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FOURTH DIMENSION SUBGROUP FOR SOME 2-GROUPS

Shalini Gupta1 and Jasbir Kaur

ABSTRACT. The objective of this paper to discuss conditions on a finite 2-group
G of class 3 for which fourth dimension subgroup is trivial.

1. INTRODUCTION

Let G be a finite group and ZG be its integral group ring. Let ∆(G) be the
augmentation ideal of group ring ZG. Dimension subgroup conjecture states
that Dn(G) = γn(G) for all n ≥ 1 and for all groups G, where Dn(G) is the
dimension subgroup of G defined by Dn(G) = G ∩ {1 + ∆n(G)} and γn(G) is
the nth term of the lower central series of G. It has been proved that dimension
subgroup conjecture holds in general for n ≤ 3, (see [1], [2]). G. Higman
[2] reduced the problem to p-groups by proving that if dimension subgroup
conjecture is false, then there exist a p-group for which it is false. It has been
proved in [2, 5] that the exponent of D4(G)/γ4(G) is 2 and for a p-group G, p
odd prime, D4(G) = γ4(G). In [3], Rips gave a counterexample of a 2-group
G for which D4(G) 6= γ4(G). In [6], Tahara gave some conditions on a finite
2-group G for which D4(G) = γ4(G).
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In this paper, we will find some more conditions on a finite 2-group G for
which D4(G) = γ4(G).

2. PRELIMINARIES

Let G be a finite group of class 3, i.e., γ4(G) = {e}. Since G/γ2(G) and
γ2(G)/γ3(G) are abelian. Write

G/γ2(G) = C11 ⊕ C12 ⊕ · · · ⊕ C1s,

where C1i is a cyclic group of order d(i) generated by x̄1i, 1 ≤ i ≤ s, and
d(1)|d(2)| . . . |d(s) and

γ2(G)/γ3(G) = D21 ⊕D22 ⊕ · · · ⊕D2t,

where D2k is a cyclic group of order e(k) generated by x̄2k, 1 ≤ k ≤ t, and
e(1)|e(2)| . . . |e(t). Since xd(i)1i ∈ γ2(G) and xe(k)2k ∈ γ3(G), write

x
d(i)
1i = xbi121 x

bi2
22 . . . x

bit
2t x3i, x3i ∈ γ3(G), 1 ≤ i ≤ s.(2.1)

With the above notations, we now recall the structure of fourth dimension
subgroup given by Tahara.

Theorem 2.1. ( [5, THEOREM 8]). D4(G) is equal to the subgroup generated by
the elements ∏

1≤i<j≤s

[x1i
d(i), x1j]

uij
d(j)
d(i) ,

where uij are integers satisfying the following conditions:

(2.2) uij

(
d(j)

2

)
≡ 0(mod d(i)), 1 ≤ i < j ≤ s;

(2.3)
∑
1≤h<i

uhi
d(i)

d(h)
bhk −

∑
i<j≤s

uijbjk ≡ 0(mod (d(i), e(k))), 1 ≤ i ≤ s, 1 ≤ k ≤ t.
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3. RESULTS

It is well known that, if G/γ2(G) is direct sum of at most 3 cyclic groups,
then D4(G) = γ4(G). If G/γ2(G) is direct sum of n cyclic groups then following
theorems give conditions on a finite group G, under which D4(G) = γ4(G).

Theorem 3.1. [2, 4] Let G be a finite 2-group and G/γ2(G) is direct sum of n
cyclic groups each of order 2, then D4(G) = γ4(G).

Theorem 3.2. [2,4] LetG be a finite 2-group andG/γ2(G) ∼= C11⊕C12⊕· · ·⊕C1n,
where C1i, 1 ≤ i ≤ n, is a cyclic group of order d(i), with d(1) = d(2) = · · · =

d(n− 2) = d(n− 1) = 2, d(n) ≥ 4. Then D4(G) = γ4(G).

