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THE CONTINUOUS WAVELET TRANSFORM FOR A FOURIER-JACOBI
TYPE OPERATOR

C.P. Pandey! and Jyoti Saikia

ABSTRACT. The Jacobi operator is generalized by considering a singular differ-
ential difference operator A on (0, c0) and harmonic analysis corresponding to
generalized Fourier transform is also investigated. To construct and investigate
Fourier-Jacobi wavelet transform on half line, tools of harmonic analysis related
to A is used.

1. INTRODUCTION

The wavelet transform of a function f € L?*(R) of the wavelet ¢ € L?(R) is
defined by

(1.1) (Wagf)(k,h) = / f(0)brn(p)dp, k € R, b > 0.
where
(1.2 Snslp) = h (P,

In terms of translation 7, defined by

Tp(p) = ¢(p — k), k €R
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and dilation D), defined by
Dié(p) = h™"26(7),h > 0,
we can write

(1.3) Gnk(P) = TeDrd(p).

It is known from (1.1)),(1.2) and (1.3) that wavelet transform for a function is
an integral transform and its kernel is dilated translate of wavelet ¢.
The wavelet transform (I.1)) can also express in convolution:

1.9 (Wagf)(k,h) = (f * gon)(k),

where

2. PRELIMINARIES
The generalized Legendre function P\°***)(y) defined by

(L + [y

ploio2) —
W) = T ey ([ = e

(2.1)

2% 20y 17l
2 2 2
where F[u,v;w;z] denotes the Gauss hypergeometric function is a generaliza-
tion of the Jacobi polynomial [7,p.343]. It reduces to the Jacobi polynomial
P§”1’”2)(y) for v = n, a non-negative integer. Integral transforms along with gen-

- Fly + +1,—y+ y € R,

eralized Legendre functions as kernels have been investigated by Braaksma and
Meulenbeld [1]]. Theory and application of these transforms can also be found
in [2-8]]. The convolution theory developed by Flensted-Jensen and Koorn-
winder [5] is basis for the present work. The following normalized form will be
used in the sequel

2.2 R (y) = PO () P 1),y € R

Let ch(x) denote cosh(x) and sh(x) denote sinh(x). Then set

(2.3) o (z) = RL7) (5, 09)(ch2x).

= 4 232-p)
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Also, from [8]] we know that ¢,(¢) is a solution of the IVP

2.4 7 ) ) = Aute) = —(¢ -+ PJula)

where
A(:E) — (eac + e—x)202+1(e:c + 6—x)2<71+1 — 22p($h3})201+1(6h$)202+1,

p =01+ 0y+1>0. Let ¢, (z) be the second kind Jacobi function is a solution
of (2.1) such that

D, (x) = ™ P21 4 o(1)]asz — oc.
Thus

—op+1—1ix p—z’x_l_i o 1
2 ) 2 ) X? (

(25) Py (z) = (" + e—x)(ix—p)F(U2 —shat)Q)'

We know that

(2.6) Ox () = () Py (@) + c(=x) Py (2).

Let us define Li,1<q< oo, as the class of measurable functions f on the half
line for which || f||,.,, < oo, where

1l = ( / @) (), i g < oo,

and

[flloc.cr = I flloc = esssupaol f(y)]-
The Fourier-Jacobi transform defined for a function f € L} is given by

@7 FH)=Fo) = / " F ) )dply) = (2m)2A(y)dy,

and the inverse mapping is given by

(2.8) g(y) = (2m)" '/ / GO0 (W)le(x)Pdx = /0 Oo?(x)sox(y)dv(x),

0

o

where

dv(x) = (2m) " 2le(x)[Pdx
and
2.9) ) = 207X (ix)T (o + 1)

L((p+ix)/2)T((c1 + 09 +1+1ix)/2)
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As in [5] he convolution is defined by

2100 (fix fo)y) = / N / @) fal)k(y, 5, 2)dp()du(s),

where
2(1/2)=2p D (e chaochap.)o1—o2—1
K(I’l,$2’$3) = (0-1 + )(C T1ChXoC 5(}3)2
(o1 + (1/2))(shaxyshayshas)>
1-B
X F(O'l + 09,01 — 02,071 + 1/27 T),
with

(chx1)?4(chaa)?+(chxs)?—1
5 ,|ZE1—I2|<CL’3<CL’1+ZEQ

B =
0, otherwise.

