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DETOUR PEBBLING ON PATH RELATED GRAPHS

A. Lourdusamy and S. Saratha Nellainayaki1

ABSTRACT. Given a distribution of pebbles on the vertices of a connected graph
G, a pebbling move is defined as the removal of two pebbles from some vertex
and the placement of one of those pebbles on an adjacent vertex. The pebbling
number of a vertex v in a graph G is the smallest number f(G, v) such that for
every placement of f(G, v) pebbles, it is possible to move a pebble to v by a
sequence of pebbling moves. The pebbling number of G is the smallest number,
f(G) such that from any distribution of f(G) pebbles, it is possible to move a
pebble to any specified target vertex by a sequence of pebbling moves. Thus
f(G) is the maximum value of f(G, v) over all vertices v. The detour pebbling
number of G is denoted by f∗(G) and is obtained by the detour path. In this
paper, we compute the detour pebbling number for some path related graphs.

1. INTRODUCTION

Pebbling, one of the latest evolutions in graph theory proposed by Lakarias
and Saks, has been the topic of vast investigation with significant observations.
Having Chung [1] as the forerunner to familiarize pebbling into writings, many
other authors too have developed this topic. Hulbert published a survey of graph
pebbling [8].
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Graph pebbling is an optimization model of the network for the transport of
resources consumed in transit. As it moves from one place to another, electricity,
heat, or other resources may dissipate, oil tankers may use some of the oil it
transports, information may be lost as it passes through its medium, or military
forces may be lost when travelling through a area.

Let G be a simple connected graph with vertex set V (G) and edge set E(G).
Consider a connected graph with fixed number of pebbles distributed on its
vertices. A pebbling move consists of the removal of two pebbles from a vertex
and placement of one of those pebbles at an adjacent vertex. The pebbling
number of a vertex v in a graph G is the smallest number f(G, v) such that
for every placement of f(G, v) pebbles, it is possible to move a pebble to v by
a sequence of pebbling moves. Then the pebbling number of G is the smallest
number, f(G) such that from any distribution of f(G) pebbles, it is possible to
move a pebble to any specified target vertex by a sequence of pebbling moves.
Thus f(G) is the maximum value of f(G, v) over all vertices v. The pebbling
number of a graph was extended to t−pebbling number of a graph and there are
so many articles with regard to t−pebbling numbers [2], [?], [4], [5] and [6].
The detour pebbling was introduced by Lourdusamy et. al in [10].

In this paper, we compute the detour pebbling number for some path related
graphs.

2. PRELIMINARY

We begin with some theorems and definitions which are useful for the subse-
quent sections from [9], [10]. For basic graph theoritic terminologies the reader
can refer [7].

Definition 2.1. Let G be a connected graph. For u, v ∈ V (G), we denote by
dG(u, v) the distance between u and v in G. The pth power of G, denoted by Gp, is
the graph obtained from G by adding edge uv to G, whenever 2 ≤ dG(u, v) ≤ p.
That is, E(Gp) = {uv : 1 ≤ dG(u, v) ≤ p}.

The square of paths is denoted by P 2
n and the vertex set is notated by

{v1, v2, . . . , vn}.
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Definition 2.2. The middle graph M(G) of a graph G is the graph obtained from
G by inserting a new vertex into every edge of G and by joining the edges of those
pair of these new vertices which lie on the adjacent edges of G.

The middle graph of a path with n vertices is denoted by M(Pn).

Definition 2.3. The shadow graph D2(G) of a connected graph G is constructed
by taking two copies of G, say G1 and G2 and joining each vertex u in G1 to the
neighbours of the corresponding vertex v in G2.

The shadow graph of a path with n vertices is denoted by D2(Pn). Let us
denote the vertices of the first copy of Pn by u1, u2, . . . , un and the second copy
of Pn by v1, v2, . . . , vn.

Definition 2.4. [10] A detour pebbling number of a vertex v of a graph G is the
smallest number f ∗(G, v) such that for any placement of f ∗(G, v) pebbles on the
vertices of G it is possible to move a pebble to v using a detour path by a sequence
of pebbling moves. The detour pebbling number of a graph is denoted by f ∗(G), is
the maximum f ∗(G, v) over all the vertices of G.

