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ON MOSTAR INDEX OF GRAPHS

P. Kandan1,2 and S. Subramanian2

ABSTRACT. On the great success of bond-additive topological indices like Szeged,
Padmakar-Ivan, Zagreb, and irregularity measures, yet another index, the Mostar
index, has been introduced recently as a peripherality measure in molecular
graphs and networks. For a connected graph G, the Mostar index is defined as

Mo(G) =
∑

e=ghεE(G)

C(gh),

where C(gh) = |ng(e)− nh(e)| be the contribution of edge uv and ng(e) de-
notes the number of vertices of G lying closer to vertex g than to vertex h (nh(e)

define similarly). In this paper, we prove a general form of the results obtained
by Došlić et al. [18] for compute the Mostar index to the Cartesian product
of two simple connected graph. Using this result, we have derived the Carte-
sian product of paths, cycles, complete bipartite graphs, complete graphs and
to some molecular graphs.

1. INTRODUCTION

In chemical graph theory, the vertices of a molecular graph G represent the
atoms and edges represent the bonds. The shape derived from a chemical com-
pound is often called its molecular graph. Research in mathematical chemistry
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gives a special attention to capturing the essence of molecular graph and hence,
one sometimes wants to associate a unique quantitative value to each chem-
ical compound. One such a characterization in mathematical chemistry is to
study the structural invariants of chemical structure, called topological indices
or molecular descriptors. An extremely large amount of new topological in-
dices has been introduced and applied for quantitative structure activity rela-
tionship(QSAR) and quantitative structure property relationship(QSPR) studies
focusing on structure-dependent chemical behavior of molecules. A topological
index is a numerical value associated with chemical constitution for correla-
tion of chemical structure with various physical properties, chemical reactivity
or biological activity(e.g., boiling point and melting point). Most of the existing
topological indices is mainly based on distances and degree of the given molecu-
lar graphs. One of the oldest topological index is Wiener index [19], introduced
in 1947, with many chemical applications and mathematical properties and is
probably the most studied index from both theoretical and practical points of
view (refer [17])belongs to the distance based index, as well as Harary index,
total eccentricity index and Balaban index are the few more distance base in-
dices. Zagerb index, Randić index are some of the well studied degree-based
indices. Another type of indices called bond-additive indices that measures pe-
ripherality of individual bonds (i.e., edges). An edge is peripheral if there are
many more vertices closer to one of its end-vertices than to the other one. Sum
of the contributions of all edges and produces a global measure of peripherality
of a given graph. One such a bond-additive indices has been recently introduced
during a small workshop held at the city of Mostar called Mostar index [18]. In
the same article, a simple cut method for computing the Mostar index of ben-
zenoid systems was presented. Moreover, extremal trees and unicyclic graphs
were studied. Later, the extremal values of the Mostar index were characterized
for bicyclic graphs in reference [1]. Arockiaraj et al. [2] introduce edge-Mostar
and total-Mostar indices and obtained these indices for the family of coronoid
and carbon nanocone structures. Hayata and Zhoua [7] obtained the n-vertex
cacti with the largest Mostar index, and gave a sharp upper bound of the Mostar
index for cacti of order n with k cycles. Furthermore, in [5] discussed the Mostar
index interms of automorphism of graph and determine for the class of patch
fullerence.
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Graph operations play an important role in chemical graph theory. Different
molecular graphs can be obtained by applying graph operations on some general
or particular graphs. Hence it is important to study the various graph operations
in order to understand how it is related to the corresponding topological indices
of the original graphs. There are several other results regarding various topo-
logical indices under different graph operations are available in the literature.
One of the chemically interseting graph operation is Cartesian product. The lin-
ear polynomial chain, nanotube, nanotorus are some of the molecular graphs
obtained using Cartesian product. Main aim of this article is to completely settle
the exact value of Mostar index to the Cartesian product of any simple connected
graphs, which is the general form of the Mostar index to the Cartesian product
of partial cubes obtained by Došlić et al. in [18]. Using this result we obtained
here to the Cartesian product of paths, cycles, complete graph, complete bipar-
tite graph and some molecular structure like cubic carbon and polyacene.