Then K (x1,zs, x3) satisfies the following properties:

(1) In all the variables K (xy, 25, x3) is symmetric;
(i) K(x1, 29, 23) > 0;
(i) 7 K (21, x0, 23)dp(zs) = 1.
Also it has been shown that in [5] that
(2.11) pulaodes) = [ oK )dulzs).
0
Appling (1.2) and (1.3)), we have
(2.12) K (21,29, 73) = / Oy (1) oy (22) Py (23)dV(X).
0

An inner product on L?(y) is defined by

<fufos= [ fle) EEduta).
0
Similar definition is given to L%(u). From [5] we have the following

Lemma 2.1. Let 1 < ¢ <2,; +{ =1land f € L(). Then

~

(2.13) SO = [ flallsoxlls-

If f € L*(p), f(u), is continuous in Dy and for all x € D;

~

1
(2.14) [FOOl < £
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Theorem 2.1. Let q, s, r satisfy % +% =1+ %; 1 <gq,s,r <oofor f; € LYu) and
fo € L*(), frxfo € L™ () and || frx foll» < || fillgll f2lls- Moreover, for fi, fo € L'(u)
we have

(2.15) (fi* f2T00) = GO A ().

For any f; € L?(u), the below Parseval identity holds for the Fourier- Jacobi trans-
form:

| 1h@Pdnte) = [ 1R ta).

0 0
The Fourier- Jacobi translation 1, of ¢ € L%(u) defined by

(2.16) np(0) = 2(0.8) = [ el K (b 2)dn().0 < b < o0,
0

maps 7,(y) defined on the positive half of the real axis into the function ¢(y,b)
defined on the upper half of the positive half plane. 7, is also called generalized
translation. Using Hoder’s inequality it can be shown that

176 fill zogey < [1Fll o

and the map y — 7,1 is continuous for all fi € Li(p),q € [1,00).

Definition 2.1. A function w € L4(u) is a Fourier-Jacobi wavelet, satisfies the
condition of admissibility
o d
(2.17) 0<CX= / |Fj(w)(x>12% < .
0

Definition 2.2. Let w € L?*(u) be a Jacoi wavelet, then for a suitable function f on
L?(u) the continuous Fourier-Jacobi wavelet transform is defined by

(2.18) (oo = [ FE (o),

where o1 > 0,09 > 0,

(2.19) wh oY) = /OO K(o9,y, z)w(oy, 2)du(z),
0

and w,, (y) = w(o1,9)-

Theorem 2.2. Let a Fourier-Jacobi wavelet is w € L*(u). Then
(i) For all f € L*(;1) then Plancherel formula we have

/ooo‘f( )Fdi(y) //U“ )(01, 02) [Pdpu(o2)dp(oy).
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(i) Assume that ||Fj(w)|le < co. For f € L*(u) and 0 < e; < g3 < oo, the
function

ferey) = / / TE(Fts ()2 dp(o),

belongs to L*(u) and satisfies lime, 0,00 || f2 — f|l2,, = 0.
(iii) For f € L'(u) such that F,(f) € L'(u), we have

1) = et Ot ntoa)inton)
for almost all y > 0.

3. HARMONIC ANALYSIS RELATED TO FOURIER-JACOBI OPERATOR A

Let the map N be defined by N f(y) = A(y) f(y). Let L9(u), 1 < g < oo, be the
class of measurable function f on the half line for which || f||,. = M~ fll4
Q.

Generalized Fourier transform

For y e Cand y € R,

(3.1) O (y) = My)ex(y).
The generalized Fourier transform defined for a function f; € L'(u) is given by
(3.2) R0 = [ 56y w)dnty)

0

Theorem 3.1. Let f; € L'(u) such that Fu(f1) € L' (u). Then for almost all y > 0,
) = [ B0 W)
0
Proof. By (3.1)),(3.2) and Proposition 2.1(ii) we have

/0 TR dr() = AWw) / T By (M) (0020 ()
= Ay)M " fi(y) = fi(y).
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Theorem 3.2.
(i) Forevery f; € L'(u) () L' (1) the Plancherel formula we have

