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WAVELET FRAMES AND TIME-FREQUENCY LOCALIZATION IN LOCALLY
COMPACT ABELIAN GROUPS

Arvind Kumar Sinha and Radhakrushna Sahoo1

ABSTRACT. We construct a wavelet frame system on locally compact abelian
(LCA) group G associated with the multiresolution analysis and Haar measures.
We show the characterization of the wavelet frame set and the scaling sequence
on L2(G). The dilation and translation of wavelet frame sets for time-frequency
localization in LCA groups have been set up. We obtain an orthonormal wavelet
basis for L2(G) using the scaling sequence. We also establish the relationship
between multiresolution analysis and wavelet functions. Finally, we obtain pe-
riodization for the multiresolution analysis using time-frequency localization on
a periodic wavelet frame. The periodization holds wavelets’ regular properties
and decay conditions.

1. INTRODUCTION

Mallat [10] introduced the classical multiresolution analysis which was a se-
quence of increasing function on closed subspace {Ui}i∈N0 of L2(G) such that⋂
i∈N0

Ui = {0},
⋃
i∈N0

Ui dense in L2(R); which satisfies h(z) ∈ Ui and h(αz) ∈
Ui+3k, k = 1, 2, 3, · · · , i ∈ N0, where α is a scalar and N0 = N ∪ {0}. Again, there
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exists an element Φ ∈ U0 such that the collection of translation of a wavelet func-
tion Φi{Φ(z − 3k) : k = 1, 2, 3, · · · } represents a compact space of orthonormal
basis of increasing sequence for U0; the function Φ is represented the wavelet
scaling function. In recent years, the work of multiresolution analysis and
wavelet functions has been generalized in much different literature Azarmi [1]
and Daubechies [6]. Mallat [10] has constructed an orthonormal wavelet basis
for compact space L2(R). Shah et al. [12] constructed wavelet frame packets as-
sociated with multiresolution analysis, and wavelet frames form an orthonormal
basis for L2(G). Chen [5] have constructed wavelet frame packets using mul-
tiresolution analysis, corresponding to an orthonormal wavelet basis for L2(G).
Long et al. [9] has given the concept of bi-orthogonal multiple wavelets gener-
ated from transformation and provided the method for establishing compactly
supported bi-orthogonal multiple wavelets by the same function. The aim of
the paper is to obtain wavelet frames from the splitting trick of multiresolution
analysis on L2(G) and constructing wavelet on an orthonormal basis of L2(G).

The primary motivation of the work starts from the work of Benedetto and
Benedetto [2] who introduced a wavelet theory for local fields and related
groups. Bownik and Jahan [3] introduced the concept of characterization of
scaling sequence of a multiresolution analysis on Lp(G), 1 ≤ p ≤ ∞. Also,
constructed an orthonormal wavelet basis of L2(G) using a scaling sequence.
Gol and Tousi [8] have generalized a shift-invariant space involving the spec-
tral function from Rn to the locally compact abelian (LCA) group. The spectral
function and scaling sequence are characterized in terms of all conditions of
multiresolution analysis. More results in this direction can be found in [4,11].

We characterize the theory of a multiresolution analysis of {Ui}i∈N0 on an LCA
group. We define the scaling sequence concept to the structure of wavelet basis
in any space Ui to Ui+1. We establish a multiresolution analysis transformation
on L2(G), which holds the periodic wavelet frame regular properties and decay
conditions. We find dilations and translations of wavelet frame sets for time-
frequency localization in LCA groups. Then we obtain an orthonormal wavelet
basis for L2(G). We establish the relationship between multiresolution analysis
and wavelet functions. We obtain periodization for the multiresolution analysis
using time-frequency localization on a periodic wavelet frame.
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2. PRELIMINARIES

