

Advances in Mathematics: Scientific Journal **10** (2021), no.4, 2181–2185 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.4.32

COMPACT COMPLEMENT TOPOLOGIES IN BITOPOLOGICAL SPACE

Janat A. Emwas¹ and Hasan Z. Hdeib

ABSTRACT. Let (X, τ_0, τ_1) be a Hausdorff space, where X is an infinite set. The compact complement topologies in bitopological space (X, τ_0, τ_1) are τ_0^* and τ_1^* where $\tau_0^* = \{\emptyset\} \cup \{X \setminus M_0 : M_0 \text{ is } \tau_0\text{-compact}\}$ and $\tau_1^* = \{\emptyset\} \cup \{X \setminus M_1 : M_1 \text{ is } \tau_1\text{-compact}\}$. Throughout this paper, some properties of the space (X, τ_0^*, τ_1^*) are studied in ZF and we prove some conditions hold in ZF.

1. INTODUCTION

A bitopological space is a space of the form (X, τ_0, τ_1) , where τ_0 and τ_1 are two topologies on X, this concept initiated by Kelly [2].

Throughout this paper, we suppose that τ_0 and τ_1 are topologies on an infinite set X such that (X, τ_0, τ_1) is a Hausdorff bitological space and in this paper, we study elementary properties of compact complement topologies in bitopological space.

In particular, X stands for a set and "P" will be used for "Pairwise", i.e., P-Hausdorff will mean pairwise Hausdorf, and so on.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 22xx, 22Cxx, 22Axx.

Key words and phrases. Compact complement bitopology, Pairwise irreducible (Pairwise hyper connected).

Submitted: 05.04.2021; Accepted: 21.04.2021; Published: 28.04.2021.

J.A. Emwas and H.Z. Hdeib

2. MAIN PROPERTIES OF COMPACT COMPLEMENT TOPOLOGIES IN BITOPOLOGICAL SPACE.

Definition 2.1. A bitopological space (X, τ_0, τ_1) is called Hausdorff (compact) space if (X, τ_0) and (X, τ_1) are Hausdorff (compact).

Because it is hold in ZF that a compact subspace of a Hausdourff space is closed, so it is easy to show that τ_0^* and τ_1^* are topologies on X. Clearly, (X, τ_0^*, τ_1^*) is a bitopological space and we name it compact complement bitoplogy.

For a subset *Y* of *X* and the topologies τ_0 and τ_1 on *X*, let $\tau_0 | Y = \{v_0 \cap Y : v_0 \in \tau_0\}$ and $\tau_1 | Y = \{v_1 \cap Y : v_1 \in \tau_1\}$ are called relative topologies on *Y* then $(Y, \tau_0 | Y, \tau_1 | Y)$ is called a bitopological subspace of (X, τ_0, τ_1) .

Theorem 2.1. Let (X, τ_0, τ_1) be a bitopological space and $Y \subseteq X$. Then $\tau_i^* \mid Y \subseteq \tau_i \mid Y$, i.e., $\tau_i^* \mid Y$ is coarser than $\tau_i \mid Y$; $\forall i = 0, 1$.

Proof. We want to prove it when i = 0, it is enough to show that $\tau_0^* \subseteq \tau_0$. Let $U_0 \in \tau_0^*$ and $U_0 \neq \emptyset$. Then $U_0 = X \setminus M_0$ for τ_0 - compact subspace M_0 , since a compact subspace of a Haudorff space is closed, M_0 is a τ_0 - closed set. Thus $U_0 \in \tau_0$ also, in consequence, $\tau_0^* \subseteq \tau_0$. In a similar way we can prove that $\tau_1^* \subseteq \tau_1$.

Theorem 2.2. Let (X, τ_0, τ_1) be a bitopological space and $Y \subseteq X$. The following conditions satisfy in ZF:

- (a) If Y is compact in (X, τ_0, τ_1) , then $\tau_i^* \mid Y = \tau_i \mid Y$, $\forall i = 0, 1$.
- (b) If $\tau_i^* | Y = \tau_i | Y$ then there exists a τ_i compact set C_i such that $Y \subseteq C_i$, $\forall i = 0, 1$.

Proof.

- (a) Assume that Y is compact set, then Y is τ_0 compact and τ_1 compact. Let V_0 be τ_0 – open set. Since (X, τ_0) is Hausdorff, the set Y is τ_0 – closed, thus $A = Y \cap (X \setminus V_0)$ is a τ_0 – closed subset of τ_0 – compact set Y. So A is a τ_0 – compact. Notice that $V_0 \cap Y = Y \cap (X \setminus A)$. This proves that $V_0 \cap$ $Y \in \tau_0^* \mid Y$ and $\tau_0 \mid Y \subseteq \tau_0^* \mid Y$, also by previous theorem $\tau_0^* \mid Y \subseteq \tau_0 \mid Y$, so the equality hold when i = 0. Similarly, $\tau_1^* \mid Y = \tau_1 \mid Y$.
- (b) Assume that Y is a subset of X where $\tau_0^* \mid Y = \tau_0 \mid Y$. Let $V_0 \in \tau_0$ and $\emptyset \neq V_0 \cap Y \neq Y$. Because $V_0 \cap Y \in \tau_0 \mid Y$ then $V_0 \cap Y \in \tau_0^* \mid Y$, there is