Theorem 2.1. [10] For any path Pn with n vertices, the detour pebbling number
is f ∗(Pn) = 2n−1.

Theorem 2.2. [10] Let K1,n be an n-star where n > 1. The detour pebbling
number for the n−star graph is f ∗(K1,n) = n+ 2.

3. MAIN RESULTS

In this section, we compute the detour pebbling number for square of paths,
middle graphs of paths and shadow graph of paths.

Theorem 3.1. Let P 2
n be the square of path with n vertices. The detour pebbling

number f ∗(P 2
n) = 2n−1.

Proof. Placing 2n−1 − 1 pebbles on the vertex vn, we cannot move a pebble to
v1, as the length of the detour path from vn to v1 is n − 1. Thus f ∗(P 2

n) ≥ 2n−1.
For the sufficient part, we consider any distribution D with 2n−1 pebbles on the
graph P 2

n .
Case 1: n is odd.
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Let vi be the target vertex. Assume p(vi) = 0. Suppose i is odd. A spanning
path P : vi+2, vi+4, . . . , vn, vn−1, vn−3, vn−5, . . . , v2, v1, v3, v5, . . . , vi of length n − 1

is a detour path from vi consisting of the 2n−1 pebbles. Then by Theorem 2.1,
using 2n−1 pebbles we can move a pebble to vi. Suppose i is even. Then consider
the spanning path P : vi+2, vi+4, . . . , vn−1, vn, vn−2, vn−4, . . . , v3, v1, v2, v4, . . . , vi of
length n − 1. Since this path consists of all the vertices, 2n−1 pebbles are dis-
tributed on this detour path and hence by Theorem 2.1, using 2n−1 pebbles we
can move a pebble to vi.

Case 2: n is even.
Let vi be the target vertex. Assume p(vi) = 0. Suppose i is odd. Then there

exists a spanning path P : vi+2, vi+4, . . . , vn−1, vn, vn−2, . . . , v2, v1, v3, v5, . . . , vi of
length n − 1 which is a detour path from vi. Then by Theorem 2.1, using 2n−1

pebbles we can move a pebble to vi. Suppose i is even. Then a spanning path
P : vi+2, vi+4, . . . , vn, vn−1, vn−3, vn−5, . . . , v3, v1, v2, v4, . . . , vi of lenght n − 1 is a
detour path containing 2n−1 pebbles on it. Hence we can move a pebble to the
target vertex using the detour path. �

Theorem 3.2. Let M(Pn) be the middle graph path with 2n− 1 vertices. Then the
detour pebbling number f ∗(M(Pn)) = 22n−2.

Proof. Label the vertices of the path Pn as u1, u2, u3, . . . , un and let us label
the n − 1 vertices which we have inserted to form a middle graph of path by
v1, v2, . . . , vn−1.

Placing 22n−2 − 1 pebbles on the vertex un, we cannot reach u1 as the detour
distance from un to u1 is 2n − 2. Thus f ∗(M(Pn)) ≥ 22n−2. We now prove the
sufficient part. Let us consider any distribution D with 22n−2 pebbles on the
middle graph of the path M(Pn).

Case 1: Let u1 be the target vertex.
Since d∗(u1, ui) ≤ 2n− 2, for any i, we can reach the vertex u1. By symmetry we
can reach un. Let ui, where 1 < i < n be the target vertex. Then either the path
P1 : ui, vi, ui+1, vi+1, . . . , un of length 2n − 2i contains at least 22(n−i) pebbles or
the path P2 : u1, v1, u2, v2, . . . , ui of length 2i − 2 contains at least 22i−2 pebbles.
Clearly these paths are detour, we can reach the target. Otherwise the total
number of pebbles distributed is p(P1) + p(P2) < 22(n−i) + 22i−2 = 22n−2 which is
a contrary. Hence f ∗(M(Pn)) = 22n−2.