Let G be an LCA group and Ĝ its dual group. Shah et al. [12] defined mul-
tiresolution analysis and orthonormal basis properties by taking some choice of
LCA groups. Let q be the natural number > 1 and the sequence of the form
z = (zi) = (· · · z3m−2, z3m−1, z3m, z3m+1, · · · ), where zi ∈ {0, 1, 2, 3, · · · (q − 1)}
for i ∈ N0 and zi = 0 for i < m = m(z); the group operation on G is de-
fined as the component-wise addition. The LCA topological group on G is de-
termined by the system of neighborhoods of complete inner product space as
Vl = {(zi) ∈ G : zi = 0 for i ≤ l}, l ∈ Z. Clearly, each neighborhood of complete
space Vl is a compact abelian subgroup of G, Vl+1 ⊂ Vl for l ∈ Z and

⋂
Vl = 0.

If set V = V0, then the group under operation is multiplication. and if V 6= V0,
then the group operation is addition. If LCA G is having an additive inverse
element, then G exists compact abelian subgroups.

For 1< p < ∞, we take Lp(G) as the Lebesgue spaces of Borel’s subgroup of
G defined by the Haar measure ρ with ρ(V0) = ρ(V ) ≤1. Let Ĝ be the compact
abelian dual group of an abelian group G and the group G of all sequences
of the form ξ = (ξi) = (· · · , ξ3k−2, ξ3k−1, ξ3k, ξ3k+1, ξ3k+2, · · · ), where ξi ∈
{0, 1, 2, 3, 4, · · · (q − 1)} for i ∈ N0 and ξi = 0 for i < m = m(z). Then the group
operation is co-ordinate wise addition. The neighborhood of compact support
V̂l and the Haar measure µ̂ for Ĝ are imported as compact abelian subgroups for
G. If S is disconnected compact abelian subgroup of G, then S = {zi ∈ G : zi =

1, i > 0}.
Folland [7] has given the concept of the quotient group S/A(S) contains q

elements and the orthogonal subgroup S⊥ of S consists of all sequence ρi of Ĝ
holds the condition ρi = 1 for i > 1, where A is an abelian group automorphism
of G. Let G be a compact abelian group and R set of real number, then the linear
map T : G → Ĝ by T (z) =

∑
i∈I ziq

i, z ∈ G, where T is a transformation of the
compact abelian subgroup V onto the interval (0,∞) as defines an isomorphism
of Banach spaces (G, ρ) and (R,χ), w is the lebesgue measure of the infinite
measure on set of real number R and I be an indexing set. Also, the image of
N under T is the set of positive integer T (N) = Z+; thus, for every β ∈ Z+.
If T (hβ) = β, then T is called compact group automorphism where hβ is an
element of N . The prestige hypothesis are needed to authorization that an
multiresolution analysis {Ui}i∈N0 satisfies the density property

⋃∞
i=0 Ui = Lp(G)
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where 0 < p < ∞ which are able to an epimorphism E : G → G with a
finite kernel such that

⋃
i∈N0

kerEi dense in G, i.e. kerEi = {(Y, Z) ∈ G × G :

zi+1 = zi+2 = · · · = 0, z ∈ Z} with epimorphism E and G = R/Z. In this
process, we define a transformation T̂ : Ĝ → G the compact abelian subgroup
automorphism H ∈ AutĜ, the subgroup Ĝ and the element ρβ of S⊥ for G, we
character ω(Az, ρ) = T (z,Hν) for all z ∈ G, ρ ∈ Ĝ.

Definition 2.1. [1] Let G be a LCA group and A ∈ Aut(G). The operator δA is
defined on L2(G) by δAh(z) = |A|1/2h(Az), for all h ∈ L2(G).

Definition 2.2. [2] Let G be a LCA group with compact open subgroup S ⊆ G,
let Θ be a choice coset representatives in Ĝ for Ŝ = Ĝ/S⊥, let A ∈ Aut(G), and
consider [s] ∈ G/S. The dilated translate of h ∈ L2(G) is defined as

(2.1) hA,[s](z) = δAτ[s],Θh(z) = |A|1/2(h× ŵ[s],Θ)(Az),

where ŵ[s],D is the pseudo-measure.