2. PRELIMINARIES

All graphs considered in this paper are simple that is, no loop and multiple
edge and connected that is there is a link between any pair of vertices in a graph.
A graph G is a pair G = (V (G), E(G)) consisting of a finite set V (G) of vertices
and E(G) is a set of pairs of elements in V (G). Let V (G) = {g1, g2, . . . , gn} be the
vertex of G and E(G) = {gigj| gi, gj ∈ V (G)} be an edge set of G. The degree
of a vertex gi in a graph G is the number of its neighbours and is denoted by
dG(gi).The distance between the vertices gj and gk is the length of the shortest
path joining gj and gk and is denoted by dG(gj, gk). The complete graph, the
path, the cycle the complete equi-partite, and the tree on g vertices are denoted
by Kg, Pg, Cg, Kg,g and Tg respectively.

A vertex x ∈ V (G) is said to be equidistant from the edge e = gh of G, if
dG(g, x) = dG(h, x). For an edge e = (g, h) ∈ E(G), the number of vertices in
G whose distance to the vertex g is smaller than the distance to vertex h in G

is denoted by nG(g, e) = ng(e) and nG(h, e) = nh(e) is the number of vertices
in G whose distance to the vertex h in G is smaller than to the vertex g; the
vertices equidistant form both end point of the edge e = (g, h) are not counted.
To expect that interaction of two constitute element will be affected by their
distance in the graph.The properties of whole graphs by summing contributions
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of individual vertcies and edges are called vertex - and bond - additive indices
respectively [8,13].

3. MOSTAR INDEX OF CARTESIAN PRODUCT

For term and concept not define here we refer the reader to any of classical
on graph theory. The wiener index of a graph G is defined as the sum of all
distance between pair of vertices of G, then now

W (G) =
∑

g,h∈V (G)

dG(g, h),

where dG(g, h) denotes the usual shortest path distance in G. It was introduced
by G Harold Wiener in order to calculate the boiling points of translucent until
known it has found various applications chemistry and network theory. For ev-
ery tree T the wiener index can be computed as the sum of edge contributions
more precisely

W (T ) =
∑

e=gh∈E(T )

ng(e)nh(e).

There are many ways to define meaningful edge contributions, and there are
many bond-additive indices, among the best known is, the szeged index intro-
duced by, Gutman in 1994 [6] defined as

Sz(G) =
∑

e=gh∈E(G)

ng(e)nh(e)

which possesses many interesting applications in chemistry and network the-
ory, and that for any tree T it holds W (T ) = Sz(T ). Motivated by the suc-
cess of the Szeged index, some variations were also introduced laterly, one
of the interesting descriptor is the Padmakar-Ivan index [11, 12] defined by
PI(G) =

∑
e=gh∈E(G)

[ng(e) + nh(e)].

g Very recently, another intresting bond-additive topological index, named as
the Mostar index, has been introduced [18].

Definition 3.1. Mostar Index: For any connected graph G, the Mostar index of G,
denoted as Mo(G), is defined as as the sum of absolute differences between ng(e)
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and nh(e) over all edges e = gh of G. In short a Mostar index of G is

Mo(G) =
∑

e=ghεE(G)

|ng(e)− nh(e)| .

The absolute difference |ng(e)− nh(e)| will be called the contribution of edge e = gh

and denoted by C(gh), so as the Mostar index equivalently expressed as a

Mo(G) =
∑

e=gh∈E(G)

C(gh).

Graph operation play an important role in studied of graph decomposition
into isomorphic sub graph. It is well known that many graphs arise from simple
graphs via various graph operation and one can study the properties of smaller
graphs and deriving with it some information about larger graphs, Hence it
is important to understand how certain invariant of such product graphs are
related to corresponding invariant of the original graphs. The Cartesian product
is an important method to construct a bigger graph and plays an important role
in the design and analysis of networks [20]. Throughout the paper we will use
the following notation.