Theorem 3.2 has been proved in [2,4] using cohomology groups and polyno-
mial maps. We will give the alternative proof of Theorem 3.2 using structure of
D4(G).

Proof. It is enough to prove the result for a group G of class 3. It follows from
Theorem 2.1 that any element g of D4(G) is of the form

g =
∏

1≤i<j≤n

[x
d(i)
1i , x1j]

uij
d(j)
d(i)

=
∏

1≤i<j≤n−1

[x
d(i)
1i , x1j]

uij
d(j)
d(i)
∏
i<n

[x
d(i)
1i , x1n]

uin
d(n)
d(i) ,(3.1)

where uij are integers satisfying conditions given in Theorem 2.1.
Since d(i) = d(j) = 2, 1 ≤ i ≤ n − 1, thus (2.2) gives that uij ≡ (mod d(i)),

i.e., uij = d(j)m for some integer m. Consider∏
1≤i<j≤n−1

[x
d(i)
1i , x1j]

uij
d(j)
d(i) =

∏
1≤i<j≤n−1

[x
d(i)
1i , x1j]

uij

[d(i) = d(j), 1 ≤ i < j ≤ n− 1]

=
∏

1≤i<j≤n−1

[x
d(i)
1i , x1j]

d(j)m

=
∏

1≤i<j≤n−1

[x
d(i)
1i , x

d(j)
1j ]

m
[x

d(i)
1i , x1j, x1j]

−(d(j)
2 )m

= {e},(3.2)

because [x
d(i)
1i , x

d(j)
1j ] ∈ [γ2(G), γ2(G)] ⊆ γ4(G) = {e} and [x

d(i)
1i , x1j, x1j] ∈ γ4(G) =

{e}.
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Finally consider,

∏
i<n

[x
d(i)
1i , x1n]

uin
d(n)
d(i) =

∏
i<n

∏
1≤k≤t

[xbik2k , x1n]
uin

d(n)
d(i) [using (2.1)]

=
∏
i<n

∏
1≤k≤t

[x2k, x1n]uin
d(n)
d(i)

bik
∏
i<n

∏
1≤k≤t

[x2k, x1n, x2k]uin
d(n)
d(i) (bik

2 )

=
∏

1≤k≤t

[x2k, x1n]
∑

i<n uin
d(n)
d(i)

bik .

For i = n condition (2.3) becomes,
∑

i<n uin
d(n)
d(i)

bik = d(n)a + e(k)b, for some
integers a and b. Thus,

∏
i<n

[x
d(i)
1i , x1n]

uin
d(n)
d(i) =

∏
1≤k≤t

[x2k, x1n]d(n)a+e(k)b

=
∏

1≤k≤t

[x2k, x1n]d(n)a
∏

1≤k≤t

[x2k, x1n]e(k)b

=
∏

1≤k≤t

[x2k, x
d(n)
1n ]

a ∏
1≤k≤t

[x
e(k)
2k , x1n]

b

= {e}.(3.3)

From (3.1), (3.2) and (3.3). we get that g = {e}. Hence D4(G) = γ4(G). �

In continuation of above results, we will prove following results.

Theorem 3.3. Let G be a finite 2-group and G/γ2(G) ∼= C11 ⊕ C12 ⊕ · · · ⊕ C1n,
where C1i =< x̄1i >, 1 ≤ i ≤ n, is a cyclic group of order d(i), with d(1) = d(2) =

· · · = d(n− 2) = 2. If [x1n−1, x1n] = {e}, then D4(G) = γ4(G).

Proof. It is enough to prove the result for a group G of class 3. It follows from
Theorem 2.1 that any element g of D4(G) is of the form
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g =
∏

1≤i<j≤n

[x
d(i)
1i , x1j]

uij
d(j)
d(i)

=
∏

1≤i<j≤n−2

[x
d(i)
1i , x1j]

uij
d(j)
d(i) .