3. MAIN RESULTS

3.1. Wavelet frames on LCA groups. Let G be an LCA group and consider that
G consists of a disconnected finite or countably infinite subgroup S such that the
quotient group G/S is compact. Moreover, we suppose that an automorphism A

of G such that A(S ) ⊂ S . A sequence {Ui}i∈N0 of closed subspace of L2(G , µ) is
called a multiresolution analysis of L2(G , µ) where µ stand for the Haar measure
on G , if the following conditions are satisfied:

(i) Ui ⊆ Ui+1, i ∈ N0;

(ii)
⋃
i∈N0

Ui = L2(G);

(iii)
⋂
i∈N0

Ui = {0};

(iv) h ∈ Ui ⇐⇒ σh ∈ Ui+1 i.e. Ui = σiU0, i ∈ N0, σ ∈ G;
(v) U0 is left shift invariant i.e. if h ∈ U0 then Lγh invariant subspace of U0;

(vi) The collection {Lγh : γ ∈ Γ is an orthonormal basis of U0, Γ a discrete
topological subgroup of G;

(vii) There exists a scaling function Φ such that the collection {Φ(·oj)}j∈S of
translates of Φ are stable and U0 is the closed linear span of Φ(·oj) where
o is the group operation of G .
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Now a family of wavelets {ψ1, ψ2, · · ·ψN} are called system of functions, the
orthogonal complement W0 of U0 in U1 is constructed by using the translation
of {ψ1, ψ2, · · ·ψN}. Since the union of the space {Ui}i∈N0 is dense in L2(G , µ)

where their intersection is zero, we observe that the function {ψ1, ψ2, · · ·ψN} is
scaled and translated to span L2(G , µ). Then we have Ψ = {ψ1, ψ2, · · ·ψN} is
called a wavelet generator for L2(G , µ). After that we are able to find a single
wavelet for L2(G , µ), if Ψ = {ψ}. Let {Ω1,Ω2, · · ·ΩN} be a measurable subset
of Ĝ , and let ψi = 1Ωi

, for each i = 1, 2 · · ·N . We call this {Ω1,Ω2, · · ·ΩN} is
a wavelet collection of sets if Ψ = {ψ1, ψ2, · · ·ψN} is a wavelet generator for
L2(G , µ). If N = 1, then Ω = Ω1 is a wavelet set. Since the frame is a constant
multiple of the wavelet set itself see [8], recovering functions from their frame
coefficient does not require the frame’s computation. Hereafter, we shall focus
on wavelet frames.

Given h ∈ L2(G), let hi,k denote the scale and shift invariant function

hi,k = D2−i
Tkh, 1 ≤ i ≤ N, k ∈ G/S ,(3.1)

where G/S is a quotient group, D and T are dilation and translation operator
respectively. Let I be an index set. For given Ψ = {ψ1, ψ2, · · ·ψN} ⊂ L2(G), let
Θ ⊆ Ĝ a choice of coset acting in Ĝ for Ŝ = Ĝ/S⊥, A ⊆ Aut(G) be a countable
nonempty set of automorphisms of G and a coset B ⊆ G/S. We define the
wavelet system

(3.2) X(Ψ) = {ψi,j,k : 1 ≤ i ≤ N, j ∈ A, k ∈ B},

where ψi,j,k = 2j/2ψi(2
j ·−k), and j and k encode certain dilation and translation

information. The wavelet system X(Ψ) ⊂ L2(G) is called a wavelet frame with
frame bound C if

h(z) =
1

C

∑
1≤i≤N

∑
j∈A

∑
k∈B

〈h, ψi,j,k〉ψi,j,k(z), for all h ∈ L2(G).