2182

a τ_0 – compact set C_0 such that $V_0 \cap Y = Y \setminus C_0$. Fix a point $x_0 \in V_0 \cap Y$. Thus $x_0 \notin C_0$, since C_0 is τ_0 – compact, there exists a pair U_0, W_0 of disjoint τ_0 – open sets such that $x_0 \in U_0$ and $C_0 \subseteq W_0$. So $W_0 \cap Y \neq \emptyset$. Since $V_0 \cap Y \neq Y$. Because $U_0 \cap Y$ and $W_0 \cap Y$ are in $\tau_0^* \mid Y$, there is τ_0 – compact sets M_0, N_0 such that $U_0 \cap Y = Y \setminus M_0$ and $W_0 \cap Y = Y \setminus N_0$. Now let $K_0 = M_0 \cup N_0$. Thus K_0 is τ_0 – compact and $Y = Y \setminus (U_0 \cap W_0) = (Y \setminus U_0) \cup (Y \setminus W_0) \subseteq M_0 \cup N_0 = K_0$. Similarly, when we take i = 1.

Corollary 2.1. Let (X, τ_0, τ_1) be a biotopological space. Then (X, τ_0, τ_1) is compact if and only if $\tau_0 = \tau_0^*$ and $\tau_1 = \tau_1^*$.

Remark 2.1. In general, $\tau_i^* \mid Y \neq (\tau_i \mid Y)^*$ where i=0,1. For example, let Y be the open interval (0,1) of \mathbb{R} , where τ_u is the usual topology of \mathbb{R} , then $\tau_u^* \mid Y \neq (\tau_u \mid Y)^*$ as we can see in [3].

We have the following obvious results because $\tau_i^* \subseteq \tau_i$ i = 0, 1.

Proposition 2.1.

- (a) If (X, τ_0, τ_1) is separable, then (X, τ_0^*, τ_1^*) is separable.
- (b) If (X, τ_0, τ_1) is hereditarily separable, so is (X, τ_0^*, τ_1^*) .
- (c) If (X, τ_i) is lindelöf, then (X, τ_i^*) is lindelöf i = 0, 1.
- (d) If (X, τ_i) is hereditarily lindelöf so is (X, τ_i^*) i = 0, 1.

Definition 2.2. A bitopological space (X, τ_0, τ_1) will be called P - Hausdorff if for any two points $x_0 \neq x_1$ there exists τ_0 – open set U_0 of x_0 and a τ_1 – open set U_1 of x_1 which are disjoint.

Proposition 2.2. If (X, τ_0, τ_1) is a P – Hausdorff space. Let U_0 and U_1 be τ_0 – open and τ_1 – open subsets of X respectively where $U_0 \cap U_1 = \emptyset$, then $U_0^{\tau_1} \cap U_1 = \emptyset$ and $U_1^{\tau_0} \cap U_0 = \emptyset$.

Proof. Assume that $U_0^{\tau_1} \cap U_1 \neq \emptyset$ and Let $x \in U_0^{\tau_1} \cap U_1$, so $x \in U_0^{\tau_1}$ that means every τ_1 – open neighborhood of x intersects U_0 . But U_1 is τ_1 – open set containing x which does not intersect U_0 . This contradiction proves that $U_0^{\tau_1} \cap U_1 = \emptyset$. In a similar way we can show that $U_1^{\tau_0} \cap U_0 = \emptyset$.

Fora and Hdeib [1] show the following proposition:

Proposition 2.3. If (X, τ_0, τ_1) is a P - Hausdorff, then both τ_0 and τ_1 are T_1 - topologies.

Proposition 2.4. If (X, τ_0, τ_1) is a P - Hausdorff, then both τ_0^* and τ_1^* are T_1 - topologies

Proof. Let $x \in X$ then $\{x\}$ is τ_i – compact $\forall i = 0, 1$, because finite sets are compact, we get that $X \setminus \{x\}$ is τ_i^* - open set. Thus, $\{x\}$ is τ_i^* - closed set, that means τ_0^* and τ_1^* are T_1 – topologies.

Proposition 2.5. (X, τ_0, τ_1) is not compact if and only if (X, τ_0^*, τ_1^*) is not Hausdorff. Also, if (X, τ_0, τ_1) is not compact, then any two non – empty τ_0^* - open sets have a non-empty intersection or any two non-empty τ_1^* - open sets have a nonempty intersection.

