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ABSTRACT. Think about the linear delay differential equation,

(1) y′(q) +

m∑
n=1

Pn(q)y(q − τn) = 0, q ≥ q0,

where Pn ∈ C([q0,∞), R) and τn ≥ 0 for n = 1, 2, . . . ,m. By investigating
the oscillatory solutions of the linear delay differential equations, we offer new
adequate condition for the asymptotic stability of the solutions of (1). We also
produce comparison result and stability of (1).

1. ESTABLISHMENT AND MAIN RESULTS

Here, we think about the Linear Delay Differential Equation

(2) y′(q) +
m∑
n=1

Pn(q)y(q − τn) = 0, q ≥ q0,

where Pn ∈ C([q0,∞), R) and τn ≥ 0 for n = 1, 2, . . . ,m.
We expect that the peruser knows about standard symbols and basic conse-

quences of Nevanlinna Theory [2].
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For a meromorphic function y(q), the order of q is defined by

ρ(y) = lim sup
r→∞

log T (r, y)

log r
.

and the hyper-order is characterized by,

ρ2(y) = lim sup
r→∞

log log T (r, y)

log r
.

Here T (r, y) is the Nevanlinna characteristic of y for all r outside a set of finite
logarithmic measure. Our point is to build up new adequate conditions for the
oscillation of all entire solutions of equation (1). A continuous differentiable
function characterized on [τ(T0),∞] for T0 ≥ q0 also fulfilling equation (1). For
q ≥ T0 is known as solution of equation (1), such an answer is called oscillatory
in the event that it has discretionary huge zeros. Else it is called non-oscillatory.

We except for the analysis of asymptotic conduct of the function

h(q) =
y(τ(q))

y(q)

that equation (1) has a solution y(q) which is positive for all enormous q.

Lemma 1.1 ( [4]). Assume that m > 0 and equation (1) has an gradually positive
solution y(q). Then m ≤ 1

2
and

λ1 ≤ lim
q→∞

inf h(q) ≤ λ2,

where λ1 is minor and λ2 is the major root of the equation λ = ebλ.

Lemma 1.2 ( [3]). Let g(z) be a non constant meromorphic function and c ∈ C.
If τ2(q) < 1 and ε > 0 then

m

(
r,
g(z + 1)

g(z)

)
= O

(
T (r, g)

r1−σ2(g)−ε

)

for all r outside of a set of finite logarithmic measure.
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2. OSCILLATORY PROPERTIES

In this part we will consider the oscillatory properties of equation (1).

Lemma 2.1. Let y(q) be an gradually positive entire solution of equation (1) and

0 < m ≤ 1

e
. Suppose that

(3)
m∑
n=1

lim
q→∞

inf

∫ q

τn(q)

Pn(s) exp
(
λ1

∫ τn(q)

τn(s)

Pn(v) dv
)
ds > 1− 1

γ
,

where γ ∈ [λ1, λ2] and λ1 is the minor and λ2 is the major root of λ = ebλ. Then

lim
q→∞

inf T
(
r,
y(τ(q))

y(q)

)
> γ.

Proof. Let q > q0 be sufficiently enormous so that τ(q) > q0. Integrating (1) from
τ(q) to q, we obtain

(4) y(τ(q)) = y(q) +
n∑

m=1

∫ q

τ(q)

Pn (s) y(s) ds.

Let us take 0 < λ < λ1. Then the function

(5) $(q) =
m∑
n=1

y(q) exp
(
λ

∫ q

q0

Pn(s) ds
)
, q ≥ q1,

is diminishing for suitable q1 ≥ q0 (cf [ [5], [6]]), Indeed by Lemma 1.1.

y(τ(q1))

y(q)
> λ,

for q ≥ q2, where q2 ≥ q1 is sufficiently large, and consequently,

0 = y′(q) +
m∑
n=1

Pn(q) y(q − τn) > y′(q) +
m∑
n=1

λPn(q) y(q − τn),
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which suggests $′(q) < 0 for q ≥ q2. Substituting (5) and (4), we derive for
q ≥ q2 that

y(τ(q)) = y(q) +
m∑
n=1

∫ q

τ(q)