This is equivalent to saying that the wavelet system X(Ψ) ⊂ L2(G) is a wavelet
frame with frame bound 1 and ‖ψi‖L2(G) = 1 for 1 ≤ i ≤ N . A function
Φ ∈ L2(G) is called scaling function, if it is satisfies a scaling sequence Φj,k =

2j/2Φ(2j · −k) and j and k encode certain dilation and translation information.

3.2. Wavelet frames and (τ,Θ)-congruence. Now we formulate wavelet frames
on the LCA group G by appropriate dilation and translation operators.
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Definition 3.1. Let G be a LCA group with compact open subgroup S ⊆ G, let
Θ ⊆ Ĝ be a choice of coset acting in Ĝ for Ŝ = Ĝ/S⊥ and let A ⊆ Aut(G) be
a collection of all group group automorphisms of G and B ⊆ G/S. Consider
Ψ = {ψ1, ψ2, · · ·ψN} ⊆ L2(G). The wavelet system X(Ψ) is a wavelet frame for
L2(G) corresponding to Θ and A if {ψi,j,k : 1 ≤ i ≤ N, j ∈ A, k ∈ B} form an
orthonormal basis for L2(G), where ψi,j,k(z) = δjτkΘψi(z) = 2j/2ψi(2

j · −k)(jz).

Definition 3.2. Let G be a LCA subgroup S ⊆ G, and Θ ⊆ Ĝ be a choice of co-set
acting in Ĝ, and let U and U ′ be sub sets of Ĝ. We say U is (τ,Θ)-congruence to U ′,
if there exist an indexing set I ⊆ Z as well as {Um : m ∈ I} and {U ′m : m ∈ I} are
multiresolution analysis of U and U

′ respectively, into Lebesgue measure subsets
and sequence {ιm}m∈I , {ι

′
m}m∈I ⊆ Θ such that for all m ∈ I, Um ⊆ ιm + S⊥ and

Um = U
′
m − ι

′
m + ιm.

Theorem 3.1. Let G be a LCA group with compact open subgroup S ⊆ G, let
Θ ⊆ Ĝ be a choice of co-set acting on Ĝ for Ŝ = Ĝ/S⊥, and let A ⊆ Aut(G)

be a countable infinite set of Aut(G) and a coset B ⊆ G/S. Assuming that Ψ =

{ψ1, ψ2, · · ·ψN} is a set of wavelet generators for L2(G). The wavelet system X(Ψ)

in Eq. (3.2) is a wavelet frame set if and only if following two points hold:

(i) {Q∗ψi,j,k : Q ∈ A, 1 ≤ i ≤ N, j ∈ A, k ∈ B} design on Ĝ up to sets of zero
measure, where Q∗ is an action of the adjoint automorphism on Ĝ;

(ii) For all i = {1, 2, 3, · · ·N}, Ψ = {ψ1, ψ2, · · ·ψN} is (τ,Θ)-congruence to S⊥

up to set of zero measure.

Proof. Let a finite sequence {Ω1,Ω2, · · ·ΩN} with ψi = 1̌Θi
, where 1̌ the in-

verse Fourier transform of an indicator function 1Θ. Recall that ψi,j,k(z) =

δjτkΘψi(z) = 2j/2ψi(2
j ·−k)(jz) and also that ι′0 is the unique element of Θ

⋂
S⊥.