Case 2: Suppose vi, where i = 1 to n− 1 be the target vertex.
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Then either the path P3 : vi, ui+1, vi+1, ui+2, . . . , un of length 2n− 2i− 1 contains
at least 22n−2i−1 pebbles or the path P4 of length 2i − 1 contains at least 22i−1

pebbles. Since these paths are detour, we can use Theorem 2.1 and hence we
reach the target. Otherwise the total number of pebbles distributed is p(P3) +

p(P4) < 22n−2, which is a contradiction. Therefore f ∗(M(Pn)) = 22n−2. �

First we prove the following theorems, which are useful for determining the
detour pebbling number for shadow graph of paths.

Theorem 3.3. Let G be the shadow graph of path D2(P3), the detour pebbling
number f ∗(G) = 17.

Proof. Placing 15 pebbles on v3 and a pebble on v1, we cant reach the vertex u1.
Thus f ∗(D2(P3)) ≥ 17. For sufficiency, let us consider any distribution D of 17
pebbles on the vertices of the graph G = D2(P2).

Case 1: Let u1 be the target vertex.
Suppose < G−{u3, v3} > contains at least 8 pebbles then we can reach the target
using the detour path of length 3. Otherwise assume that p(< G−{u3, v3} >) =

i, where 0 ≤ i ≤ 7. Therefore p(u3) + p(v3) contains 17− i pebbles. Anyhow we
can move 8 − i pebbles from the vertices u3 and v3 to < G − {u3, v3} >. Thus
using the detour path of length 3 and by Theorem 2.1, we can reach the target
vertex.

Case 2: Let u2 be the target vertex.
Since < {u1, u2, u3, v1, v3} > is isomorphic to K1,4, if p(u1)+ p(u3)+ p(v1)+ p(v3)

is at least 6, by Theorem 2.2, we can move a pebble to the target. Otherwise
v2 contains at least 4 pebbles and hence we can reach the target, as the detour
distance from v2 to the target is two. By symmetry, we can reach all the vertices
of the graph. Hence f ∗(G) = 17. �

Theorem 3.4. Let G be the shadow graph of path D2(P4). Then the detour peb-
bling number f ∗(G) = 128.

Proof. Placing 127 pebbles on the vertex v4, we cannot reach the vertex u1 as the
detour distance from v4 to u1 is 7. Thus f ∗(G) ≥ 128. For sufficient part, let us
consider any distribution D with 128 pebbles on the graph G.

Case 1: Let u1 be the target vertex.
Consider the spanning path P1 : v4, u3, u4, v3, u2, v1, v2, u1 of length 7. Since
it contains all the vertices of the graph G, this is also a detour path of length
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7. Thus by Theorem 2.1, we can move a pebble using the detour path. By
symmetry, if v4 is the target vertex, we are done.

Case 2: Let v1 be the target vertex.
Now considering the spanning path P2 : v4, u3, u4, v3, u2, u1, v2, v1, which is a
longest path in G containig all vertices and of length 7. Since 128 pebbles on
distributed and by Theorem 2.1, we can move a pebble using the detour path.
By symmetry, if u4 is the target vertex, we are done.

Case 3: Let any vertices other than u1, un, v1, vn be the target vertex.
Without loss of generality, let us assume that u2 be the target vertex. Since
< {u1, u2, v1, v2} > is isomorphic to P4 and if p(< {u1, u2, v1, v2} >) ≥ 8, then by
Theorem 2.1, we can reach the target vertex. Otherwise the remaining number
of pebbles is at least 128− 7 = 121 are distributed on the vertices {u3, u4, v3, v4}.
But since < {u2, u3, u4, v2, v3, v4} > is isomorphic to D2(P3) and by Theorem 3.3,
we can move a pebble to the target. By symmetry we can reach all the vertices
of the graph. Hence f ∗(G) = 128. �

Now we find the detour pebbling number for shadow graph of even paths and
then we compute for the shadow graphs of odd paths.

Theorem 3.5. Let G be the shadow graph of path D2(Pn), where n is even. Then
the detour pebbling number f ∗(G) = 22n−1.

Proof. Placing 22n−1 − 1 pebbles on the vertex vn, we cannot reach the vertex u1

as the detour distance from vn to u1 is 2n − 1. Thus f ∗(G) ≥ 22n−1. We prove
the sufficient part by induction on n. Since D2(P2) is isomorphic to P4 and from
Theorem 3.4, we conclude that the result is true for n = 2 and for n = 4. Assume
that the result is true for 4 ≤ n′ < n. Let us consider any distribution D with
22n−1 pebbles on the graph G.

