NIRJULI, 791109, ARUNACHAL PRADESH INDIA. *Email address*: jyotisaikia885@gmail.com