First we consider condition (ii), this condition implies that all u(ψi) = 1, because
Ĝ is ι-compact each u(ψi) = 1 and each 1Θi

∈ L2(Ĝ). Let Ii ⊆ Z be the index set
for (τ,Θ)-congruence and let {Ui,m : m ∈ Ii} be the corresponding partition of
ψi, since ψi is (τ,Θ)-congruence to S⊥, we get

u(ψi) =
∑
m∈Ii

u(Ui,m) =
∑
m∈Ii

u(Ui,m + ι
′

m − ιm) =
∑
m∈Ii

u(U
′

i,m) = u(S⊥) = 1,

where {U ′i,m : m ∈ Ii} is a partition of S⊥ and ι
′
m = ιι

′
0 for all m ∈ Ii. When

properties (ii) is consider, we have φi = 1Ωi
∈ L2(Ĝ). Furthermore, ‖1Ωi

‖ = 1 so
that ‖φi‖2 = 1.
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Conversely, if Ψ = {ψ1, ψ2, · · ·ψN} is called a wavelet generator and {Ω1,Ω2, · · ·ΩN}
be a measurable subset of Ĝ , then

1 = ‖φi‖2 = ‖1Ωi
‖2 = v(Θi).

We shall also need the fact that condition (i) implies that {ψ1, ψ2, ψ3, · · ·ψN}
pairwise disjoint upto sets of measure zero, for any Q ∈ A and we observe that
for i 6= k

u(ψi ∩ ψk) = |Q|−1u(Q∗(ψi ∩ ψk)) = |Q|−1u(Qm(ψi) ∩Qm(ψk)) = 0,

by condition (i).
Next we consider conditions (i) and (ii) implies that {ψi,j,k : 1 ≤ i ≤ N, j ∈

A, k ∈ B} form an orthonormal basis for L2(G). We observe that ‖ψi,j,k‖2 = 1

for any j ∈ A and k ∈ B. Indeed we compute

‖ψi,j,k‖2
2 =

∫
Ĝ

∣∣∣ψ̂i,j,k(α)
∣∣∣2 dα = |Q|−1

∫
Ĝ

∣∣∣ψ̂i ((Q∗)−1α
)∣∣∣2 dα = u(ψi) = 1.

The system X(Ψ) collection of wavelet frames, let Θ ⊆ Ĝ be co-set represen-
tatives in Ĝ for Ŝ = Ĝ/S⊥ implies ii. Let {ψ1, ψ2, ψ3, · · ·ψN} is generator of
wavelet set, Q ∈ A, and {Ω1,Ω2,Ω3, . . . ,ΩN} be a measurable sub set of Ĝ
u(Qmψi) = |Q|u(ψi) = |Q| < ∞. Thus, there are countable numbers of ι ∈ Θ

such that u((ι+S⊥)∩ (Q∗ψi)) > 0. Let H =
⋃
Q∈AQ

∗ψi, which countably infinite
ι ∈ Θ such that u((ι+S⊥)∩H) > 0. Choose Θ are countably infinite, then there
are for all ι ∈ Θ such that u((ι + S⊥) ∩H) = 0. Let M = 1ι + S⊥ ∈ L2(Ĝ), then
for all j ∈ A, 1 ≤ i ≤ N and k ∈ G/S, we get 〈M,ψi,j,k〉 = 0, because ψi,j,k zero
of H. Therefore 1 = ‖M‖2

2 =
∑

1≤i≤N
∑

j∈A
∑

k∈B |〈M,ψi,j,k〉|2 = 0, and so that
for all i = {1, 2, 3, · · ·N}, Ψ = {ψ1, ψ2, · · ·ψN} is (τ,Θ)-congruence to S⊥ up to
set of zero measure. Finally, we show that conditions (i) and (ii) are initial con-
ditions for {Q∗ψi,j,k : Q ∈ A, 1 ≤ i ≤ N, j ∈ A, k ∈ B} design on Ĝ up to sets of
zero measure. By the properties (ii) implies that Q∗ψi rectangular shape Ĝ upto
set of Lebesgue nonzero measure, if (i,X), (k, Y ) ∈ {1, 2, 3, . . . , N} × ψi,j,k are
the distinct pairs, then 〈ψi,X,[0], ψi,Y,[0]〉 = 0 by orthogonality. where X, Y ∈ A.
Therefore,

u(Xmψi ∩ Y mψi) = 〈1XmΩi
, 1YmΩi

〉 = 〈ψi,X,[0], ψi,Y,[0]〉 = 0.