∏
i<n−1

[x
d(i)
1i , x1n−1]

uin−1
d(n−1)
d(i)

∏
i<n

[x
d(i)
1i , x1n]

uin
d(n)
d(i)

=
∏

1≤i<j≤n−2

[x
d(i)
1i , x1j]

uij

.
∏

i<n−1

[x
d(i)
1i , x1n−1]

uin−1
d(n−1)
d(i)

∏
i<n

[x
d(i)
1i , x1n]

uin
d(n)
d(i)

= A.B.C. (say),

(3.4)

where uij are integers satisfying conditions given in Theorem 2.1.
It can be easily seen that

(3.5) A = {e}.

Now consider

B =
∏

i<n−1

[x
d(i)
1i , x1n−1]

uin−1
d(n−1)
d(i) =

∏
i<n−1

∏
1≤k≤t

[xbik2k , x1n−1]
uin−1

d(n−1)
d(i)

=
∏

i<n−1

∏
1≤k≤t

[x2k, x1n−1]
uin−1

d(n−1)
d(i)

bik

=
∏

1≤k≤t

[x2k, x1n−1]
∑

i<n−1 uin−1
d(n−1)
d(i)

bik .

For i = n− 1 condition (2.3) becomes,
∑

i<n−1 uin−1
d(n−1)
d(i)

bik − un−1nbnk = d(n−
1)a+ e(k)b, for some integers a and b. Thus

B =
∏

1≤k≤t

[x2k, x1n−1]
un−1nbnk+d(n−1)a+e(k)b

= [
∏

1≤k≤t

xbnk
2k , x1n−1]

un−1n
∏

1≤k≤t

[x2k, x1n−1]
d(n−1)a

∏
1≤k≤t

[x2k, x1n−1]
e(k)b

= [x
d(n)
1n , x1n−1]

un−1n
∏

1≤k≤t

[x2k, x
d(n−1)
1n−1 ]

a
[x2k, x1n−1, x1n−1]

−a(d(n−1)
2 )

∏
1≤k≤t

[x
e(k)
2k , x1n−1]

b
[using (2.1)]

= [x
d(n)
1n , x1n−1]

un−1n = {e} [using given assumption](3.6)
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Finally consider,

C =
∏
i<n

[x
d(i)
1i , x1n]

uin
d(n)
d(i) =

∏
i<n

∏
1≤k≤t

[xbik2k , x1n]
uin

d(n)
d(i)

=
∏
i<n

∏
1≤k≤t

[x2k, x1n]uin
d(n)
d(i)

bik

=
∏

1≤k≤t

[x2k, x1n]
∑

i<n uin
d(n)
d(i)

bik

For i = n condition (2.3) becomes,
∑

i<n uin
d(n)
d(i)

bik = d(n)a + e(k)b, for some
integers a and b. Thus,

C =
∏

1≤k≤t

[x2k, x1n]d(n)a+e(k)b

=
∏

1≤k≤t

[x2k, x1n]d(n)a
∏

1≤k≤t

[x2k, x1n]e(k)b

=
∏

1≤k≤t

[x2k, x
d(n)
1n ]

a ∏
1≤k≤t

[x
e(k)
2k , x1n]

b

= {e}.(3.7)

From (3.5), (3.6) and (3.7), we get that, D4(G) = γ4(G) = {e}. �

Theorem 3.4. Let G be a finite 2-group and G/γ2(G) ∼= C11 ⊕ C12 ⊕ · · · ⊕ C1n,
where C1i =< x̄1i >, 1 ≤ i ≤ n, is a cyclic group of order d(i), with d(1) = d(2) =

· · · = d(n− 3) = 2. If [x1i, x1j] = {e}, n− 2 ≤ i < j ≤ n, then D4(G) = γ4(G).