Proof. Let (X, τ_0, τ_1) be not compact, thus (X, τ_0) is not compact space or (X, τ_1) is not compact. Suppose that (X, τ_0) is not compact space and U_0, V_0 be any two non-empty τ_0^* -open sets, then $X \setminus U_0$ and $X \setminus V_0$ are τ_0 – compact, thus $(X \setminus U_0) \cup (X \setminus V_0)$ is τ_0 – compact. Hence, $X \neq (X \setminus U_0) \cup (X \setminus V_0) = X \setminus (U_0 \cap V_0)$. Thus $(U_0 \cap V_0) \neq \emptyset$; so (X, τ_0^*, τ_1^*) is not Hausdorff. Similarly, when we suppose that (X, τ_1) is not compact we get (X, τ_0^*, τ_1^*) is not Hausdorff. Conversely, suppose that (X, τ_0^*, τ_1^*) is not Hausdorff, so we get $\tau_0 \neq \tau_0^*$ or $\tau_1 \neq \tau_1^*$ because (X, τ_0, τ_1) is Hausdorff, thus by Corollary 2.1 we get (X, τ_0, τ_1) is not compact.

Corollary 2.2. If (X, τ_0, τ_1) is not compact, then we have the following results:

- (a) Every τ_i^* open set is connected in (X, τ_i^*) where i = 0, 1.
- (b) (X, τ_i^*) is connected and Locally connected where i = 0, 1.

Proof. Let (X, τ_0, τ_1) be not compact, so (X, τ_0) is not compact or (X, τ_1) is not compact. Suppose that (X, τ_0) is not compact and $\emptyset \neq V_0 \in \tau_0^*$. If V_0 were disconnected in (X, τ_0^*) , there is a pair U_0 , W_0 of non-empty disjoint τ_0^* - open sets which is contradiction by Proposition 2.5. Thus, V_0 is connected in (X, τ_0^*) . Similarly, when we take (X, τ_1) is not compact. Hence, (a) holds and clearly, (b) follows from (a).

Definition 2.3. A space (X, τ_0, τ_1) is said to be pairwise irreducible or pairwise hyper connected if all τ_i – pen sets are connected in (X, τ_i) where i = 0, 1.

Remark 2.2. By Corollary 2.2, if (X, τ_0, τ_1) is not compact, then the space (X, τ_0^*, τ_1^*) is pairwise hyper connected.

2184

Definition 2.4. A subset G of X, where (X, τ_0, τ_1) is a bitopological space, will be called pairwise G_{δ} – set if $G = \bigcap \{G_n : 1 \le n \le \infty\}$, where G_n is pairwise open set.

Definition 2.5. A subset A of X, where (X, τ_0, τ_1) is a bitopological space, will be called pairwise σ^* - compact if $A = \bigcup \{C_n : 1 \le n \le \infty\}$, where C_n is τ_0 - open set and $A = \bigcup \{K_n : 1 \le n \le \infty\}$, where K_n is τ_1 - open set.

Although some other results can be said about compact complement bitopology, we want to finish our paper with the following theorem:

Theorem 2.3. Let $x_0 \in X$. If $\{x_0\}$ is pairwise G_{δ} – set in (X, τ_0^*, τ_1^*) , then $X \setminus \{x_0\}$ is pairwise σ^* - compact set of (X, τ_0, τ_1) .

Proof. Assume that $\{x_0\} = \bigcap_{n \in \omega} V_n$ such that $\{V_n : n \in \omega\}$ is a family of pairwise open sets in (X, τ_0^*, τ_1^*) . Then V_n are both τ_0^* - open and τ_1^* - open in X. Hence, $V_n = X \setminus M_n$ where M_n are τ_0 - compact sets and $V_n = X \setminus N_n$ where N_n are τ_1 - compact sets. Thus, the sets $M_n = X \setminus V_n$ are all τ_0 - compact sets and N_n $= X \setminus V_n$ are all τ_1 - compact sets, so $X \setminus \{x_0\} = \bigcap_{n \in \omega} M_n$ and $X \setminus \{x_0\} = \bigcap_{n \in \omega} N_n$. Hence, $X \setminus \{x_0\}$ is pairwise σ^* - compact.

We can find more applications of this study in problems of [4] and [5].

REFERENCES

- A. A. FORA, H. Z. HDEIB: On pairwise lindelöf spaces, Revista Colombiana de Matemáticas, 17(1-2) (1983), 37–57.
- [2] J. KELLY: Bitopological spaces, Proceedings of the London Mathematical Society, 3(1) (1963), 71–89.
- [3] K. KEREMEDIS, C. ÖZEL, A. PIEKOSZ, M. A. SHUMRANI, E. WAJCH: Compact complement topologies and k-spaces, arXiv preprint arXiv:1806.10177, 2018.
- [4] D. H. PAHK, B. D. CHOI: Notes on pairwise compactness, Kyungpook Mathematical Journal, 11(1) (1971), 45–52.
- [5] C. PATTY: Bitopological spaces, Duke Mathematical Journal, 34(3) (1967), 387–391.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF JORDAN, AMMAN, JORDAN. Email address: janatmanasrah@yahoo.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF JORDAN, AMMAN, JORDAN. Email address: Zahedib@ju.edu.jo