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A NOTE ON CHAOS THEORY
Kifah Y. Al-hami

ABSTRACT. In this short paper, I gave a collective overview of Chaos in different
dimensions and I believe that it would be of great help for projects related to
this area of research.

1. INTRODUCTION

Chaos theory focuses on the study of dynamic systems with a random state of
disorder. The mathematical theory’s basic concepts will be presented through a
simple analysis of exciting, dynamic systems in one-, two-, and three-dimensional
space. In the beginning, a discussion will be conducted on the interval maps
and observe that when maps are monotonic, their iterates behave in an orderly
fashion. However, in the quadratic maps, the iterates exhibit archetypal charac-
teristics of Chaos. Consequently, mapping in two dimensions presents a better
variety of chaotic regimes than in the interval. Chaos’s two main definitions:
a state of nature devoid of order or intense confusion associated with unpre-
dictability. The research paper will analyze one-, two- and three-dimensional
Chaos using interval maps and quadratic maps.
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Fig. 1. Graph of function with f' > 0.

FIGURE 1.

2. ONE-DIMENSIONAL CHAOS (INTERVAL MAPS)

The iterates of the interval maps denoted as function f : [ — I, where I =
[0,1] is the unit interval of the actual line providing a rich source of chaotic
behavior. Therefore, for any given point z, of I the iterates are f(x), f(f(x)) =
(), f(f*(x),..., f(f"(x)) = f*(x). Therefore, z being a fixed point, the
iterates stay at x. and when it strays from the point x but return after a minimum
of n > 1isiteration, x is defined as a periodic point of period n. the set of iterates
z, f(x),...., f""Y(z) is called the periodic orbit of the period n or n-cycle. In
order to analyze the theory in one dimension, we limit ourselves to smooth
maps. Smooth maps are functions having continuous derivatives of all orders.
In contrast to the Chaos, a consideration is done using monotonic interval maps.
Monotonic interval maps are functions f : I — I, and the derivative f’ does not
vanish.

Figure 1 above illustrates an interval map with a positive derivative. The
points at which y = f(z) intersect y = z are the fixed points of f. To locate
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Fig. 3. fiforx = .5, .8 and .9.
Fig. 2. Graph of function with f* < 0.
FIGURE 2.

f(z) a vertical line is drawn through z, until it hits the graph at p followed
by a horizontal line through p until it intersects y = x at ¢q. At that point, the
x coordinate of g is f(xy). Repeat of the process leads to the tracing of orbit
zo, T1 = f(20), T2 = f*(x0). It can be verified from Fig 1 that (") and z®
are attractors while () is a repeller. Alternatively, .J attracts nearby points to
the left and repels nearby points to the right. From research, it is evident that
the only possible invariants sets are composed of fixed points. Therefore, the
iterates behave in an orderly way; thus, no chaos exists. Likewise, decreasing the
interval maps does not create Chaos either. Besides, attractors are characterized
by | f’| < 1 while repellers |f| > 1, which is a general rule. Therefore, monotonic
interval maps do not create Chaos. To create Chaos, a family of interval maps
that are simple but create Chaos is derived from the formula below: f\(z) =
4 \z(1 — z), under the condition 0 < A < 1. This equation has been researched
exclusively by a host of mathematicians. The research presented two graphs for
cases A = .5, A = .8, and \ = .9. as below;

From the graphs, the function f) achieves a maximum value at = = .5 shown
when solving f{ = 0. The behavior of the three cases differs significantly.
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Fig. 5. Construction of a Cantor set.

Fig. 6. The horseshoe.

FIGURE 3.
%f= — 10x + 10y,
%= -y + 200z - az,
33;= - 8z + xy.

3. TWO AND THREE-DIMENSIONAL CHAOS

For two-dimensional Chaos, the focus is on a disk D, a subset of a plane
consisting of all points inside a circle. In this case, we are looking at disk maps
which gives a richer vein of chaotic behavior. The Focus area is the horseshoe
described by merely specifying the image f(D) under the map f. the disk is
divide into pieces A, (), and B, as shown in the figure below. The map has a
strange invariant set with iterates jumping around wildly (see [1]). The peculiar
invariant set is a product of cantos set that can denote f~! as the inverse of f
and f~" be the n-fold composition of f~! with itself. The set of points common
to all the sets is an invariant set making it quite strange.

For three-dimensional Chaos, several differential equations with chaotic solu-
tions can be obtained. One of the equations is the Lorenz equation which is in
the first-order differential equation of the form below;

The equation was derived from Lorenz’s simple metrological model and gen-
erated from observation of erratic behavior in computer solution, thus under-
standing the chaotic nature of solutions. Analysis of the Lorenz equations is
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difficult to undertake, but there are some interesting properties of the equation.
The equation is non-linear, which points out that linear equations cannot ex-
hibit Chaos. This can be verified by looking at differential equations. For Lorenz
equation, three stationary point: (z,y,z) = (0,0,0), ~ (.015,.015,.000084),
~ (199.97,199.97,14995.5). Therefore, each solution of the equation starts in
the set, stays in the set for all time. Interestingly, the equation has two strange
attractors that behave like two solar systems. The solution curves also act like
trajectories of comets. In the system, if the comets are drawn too close to the
system, they get sucked in. if not, they oscillate back and forth between the two
systems in a chaotic way. The shape of the Lorenz attractor, when plotted, re-
sembles a butterfly. Lorenz equation is a three-dimensional equation that allows
for partial differentiation. However, when looking at chaos theory, the multi-
dimensional approaches to differentiation to understand the different behaviors
at the distant point are integral for understanding particle movement.

4. CONCLUSION

The chaos theory is derived from differential equations that do not have a
linear outcome in the solution. It is the study of the deterministic difference
equations displaying sensitivity that depends on the initial condition in a way
that generates time paths that are random in look. Therefore, it is concerned
with unpredictable courses of events. It may involve non-linear and complex
linear equations. The Lorenz famous butterfly effect best illustrates it. Chaos can
be deterministic and have a prediction form of a model. From the analysis done
by various mathematicians, it is evident that chaos theory can be presented in
non-linear equations, with long-term prediction being futile. The random nature
of the outcomes makes predictions difficult. Chaos theory shows a challenge in
determining position and effects as such predictions can be done at a point 2 and
not at the different outcomes. Therefore, chaos theory has many approaches to
problem-solving and understanding the paths and patterns in fluid and particle
movements. It is a mathematical approach to understanding predictability in
non-linear situations.
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