For a connected graph G,H, let the vertex set of G is V (G) = {g1, g2, g3, . . . , gn}
and the vertex set of H is V (H) = {h1, h2, h3, . . . , hm}.

Definition 3.2. Cartesian Product: Cartesian product of G and H is a graph,
denoted byG�H,with the vertex set V (G�H) = {(gi, hr)|gi ∈ V (G), hr ∈ V (H)}
and any two vertices(gi, hr) (gj, hs) are adjacent in G�H if and only if gi = gj and
hrhs ∈ E(H) or gigj ∈ E(G) and hr = hs.

For our convenience, we partition the edge set of G�H into two set E1 =

{(gj, hl), (gj, hm)|gj ∈ V (G), hlhm) ∈ E(H)} and E2 = {(gj, hl)(gk, hl)|gjgk ∈
E(G), hl ∈ V (H)}, that is E1 denoted the edges of the copies of H corresponding
to the vertices of G and E2 denotes the edges of the copies of G to the vertices
of H.

Clearly the above definition yield the lemma stated below.

Lemma 3.1. Let G and H be graphs. Then we have:

(i) |V (G�H)| = |V (G)||V (H)|, |E(G�H) = |E(G)||V (H)|+ |E(H)||V (G)|.
(ii) If (gi, hl) and (gj, hm) are vertices of G�H, then dG�H [(gi, hl), (gj, hm)] =

dG(gi, gj) + dH(hl, hm).
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(iii) dG�H [gi, hl)] = dG(gi) + dH(hl).
(iv) G�Hcis connected if and only if G and H are connected.
(v) The Cartesian product is commutative and associative.

For an edge e = gigj ∈ E(G), let TG(e; gi) be the set of vertices closer to gi than
gj and TG(e; gj) be the set of vertices closer to gj than gi. That is TG(e; gi) = [gl ∈
V (G)|dG(gi, gl) < dG(gj, gl)] and let TG(e; gj) = [gl ∈ V (H)|dG(gj, gl) < dG(gi, gl)]

respectively [9,16].

As a consequence of the main theorem obtained in [9], we have observe the
following as a lemma which is applied in our main result:

Lemma 3.2. Let G and H be graphs. Then for any edge e in the edge partition E1,
E2 of G�H as defined above, we have

nG�H((gr, hi), e) = |V (G)|nH(hi, e),

nG�H((gr, hk), e) = |V (G)|nH(hk, e),
nG�H((gi, hl), e) = |V (H)|nG(gi, e),

nG�H((gk, hl), e) = |V (H)|nG(gk, e),
respectively.

For convenience we introduce the following notation. Let |V (G)| = V|G| and
|V (H)| = V|H| denote the number of vertices in G and H respectively. To the
continuation of the above discussion, now we move to the main results of this
section by obtaining the Mostar index to the Cartesian product of two graphs.

Theorem 3.1. Let G and H be two connected graphs. Then we have Mo(G�H) =

V 2
|H|Mo(G)+V 2

|G|Mo(H) where V|G|, V|H| be the order of vertex set of the graph G,H,
respectively.

Proof. Let |V (G)| = V|G| and |V (H)| = V|H| be the number of vertices in G and
H respectively. Assume that the edge set of G�H is partitioned into E1 and E2

as defined early. Then by the definition of Mostar index of graph G�H, we have

Mo(G�H) =
∑

xy=e′=E(G�H)

C(gh) =
∑

xy=e′=E(G�H)

|nG�H(x, e′)− nG�H(y, e′)| .
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By applying the above lemma [3.1] and [3.2], we have

Mo(G�H) =
∑

e′=(gr,hi)(gr,hk)εE1

|nG�H((gr, hi), e
′)− nG�H((gr, hk), e

′)|

+
∑

e′=(gi,hl)(gk,hl)εE2

|nG�H [(gi, hl), e
′]− nG�H((gk, hl), e

′)|

=
∑

e=(hi,hk)εE1

∣∣V|G|nH(hi, e)− V|G|nH(hk, e)
∣∣

V +
∑

e=(gi,gk)εE2

∣∣V|H|nG(gi, e)− V|H|nG(gk, e)
∣∣

= V|G|
∑

e=(hi,hk)=E1

|nH(hi, e)− nH(hke)|

+ V|H|
∑

e=(gi,gk)=E2

|nG(gi, e)− nG(gk, e)|

= V|G|V|G|Mo(H) + V|H|V|H|Mo(G)

= V 2
|G|Mo(H) + V 2

|H|Mo(G).