Without loss of generality, let x be any target vertex, other than {u2n−1,

un, vn−1, vn}. Let G1 =< G − {un−1, un, vn−1, vn} >. Suppose p(G1) ≥ 22(n−2)−1.
Since G1 is isomorphic to D2(Pn−2), by induction we are done. Otherwise
p(G1) ≤ 22(n−2)−1 − 1.

Case 1: Suppose 22n−4(i+1)−1 ≤ p(G1) ≤ 22n−4i−1− 1, for each i = 1 to n/2− 2.
Since < {u2n−1, u2n, v2n−1, v2n} > is isomorphic to P4 and by Theorem 2.1,
22n−1−[22n−4i−1−1]−1

16
pebbles can be moved to either un−2 or vn−2. Also since,

22n−1 − [22n− 4i− 1]

16
+ 22n−4(i+1)−1 ≥ 22n−5 = 22(n−2)−1 = f ∗(D2(P(n−2))),
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we can move a pebble to any vertex in G1,by induction.
Case 2: Suppose 1 ≤ p(G1) ≤ 7.

Then remaining pebbles are distributed in {un−1, un, vn−1, vn}. Thus moving as
many as possible from these to G1 we note that either un−2 or vn−2 contains
22(n−2)−1 − 1 pebbles. Thus totaly the subgraph G1 contains at least 22(n−2)−1

pebbles. Since f ∗(D2(P(n−2))) = 22(n−2)−1 and we are done by induction.
Case 3: Suppose p(G1) = 0.

Then all the pebbles are distributed on the vertices {un−1, un, vn−1, vn}. Thus we
can move 22(n−2)−1 pebbles from here to G1 and thus by induction, we can reach
the target vertex.

By symmetry, we can reach all the vertices of the graph D2(Pn), where n is
even. Thus f ∗(G) = 22n−1. �

Theorem 3.6. Let G be the shadow graph of path D2(Pn), where n is odd. Then
the detour pebbling number f ∗(G) = 22n−2 + 1.

Proof. Placing 22n−2 − 1 pebbles on the vertex vn and a pebble on v1, we cannot
reach the vertex u1. Thus f ∗(G) ≥ 22n−2 + 1.

We prove the sufficient part by induction on n. The result is true for n = 3, by
Theorem 3.3. Assume that the result is true for 5 ≤ n′ < n. Let us consider any
distribution D with 22n−2 + 1 pebbles on the vertices of the graph G.

Without loss of generality, let x be any target vertex, other than {un, vn}.
Let G1 =< G − {un, vn} >. Suppose p(G1) ≥ 22n−3. Since G1 is isomorphic to
D2(Pn−1), by Theorem 3.5 we can reach the target. Otherwise p(G1) ≤ 22n−3−1.

Case 1: Suppose 22n−2−(i+1) ≤ p(G1) ≤ 22n−2−i, for each i = 1 to 2n− 5.
Then the remaining pebbles are distributed in the vertices u2n and v2n. Thus we
can move at least 22n−2+1−22n−2−i−1

2
pebbles to G1 from these two vertices. Also

since
22n−2 + 1− 22n−2−i − 1

2
+ 22n−2−(i+1) ≥ 22n−3 = 22(n−1)−1 = f ∗(D2(P(n−1))),

by induction we can move a pebble to the target.
Case 2: Suppose 1 ≤ p(G1) ≤ 3.

Then there are at least 22n−2+1−3 pebbles are distributed on the remaining two
vertices. After moving as much as possible to G1 we can see that G1 contains
22n−1 pebbles. Hence by induction we can reach the target.

Case 3: Suppose p(G1) = 0.
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Then the pebbles will be distributed only on the vertices un and vn. Also we can
move 22n−1 pebbles to G1, which is equal to its detour pebbling number. Thus
by induction we can reach the target.

By symmetry, we can reach any vertex in the graph G. Hence f ∗(G) = 22n−2+

1. �

Thus the detour pebbling number for certain path related graphs were com-
puted.
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