Pn(s) y(s)ds

= y(q) +
m∑
n=1

∫ q

τ(q)

Pnϕ(τ(q))
m∑
n=1

exp(−λ)
∫ q

q0

Pn(s)ds

y(τ(q)) = y(q) +
m∑
n=1

ϕ(τ(q))

∫ q

τ(q)

Pn(s)
m∑
n=1

exp
(
− λ

∫ τn(s)

q0

Pn(v) dv
)
ds

≥ y(q) +
m∑
n=1

y(τ(q)) exp
(
λ

∫ τn(q)

q0

Pn(v) dv
)

∫ q

τn(q)

Pn(s)
m∑
n=1

exp
(
− λ

∫ τn(q)

q0

Pn(v)dv
)
ds

≥ y(q) +
m∑
n=1

y(τ(q))

∫ q

τn(q)

Pn(s) exp
(
λ

∫ τn(q)

τn(s)

Pn(v) dv
)
ds

0 ≥ y(q) +
m∑
n=1

y(τ(q))
[
− 1 +

∫ q

τn(q)

Pn(s) exp(λ

∫ τn(q)

τn(s)

Pn(u)du)ds
]
.

(6)

From (3) it follows that there exists a constant c with the end goal that c >

1− 1− ε
γ

, where 0 < ε < γ[c− (1− 1
γ
)] ≤ 1, and

(7)
m∑
n=1

lim
q→∞

inf

∫ q

τn(q)

Pn(s) exp(λ1

∫ τn(q)

τn(s)

Pn(v)dv)ds ≥ c ≥ 1− 1− ε
γ

.

Then, for λ sufficiently close to λ1, we get

m∑
n=1

∫ q

τn(q)

Pn(s) exp(λ

∫ τn(q)

τn(s)

Pn(v)dv)ds > 1− 1− ε
γ

, q ≥ q3,

where q3 ≥ q2 is sufficiently large. In the event that it isn’t accurate, at that point
for all 0 < λ < λ1 we have

m∑
n=1

lim
q→∞

inf

∫ q

τn(q)

Pn(s) exp(λ

∫ τn(q)

τn(s)

Pn(v)dv)ds ≤ 1− 1− ε
γ

< C.
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By letting λ→ λ1, the last inequality prompts
m∑
n=1

lim
q→∞

inf

∫ q

τn(q)

Pn(s) exp(λ1

∫ τn(q)

τn(s)

Pn(v)dv)ds < C.

We deduce from (1) and Lemma1.2 that

T (r, y(τ(q))) = T (r, y(q)) +
m∑
n=1

∫ q

τn(q)

Pn(s)T (r, y(s))ds

≤ m(r, y(τ(q))) +m(r,
y(q)

y(τ(q))
) +

m∑
n=1

∫ q

τn(q)

Pn(s)m(r,
y(q)

y(τ(q)
)

= m(r, y(τ(q))) + S(r, w).

Accordingly we acquire from (6),

0 > T (r, y(q))− 1− 1− ε
γ

T (r, y(τ(q))),

0 >
(
1− 1− ε

γ

)T (r, y(τ(q)))
T (r, y(q))

,

T
(
r,
y(τ(q))

y(q)

)
≥ γ

1− ε
>

(1− ε)γ
1− ε

= γ q ≥ q3.

Thus, we have

lim
q→∞

inf T
(
r,
y(τ(q))

y(q)

)
> γ.

This completes the proof. �

3. MAIN RESULTS

Theorem 3.1. Let 0 < m < 1
e
. Assume that

m∑
n=1

lim
q→∞

inf

∫ q

τn(q)

Pn(s) exp(λ1

∫ τn(q)

τn(s)

Pn(v)dv)ds ≤ 1− 1

λ2
.

Then all entire solutions of equations (1) oscillate.

Proof. Suppose that equation (1) ultimately has a positive solution y(q). It fol-
lows from Lemma 2.1 that

lim
q→∞

inf T

(
r,
y(τ(q1))

y(q)

)
λ2.