/Ooo |f1(y>|2du(y) = /Ooo |FA(f1)(X)|2dV(X),

(ii) Unique isometric isomorphism from L*(;1) onto L?(u) is extend by gener-
alized Fourier transform F). And its inverse transform is given by

Fo'(f)(y) = / " )G W) (X).

where the integral is converges in L*(j).
Proof. Let f; € L*(p) () L' (n). By (B.I) we have

| R orareo = [T IRO 0P

= [ nwldnt) = [ 1a)Fau)

which concludes that (i)and (ii) can be proved in standard manner. O

4. GENERALIZED CONVOLUTION PRODUCT

Definition 4.1. Define the generalized translation operator TV 0 < vy, by the rela-
tion

(4.1) TV fi(b) = (M~ f1)(b),0 < b,
where 7! is the Jacobi translation operator.

Definition 4.2. The generalized convolution product of two functions f; and f, on
half line is defined by

4.2) Fix faly) = / TV () fuB)du(b),0 < y.

Proposition 4.1.

() Let f bein L%(u),1 < q < oo. Then Y0 < y, the function TV f, € Li(u),
and || T fillg. < Allfillgp-
(ii) For f; € L%(u),q = lor2, we have

Ex(TY f1)(X) = O3 (y) Fa(f1)(X)-
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(iii) Let g, s € [1,00] such that ; + | = 1. If fi € L%(p) and f, € L*(u1) then

(iv) Let q,s,r € [1,00] such that % +i-1=2L1Iffi € L(p) and f, € L*(p)

then fitf, € L"(n) and || fi8follrp < [ fillgull f2lls -
(V) For f1 € L'(p) and fy € L9(u), q = 1 or 2, we have

Fa(fiffa) = Fa(f1) Fa(f2)-

5. GENERALIZED WAVELETS

Definition 5.1. A generalized wavelet is a function ¢ € L%(u) satisfying the condi-
tion off admissibility

5.1 0<Cy= / SR P

For fy € L*(u) and (h, k) € (0,00) x (0, 00) put

d
v(X) <o
X

5.2) onae) = [ oK (y.2)aulz).
0
Proposition 5.1. For all h > 0 and 0 < k we have

(5.3) Oni(y) = kA (M~ o) (y).
Proof. Using (2.13)), (2.14) and (3.1) we can easily prove that

Oni(y) = /fA(Z/)(MA(?)Z,k(y)-

g

Definition 5.2. Let a generalized wavelet be f, € L?(u). We define for regular
functions f on the half line, the generalized continuous Fourier-Jacobi wavelet
transform is given by

(5.4) Lol k) = [ AG)EaTduly).
or

Ly(f1)(h, k) = fi *ﬁ(k%
where the generalized convolution product x is given (4.2)).
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Proposition 5.2. We have
(5.5) Lo(fi)(h, k) = Sy, (M7 f1) (R K).
Proof. From (2.6)), and (5.4) we deduce that
Lo(f)(h k) = [ fi(y)dns(y)du(y)
0

= [ O BT Gdn() = Sy (VR
which concludes the proof. O

Theorem 5.1. (Plancherel formula) Let ¢ € L?(u). be a generalized wavelet. For
every fi € L*(u). we have Plancherel formula

| nrau) //m)fl (b, 1)) )

Proof. By and ((5.4) we have
L[ mstmmpaum 28
0 0
= [ [ St 0 by Pty
~Cliwy, [ MG = Co [ 1RloPduts)

Which concludes the proof. d

ulh)
h

Theorem 5.2. (Calderon’s formula) Let a generalized wavelet be ¢ € L?(u) such
that || F(4)|le < 0o. Then for f; € L*(u) and 0 < g1 < €; < oo, then the function

fm:—/m/ L) (b, K)oy e (D) )

belongs to L . and satisfies im., o ;o0 | /1772 — fill2p =0

Proof. By (2.19), (3.2)and (5.4) we have

) = o%(_yl)f [ St 00 ) 0 ) Y5
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Theorem 5.3. Let a generalized wavelet be ¢ € L*(p). If f1 € L*(n) and Fa(f1) €
L?(u) then we have

10 = g [ Lt Ronadutin

for almost all 0 < y.

Proof. By (2.16), (B.1)and (5.4) we have

- / ([ 2t Ryonadutn ™

S lfQ/ ([ S0 0O F i)

and the result follows from Theorem 2.2. O
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