For each ψi is (τ,Θ)-congruence to S⊥, since u(ψi) = 1 <∞, there are countably
a many coset ι+S⊥ such that ψi∩(ι+S⊥) has the zero measure. Let {ιm : m ∈ Ii}
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be the set of some ι ∈ Θ. Let Um = Qm ∩ (ιm + S⊥) and V
′
m = Um − ιm + ι

′
0,

where ι
′

0 ∈ Θ ∩ S⊥. Clearly, {Um} is a partition of Qm and {U ′m} is a partition of
S⊥. This is complete the proof. �

Remark 3.1. If Um = U
′
m − ι

′
m + ιm, then Um ⊆ ιm + S⊥ is equivalent to U ′m ⊆

ι
′
m + S⊥. Thus, in the case U ′ = S⊥, we take ι′m = ι

′
0 for all m where ι′0 is the

unique element of Θ
⋂
S⊥. Clearly (τ,Θ) - congruence is an equivalence relation

and it preserves Haar measure.

3.3. Construction of wavelet functions. We establish an orthonormal wavelet
basis of L2(G). Given an multiresolution analysis {Ui}i∈N0 of closed subspace
of L2(G), we define wavelet spaces as the orthogonal complements of spaces
Ui in Ui+1. We Construct wavelet functions whose shifts form the basis in these
orthogonal complement spaces.

Definition 3.3. Let U = ⊕j∈A,k∈BUΦj,k
be a shift invariant subspace of L2(G),

where UΦj,k
= span{TlΦj,k : l ∈ kerEi} and Φj,k is a scaling equation of UΦj,k

. The
function TlΦj,k describe on Ĝ by Fourier transform

TlΦj,k =
∑

1≤i≤N

∑
j∈A

∑
k∈B

∣∣∣Φ̂j,kψ̂i,j,k

∣∣∣2(3.3)

is called the wavelet function of U .

Definition 3.4. Let G be an LCA group and set of all group automorphisms A of
A ⊂ Aut(G) with kerEi. We define operators ωiκ on L2(G), for i ∈ N0, j ∈ A

κ ∈ Ĝ, as follows

ω0
κ = h, ωiκh(z) =

2j

kerEi

∑
α∈kerEi

(
κ(α)h(z + α)

)
j(α).(3.4)

Proposition 3.1. Let {Ui}i∈N0 be an multiresolution analysis of L2(G) with scaling
sequence {Φj,k}j∈A,k∈B. The following are equivalent:

(i) The structure {TlΦj,k}l∈kerEi,j∈A,k∈B is orthonormal basis,
(ii) The structure {ni/2wiκΦj,k}κ∈D(Ei),j∈A,k∈B is orthonormal basis, where the

operators ωiκ are as in Definition (3.4) and n = |kerE|,
(iii) We get〈

ωiκΦj,k, ω
i
κΦj,k

〉
= n−i for all κ ∈ D(Ei) ⊆ Aut(G).(3.5)
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Proof. By Lemma 3.6. [3] we have

TlΦj,k =
∑

κ∈D(Ei)

∑
j∈A

∑
k∈B

ωiκ(TlΦj,k) =
∑

κ∈D(Ei)

∑
j∈A

∑
k∈B

κ(l)ωiκΦj,k.(3.6)

By the Plancherel formula and Eq. (3.3) for any h, g ∈ L2(G) we have〈
ωiκh, ω

i
κ′
g
〉〈
ω̂iκh, ω̂

i
κ′
g
〉

= 0, for κ 6= κ
′ ∈ D(Ei).(3.7)

Hence, for any l,m ∈ kerEi,〈
TlΦj,k, TmΦj,k

〉
=
〈 ∑
κ∈D(Ei)

∑
j∈A

∑
k∈B

κ(l)ωiκΦj,k,
∑

κ′∈D(Ei)

∑
j∈A

∑
k∈B

κ′(m)κ(m)ωi
κ′

Φj,k

〉
=

∑
κ∈D(Ei)

∑
j∈A

∑
k∈B

κ(l)κ(m)
〈
ωiκΦj,k, ω

i
κΦj,k

〉
.