This completes the proof. �

It is easy to observe from the refrence [18], the Mostar index of path is

Mo(Pg) =


(g − 1)2

2
: if gis odd,

g(g − 2)

2
: if gis even.

The proof of the following corollaries are directly follows from the main Theo-
rem 3.1.

Corollary 3.1. Let Pg and Ph be a path on g and h vertices respectively, then

Mo(Pg�Ph) =


gh

2
(2gh− g − h) : if g and h is even,

g2 + h2

2
+ gh(gh + g + h) : if g and h is odd,

(h(h− g2))

2
+ gh2(g − 1 : if g is odd,h is even.

A graph G is said to be a vertex transitive if for every pairgi, gj ∈ V there
exists an automorphism f that maps gi to gj.
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Corollary 3.2. [10] For a graph G,H and if H is a vertex transitive, then Mo(G�H) =

V 2
|H|Mo(G).

Proof. Given that H is a vertex transitive graph then its Mostar index Mo(H) = 0

[18]. So by the Theorem 3.1., we have Mo(G�H) = V 2
|H|Mo(G). �

From the above Corollary 3.2., if G is also vertex transitive, then Mo(G�H) =

0.
Since some of the standard graphs like the cycle, the complete graph, the com-

plete equibipartite graph and some molecular graph like platonic, the Archimedean
solids, prisms and antiprisms and also for the unique fullerene on 60 vertices
with full icosahedral symmetry (the buckyball) are vertex transitive, we have
the following examples:

1. Mo(Pg�Kh) = V 2
|Kh|Mo(Pg)

2. Mo(Pg�Ch) = V 2
|Ch|Mo(Pg)

3. Mo(Pg�Kh,h) = V 2
|Kh,h|Mo(Pg)

4. If a graph H is Platonic, Archimedean solids, all prisms and anti prisms,
then we have Mo(G�H) = V 2

|H|Mo(G).
5. If H is a unique fullerene on 60 vertices with full icosahedral symmetry

(the buckyballs)Mo(G�H) = V 2
|H|Mo(G).

Corollary 3.3. For any graph G and for any tree T on n vertices, then Mo(G�T ) ≤
n2Mo(G) + V 2

|G|(n− 1)(n− 2).

Proof. By direct calculation, using the main Theorem 3.1. we have

Mo(G�T ) = n2Mo(G) + V 2
|G|Mo(T ) ≤ n2MO(G) + V 2

|G|(n− 1)(n− 2),

since Mo(T ) ≤ (n− 1)(n− 2) [18] with equality is hold iff T = S1,n−1 star on n

vertices. �

A broom Bk,n−k is a tree obtained by taking a path on k vertices and attaching
n− k leaves to one of its ends.

Corollary 3.4. For any graph G and if H = B3,n−3 is Broom,then Mo(G�B3,n−3) =

n2Mo(G) + V 2
|G|
(
(n− 2)2 + (n− 4)

)
.