This repudiates the consequence of Lemma 2.1. �
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Theorem 3.2. Let 0 < m < 1
e
. Suppose that there exists β ∈ (λ1, λ2) such that

(8)
m∑
n=1

lim
q→∞

inf

∫ q

τn(q)

Pn(s) exp(λ1

∫ τn(q)

τn(s)

Pn(v)dv)ds ≤ 1− 1

β
,

(9)
m∑
n=1

lim
q→∞

inf

∫ q

τn(q)

Pn(s) exp(β

∫ τn(q)

τn(s)

Pn(v)dv)ds ≤ 1− 1

λ2
.

Then all the solutions of equation (1) oscillates.

Proof. Suppose that equation (1) eventually has a positive solutions y(q). By
Lemma 2.1, condition (8) says that

lim
q→∞

inf T (r,
y(τ(q1))

y(q)
) > β,

with regards to condition (9) also, rehashing the strategy as in verification of
Lemma 2.1, we get

lim
q→∞

inf T (r,
y(τ(q1))

y(q)
) > λ2.

This negates the aftereffect of Lemma 1.1. The proof is complete. �

Comparison result and stability: The following corollary about solutions of
(1) will be useful in this section.

Corollary 3.1. Let u(q) be a non oscillatory solution of (1). Set h(q) =
y(q)

u(q)
,

q ≥ T , where y(q) is entire solution of (1) and T ≥ q0 is such that u(q) 6= 0 for
q ≥ T . Then

h(q) =
m∑
n=1

Pn(q)
z(q − τn)
u(q)

[h(q)− h(q − τn)]q ≥ T,

with

T (r,
m∑
n=1

Pn(q)
u(q − τn)
u(q)

) ≤ S(r,
m∑
n=1

Pn(q)
u(q − τn)
u(q)

).

Proof.

h(q) =
1

u2(q)
[−u(q)

m∑
n=1

Pn(q)y(q − τn) + y(q)
m∑
n−1

Pn(q)u(q − τn)]

1

u2(q)

m∑
n=1

Pn(q)[
y(q)

u(q)
− y(q − τn)
u(q − τn)

]u(q)u(q − τn)
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m∑
n=1

Pn(q)
u(q − τn)
u(q)

[h(q)− h(q − τn)]

Let A1 = h(q), A2 = h(q)−h(q− τn). It is easy to see that A1 and A2 are of finite

order. So, A1 and A2 are two small functions of
∑m

n=1 Pn(q)
u(q − τn)
u(q)

, which

means that

T (r, A1) = T (r, A2) = S(r,
m∑
n=1

Pn(q)
u(q − τn)
u(q)

)

obviously,

T (r, g) = S(r,
m∑
n=1

Pn(q)
u(q − τn)
u(q)

).

We rewrite this as

(10) A1 =
m∑
n=1

Pn(q)
u(q − τn)
u(q)

A2.

Next, we show that A2 6= 0. Suppose A2 = 0 then

y(q) = −p(q)y(τ(q)),

which suggests 2T (r, y(q)) ≤ T (r, y(q)) + S(r, y) a contradiction. Then A2 6= 0.
Suppose A1 = 0 by using second fundamental theorem, we have

T

(
r,

m∑
n=1

Pn(q)
u(q − τn)
u(q)

)

≤ N

(
r,

m∑
n=1

Pn(q)
u(q − τn)
u(q)

)
+N

(
r,

1∑m
n=1 Pn(q)

u(q − τn)
u(q)

)

+N

(
r,

1∑m
n=1 Pn(q)

u(q − τn)
u(q)

− A1

A2

)
+ S

(
r,

m∑
n=1

Pn(q)
u(q − τn)
u(q)

)

≤ N

(
r,

1

A2

)
+ S

(
r,

m∑
n=1

Pn(q)
u(q − τn)
u(q)

)
= S

(
r,

m∑
n=1

Pn(q)
u(q − τn)
u(q)

)
,

which is a contradiction. So, A1 = 0, which implies h(q) = 0, a contradiction.
�
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