(3.8)

From Theorem 3.4. [12], we have

∑
η∈D(Ei)

η(n− k) =

|kerEi|, for n = k,

0, otherwise.

This provides the needed equation (3.5) and hence, conflict can converse. �

Taken away now, we consider that {Φj,k}j∈A,k∈B is an orthonormal scaling
sequence. Particularly, Proposition (3.1) and Eq. (3.5) influence for all 1 ≤ i ≤
N . Recall that by Definition (3.4) we get

ωiκΦj,k =
∑

π,κ∈D(Ei)

∑
j∈A

∑
k∈B

µi+1

κ+Êiπ
ωi+1

κ+Êiπ
Φj+1,k+1,

where coefficient µiκ are defined as in Lemma 3.8. [3]. Then, by Proposition
(3.1) and Eq. (3.7) we have

n1−i =
〈
ωi−1
κ Φj−1,k−1, ω

i−1
κ Φj−1,k−1

〉
=
〈 ∑
π,κ∈D(Ei)

∑
j∈A

∑
k∈B

µi
κ+Êi−1π

ωi
κ+Êi−1π

Φj,k,

∑
π′ ,κ∈D(Ei)

∑
j∈A

∑
k∈B

µi
κ+Êi−1π′

ωi
κ+Êi−1π′

Φj,k

〉
=
∑
π,κ∈A

∣∣∣µi
κ+Êi−1π

∣∣∣2 〈ωi
κ+Êi−1π

Φi,k, ω
i
κ+Êi−1π

Φi,k

〉
,
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Thus, by Eq. (3.5) we get ∑
π,κ∈D(Ei)

∣∣∣µi
κ+Êi−1π

∣∣∣2 = n.(3.9)

Now in the present case, wavelet spaces and bases are obtained as our main
focus. Let the orthonormal scaling sequence {Φj,k} and Ui be an multiresolu-
tion analysis of L2(G). We concentrate to obtain wavelet functions ψρ, ρ =

1, 2, · · ·n− 1 in the space Ui+1 be an multiresolution analysis of L2(G) such that
the construction {Tγψρ}γ∈kerEi is orthogonal, orthonormal for various values of
ρ, and mutually orthogonal to the space Ui. To design similar functions and
scaling functions, we pursue the process illustrate below.

We rewrite D(E) = {π0, π1, · · · πn−1}, where π0 = 0 and πt ∈ A ⊂ Aut(G), t =

0, 1, · · ·n−1. We determine b0k = µκ+Êiπj
/
√
n, where κ ∈ D(Ei), j = 0, 1, · · ·n−

1. By Eq. (3.3), we get
∑n−1

j=0 |b0k|2 = 1. We develop this row to an n× n unitary
matrix B = {bn−1

ρ,j=0}. We set νρ,j
κ+Êiπj

=
√
nbρ,j for ρ = 1, 2 · · ·n−1, κ ∈ D(Ei), j =

0, · · ·n − 1. By Eq. (3.9), we get describe νρ,iχ for all χ ∈ D(Ei+1). Then we
develop this sequence to Ĝ by context νρ,iχ = νρ,iκ for χ ∈ (kerEi+1)⊥ + κ, η ∈
D(Ei+1). After that, we derive wavelet functions ψρi for ρ = 1, · · ·n− 1, in terms
of Fourier transform through the equation ψ̂i,ρ(χ) = νρ,iχ Φ̂i+1(χ) for χ ∈ Ĝ, and
the wavelet spaces by