Proof. By directly calculation, using the main Theorem 3.1. we have

Mo(G�B3,n−3) = n2Mo(G)+V 2
|G|Mo(B3,n−3) = n2Mo(G)+V 2

|G|
(
(n−2)2+(n−4)

)
,

since Mo(B3,n−3) = ((n− 2)2 + (n− 4)) [18]. �
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4. MOSTAR INDEX OF SOME MOLECULAR GRAPHS

In this section, we consider some of the molecular structures and obtain its
Mostar index. One of the many chemical compounds that are useful and neces-
sary for the survival of living organisms are carbon, oxygen, hydrogen and nitro-
gen. These are helpful for the production of cells in the living organisms. Carbon
is an essential element for the formation of proteins, carbohydrates and nucleic
acids. The carbon atoms can bond together in various ways, called allotropes
of carbon. The well known forms are graphite and diamond. Recently, many
new forms have been discovered including nanotubes, buckminster fullerene
and sheets, crystal cubic structure, etc. The structure of crystal cubic carbon
consist of cubes and some of the its topological indices were discussed in [3,8].
The molecular graph of crystal cubic carbon CCC(n) at various level is depicted
in Fig. 2(a).To obtain the Mostar index of crystal cubic carbon CCC(n), we have
consider the following edge partition of all the edges of CCC(n). Let Q1 be the
set of 12 edges in the first level, Qj be the set of 96(7)j−2 edges in all new cubes
at j-th level and Rj be the set of 8(7)j−2 edges that connects the cubes of j-th
level to cubes of (j−1)-th level. As a consequence of the results obtained in [3],
we have observe the following as a lemma which is applied in our main result:

Lemma 4.1. [8] Let the graph G ∼= CCC(n) be a crystal cubic carbon on n-
vertices. Then for any edge e = uv in Q1, Qj and Rj of CCC(n), we have

nu(e) = 16
21

7n − 4
3
, nv(e) = 16

21
7n − 4

3
,

nu(e) = 16
21

7n−j+1 − 4
3
, nv(e) = 32

21
7n − 4

3
− 16

3
7n−j, and

nu(e) = 8n−j+1, nv(e) = 32
21

7n − 8
3
− 8n−j+1,

respectively.

Figure 3. Crystal Structure Cubic Carbon CCC(1)
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Figure 4: All Orthogonal cuts of PAHk

Theorem 4.1. Let the graph G be the crystal cubic carbon CCC(n) with n vertices.
Then the Mostar index of crystal cubic carbon is

Mo(CCC(n)) =
512
(
7n
)(

7n − 6n− 1
)

147

+ 64

((
4(7n−1)− 1

)(
7n−1 − 1

)
18

− 2
(

8(n−1) − 7(n−1)
))

.

Proof. Since by the definition of Mostar index of graph and by the edge partition
of CCC(n) as discussed above we have,

Mo(CCC(n)) =
∑

e=uvεE(CCC(n))

|nu(e)− nv(e)|

=
∑

e=uvεE(Q1)

|nu(e)− nv(e)|+
∑

e=uvεE(Qj)

|nu(e)− nv(e)|

+
∑

e=uvεE(Rj)

|nu(e)− nv(e)|

= Mo(Q1) + Mo(Qj) + Mo(Rj)

(1)

Now to obtained each summation separately, by using the Lemma 4.1., we have
the following

Mo(Q1) = 12

∣∣∣∣(16

21
7n − 4

3

)
−
(16

21
7n − 4

3

)∣∣∣∣ = 0

Mo(Qj) =
n∑
j=2

96(7)j−2
∣∣∣∣(16

21
7n−j+1 − 4

3

)
−
(32

21
7n − 4

3
− 16

3
7n−j

)∣∣∣∣(2)
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= 512

g∑
j=2

7g+j−2
∣∣∣∣7− 7j

7j+1

∣∣∣∣
= 512

n∑
j=2

(7)n−3
∣∣2(71−j − 1

)∣∣
= 1024

n∑
j=2

(7)n−3
∣∣7− 7j

∣∣
= 1024

n∑
j=2

(7)n−2
(

7j−1 − 1
)

= 1024(7)n−2
(7
(
7n−1 − 1

)
6

−
(
n− 1

))
=

512
(
7n
)(

7n − 6n− 1
)

147

(3)

and

Mo(Rj) =
n∑
j=2

8(7)j−2
∣∣∣∣8n−j+1 −

(32

21
7n − 8

3
− 8n−j+1

)∣∣∣∣
= 64

n∑
j=2

(7)j−2
∣∣∣∣2(8)n−j − 4

21
7n +

1

3

∣∣∣∣ .
(4)