Proof. Let us assume that G is a finite group of class 3. Thus any element g of
D4(G) is of the form,

g =
∏

1≤i<j≤n

[x
d(i)
1i , x1j]

uij
d(j)
d(i)

=
∏

1≤i<j≤n−3

[x
d(i)
1i , x1j]

uij
d(j)
d(i)

∏
i<n−2

[x
d(i)
1i , x1n−2]

uin−2
d(n−2)
d(i)

∏
i<n−1

[x
d(i)
1i , x1n−1]

uin−1
d(n−1)
d(i)

∏
i<n

[x
d(i)
1i , x1n]

uin
d(n)
d(i)
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=
∏

1≤i<j≤n−3

[x
d(i)
1i , x1j]

uij
∏

i<n−2

[x
d(i)
1i , x1n−2]

uin−2
d(n−2)
d(i)

∏
i<n−1

[x
d(i)
1i , x1n−1]

uin−1
d(n−1)
d(i)

∏
i<n

[x
d(i)
1i , x1n]

uin
d(n)
d(i)

= A.B.C.D (say),

where uij are integers satisfying conditions given in Theorem 2.1.
It can be seen easily that that, A = {e}. For i = n−2 condition (2.3) becomes,∑
i<n−2 uin−2

d(n−2)
d(i)

bik − un−2 n−1bn−1k − un−2nbnk = d(n − 2)a + e(k)b, for some
integers a and b. Thus

B =
∏

i<n−2

[x
d(i)
1i , x1n−2]

uin−2
d(n−2)
d(i)

=
∏

1≤k≤t

[x2k, x1n−2]
∑

i<n−2 uin−2
d(n−2)
d(i)

bik

=
∏

1≤k≤t

[x2k, x1n−2]
un−2 n−1bn−1k+un−2nbnk+d(n−2)a+e(k)b

=
∏

1≤k≤t

[x
d(n−1)
1n−1 , x1n−2]

un−2 n−1
∏

1≤k≤t

[x
d(n)
1n , x1n−2]

un−2n

∏
1≤k≤t

[x2k, x
d(n−2)
1n−2 ]

a ∏
1≤k≤t

[x
e(k)
2k , x

d(n−2)
1n−2 ]

b
.

Thus by using given condition, i.e., [x1i, x1j] = {e}, n − 2 ≤ i < j ≤ n, we get
that

B = {e}.

For i = n− 1 condition (2.3) becomes,
∑

i<n−1 uin−1
d(n−1)
d(i)

bik − un−1nbnk = d(n−
1)a+ e(k)b, for some integers a and b. Thus

C =
∏

i<n−1

[x
d(i)
1i , x1n−1]

uin−1
d(n−1)
d(i)

=
∏

1≤k≤t

[x2k, x1n−1]
∑

i<n−1 uin−1
d(n−1)
d(i)

bik
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=
∏

1≤k≤t

[x2k, x1n−1]
un−1nbnk+d(n−1)a+e(k)b

= [
∏

1≤k≤t

xbnk
2k , x1n−1]

un−1n
∏

1≤k≤t

[x2k, x1n−1]
d(n−1)a

∏
1≤k≤t

[x2k, x1n−1]
e(k)b

= [x
d(n)
1n , x1n−1]

un−1n
∏

1≤k≤t

[x2k, x
d(n−1)
1n−1 ]

a ∏
1≤k≤t

[x
e(k)
2k , x1n−1]

b

= [x
d(n)
1n , x1n−1]

un−1n = {e} as [x1n, x1n−1] = {e}.

Similarly, it can be shown that, D = {e}. Hence D4(G) = {e}. �

In a similar way, the following theorem which is generalization of the Theo-
rem 3.3 and 3.4 can be proved.

Theorem 3.5. Let G be a finite 2-group and G/γ2(G) ∼= C11 ⊕ C12 ⊕ · · · ⊕ C1n,
where C1i =< x̄1i >, 1 ≤ i ≤ n, is a cyclic group of order d(i), with d(1) = d(2) =

· · · = d(n − k) = 2, 1 ≤ k ≤ n. If [x1i, x1j] = {e}, n − k + 1 ≤ i < j ≤ n, then
D4(G) = γ4(G).

Note: It can be seen easily that Theorem 3.1 and 3.2 are particular cases of
Theorem 3.5.
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