ω
(ρ)
i = span{Tlψi,ρ,k : l ∈ kerEi, k ∈ B}.(3.10)

Theorem 3.2. Suppose {Ui}i∈N0 is a multiresolution analysis of L2(G) and an
orthonormal scaling sequence {Φj,k}j∈A,k∈B. Then, for every i ∈ N0 we have

Ui+1 = Ui ⊕ V (1)
i ⊕ · · · ⊕ V (n−1)

i ,

and an orthonormal basis of the system {Tlψi,ρ,k}l∈kerEi,k∈B of the space ω(ρ)
i for

ρ = 1, · · ·n − 1. In the act of Proposition (3.1) and Definition (3.3) the wavelet
structure

{Tlψi,ρ,k : l ∈ kerEi, i ∈ N0, k ∈ B, ρ = 1, · · ·n− 1},

well-organized with the regular function Φ0 ≡ 1 forms an orthonormal basis for
L2(G).
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Proof. For every settled κ ∈ D(Ei) and i ∈ N0, by Eq. 3.7, we have

ωiκΦj,k =
n−1∑
r=0

µi+1

κ+Êiπr
ωi+1

κ+Êiπr
Φj+1,k+1.(3.11)

Similarly, by Lemma 3.6. [3] and Proposition (3.1) we have

ωiκψi,ρ,k =
n−1∑
r=0

νρ,i
κ+Êiπr

ωi+1

κ+Êiπr
Φρ+1,k+1.(3.12)

In special case, for Eq. (3.11) implies that ψi,ρ,k ∈ Ui+1 and hence ω(ρ)
i ⊂ Ui+1

for all ρ = 1, · · ·n− 1.

We need that:

(i) ω(ρ)
i ⊥ Ui for all ρ = 1, · · ·n− 1

(ii) ω(ρ)
i ⊥ ω

(r)
i for all ρ 6= r, ρ, r = 1, · · ·n− 1.

For (i), first note that
∑n−1

r=0 α
ρ,i

κ+Êiπr
µi+1

κ+Êiπr
= 0 by the case that the matrix E

establish raised is orthogonal. Using Eq. (3.5), Eq. (3.7), Eq. (3.11) and Eq.
(3.12) we get〈
ωiκψi,ρ,k, ω

i
κΦρ,k

〉
=

〈 n−1∑
r=0

νρ,i
κ+Êiπr

ωi+1

κ+Êiπj
Φρ+1,k+1,

n−1∑
r′=0

µi+1

κ+Êiπ
r
′
ωi+1

κ+Êiπ
r
′
Φρ+1,k+1

〉

=
n−1∑
r=0

νρ,r
κ+Êiπr

µκ+Êiπr

〈
ωi+1

κ+Êiπ
r
′
Φρ+1,k+1, ω

i+1

κ+Êiπ
r
′
Φρ+1,k+1

〉
= 0.

Using Eq. (3.7), the first part of the theorem is proved. Besides, since E is
orthogonal, we get

n−1∑
r=0

νρ,i
κ+Êiπr

αr,i
κ+Êiπr

= nδρ,r for ρ, r = 1, · · ·n− 1.

Hence,

〈ωiκψi,ρ,k, ωiκψi,j,k〉

=
n−1∑
r=0

νρ,i
κ+Êiπr

νr,i
κ+Êiπr

〈ωi+1

κ+Êiπ
r
′
Φρ+1,k+1, ω

i+1

κ+Êiπ
r
′
Φi+1,k+1〉 = n−iδρ,r.

This proves the second part of the theorem. Furthermore, by Proposition (3.1)
{Tlψi,k,ρ}l∈kerEi,k∈[s] is an orthonormal basis of V (ρ)

i . Since dimUi = dimV
(ρ)
i = ni

and

Ui ⊕ V (1)
i ⊕ · · · ⊕ V (n−1)

i ⊂ Ui+1
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the dimension result suggest the equality in the above formation. �
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