Since
4

21
7n > 2(8)n−j +

1

3
, we have

Mo(Rj) = 64
n∑
j=2

(7)j−2
( 4

21
7n −

(
2(8)n−j +

1

3

))
= 64

n∑
j=2

((4(7n−1)− 1

3

)
(7)j−2 − 2(8)(n−j)(7)(j−2)

)

= 64

((4(7n−1)− 1

3

) n∑
j=2

(7)j−2 − 2
8n

49

n∑
j=2

(7

8

)j)

= 64

((
4(7n−1)− 1

)(
7n−1 − 1

)
18

− 2(8)(n−1)
(

1−
(7

8

)n−1))

= 64

((
4(7n−1)− 1

)(
7n−1 − 1

)
18

− 2
(

8(n−1) − 7(n−1)
))

.
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Hence substitute the equations (2), (3) and (4) in (1), we have

Mo(CCC(n)) = 0 +
512
(
7n
)(

7n − 6n− 1
)

147

+ 64

((
4(7n−1)− 1

)(
7n−1 − 1

)
18

− 2
(

8(n−1) − 7(n−1)
))

.

�

Theorem 4.2. Let the graph G be the Polycyclic Aromatic Hydrocarbons PAHk

with k ≥ 1. Then the Mostar index of Polycyclic Aromatic Hydrocarbons PAHk is

Mo(PAHk) = 6k(3k − 1)
[
k(3k + 2)−

(k(k − 1)(2k − 1)

6
+ k(k − 1)

)]
.

Proof. Consider the general form of the molecular graph Polycyclic Aromatic
Hydrocarbons PAHk ( k ≥ 1 ) with 6k2 + 6k vertices and 9k2 + 3k edges. Using
the result obtained in [4, 14] by the method of orthogonal cut Ci for every
i = 0, 1, 2 · · · k, nv = i2 + 2(k + 1)i + k and nu = 6k2 + 5k − i2 − 2(k + 1)i. From
the definition of Mostar index we have the following

Mo(PAHk)

=
∑

e=uvεE(PAHk)

|nu(e)− nv(e)|

= 6k
∑
eεCk

|nu(e)− nv(e)|+ 6
k−1∑

eεCi,i=0

(k + i) |nu(e)− nv(e)|

= 0 + 6
k−1∑
i=0

(k + i)
∣∣(i2 + 2(k + 1)i + k)− (6k2 + 5k − i2 − 2(k + 1)i)

∣∣
= 6

k−1∑
i=0

2(k + i)
∣∣i2 + 2(k + 1)i− 2k − 3k2

∣∣
= 6

[
2
(
k2 +

k(k − 1)

2

)(
3k2 + 2k

)
− 2
(
k2 +

k(k − 1)

2

)((k − 1)k(2k − 1)

6
+ k(k − 1)

)]

= 6k(3k − 1)
[
k(3k + 2)−

(k(k − 1)(2k − 1)

6
+ k(k − 1)

)]
.

�
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Example 1. The Vertex-Mostar index of circumcoronene H3,Mo(H3) = 1620 since
there exists orthogonal cuts and implies that ng1 = 7, nh1 = 47, ng2 = 16, ng2 =

38, ng3 = 27, nh3 = 27.
The number of repetition of first second and third orthogonal cuts are equal to

6, 6 and 3 respectively, [14] Hence,

Mo(H3) =
∑

eεE(H3)

|ng(e|H3)− nh(e|H3)|

= (6 ∗ 4 |7− 47|) + (6 ∗ 5 |16− 38|) + (3 ∗ 6 |27− 27|)

= (24 ∗ 40) + (30 ∗ 22) + 0

= 960 + 660

M0(H3) = 1620

5. CONLUSION

This paper we obtained the exact expression of Mostar index to the Cartesian
product of any graphs, also we obtained it for some molecular graphs. Result
may be extended for some graph operations and even to some more molecular
structures.
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